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Abstract

We analyse integrable models associated to a multiparametric SU(N) R-matrix. We

show that the Hamiltonians describe SU(N) chains with twisted boundary conditions

and that the underlying algebraic structure is the multiparametric deformation of SU(N)

enlarged by the introduction of a central element.
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The Quantum Inverse Scattering Method [1] provides a uni�ed framework for the

exact solution of classical and quantummodels and led naturally to the new mathematical

concept of quantum groups [2]. These were formulated as one-parameter deformation of a

universal enveloping algebra. Multiparametric deformations have also been developed [3]

and are currently attracting much attention: consistent multiparametric generalizations

of the R-matrix and the corresponding quantum groups were discussed by several authors

[4-11].

In this letter we obtain the Hamiltonian for an SU(N) chain with twisted bound-

ary conditions and �nd that the underlying algebraic structure is the multiparametric

deformation of SU(N) enlarged by the introduction of a central element.

We start with the following multiparametric generalization of the SU(N) R-matrix,

�rst introduced by Perk and Schultz [12],
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NX
�

e�� 
 e�� + b(x)
NX

� 6=�

p��e
�� 
 e�� (1)

+ c�(x; q)
NX

�<�

e�� 
 e�� + c+(x; q)
NX

�>�

e�� 
 e�� ;

where x is the spectral parameter and
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q and p�� are 1 + N(N�1)
2

independent parameters with p��; �; � = 1; � � �N(� < �),

p�� = (p��)�1. The N �N matrices e�� have elements (e��)� = �����.

It is easy to check that the R-matrix (1) satis�es the Yang-Baxter equation

R12(x12; q; fpg)R13(x13; q; fpg)R23(x23; q; fpg) = R23(x23; q; fpg)R13(x13; q; fpg)R12(x12; q; fpg) :

(3)

Notice that both sides of the equation above act on the tensor product of three N -

dimensional auxiliary spaces CN
1 
CN

2 
CN
3 , whereas the matrix Rik(xik; q; fpg) acts on

CN
i 
CN

k .

The Lax operator associated to (1) is
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NX
�

qW�
Y
� 6=�

(p��)
W�e�� �

1

x

NX
�

q�W�
Y
� 6=�

(p��)
W�e�� +

+ c+(x; q)
X
�>�

X+
��e

�� + c�(x; q)
X
�<�

X�
��e

�� ; (4)

where in the fundamental representationW� = e�� and X�� = e��(� 6= �); X+
��(X

�
��) has

non-zero elements above (below) the diagonal. These W� can be written as combinations
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of the matrices H, representing the Cartan sub-algebra, and the identity matrix I,
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>>:

1 if � = 1

1 � � if � � �

N + 1� � if � > �

(6)

such that H� = W� �W�+1 and I =
PN

�=1W�. The R matrix (1) and the Lax operator

(4) obey the Fundamental Commutation Relation (FCR) [1],
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Here the L-matrix is de�ned on the tensor product of the N -dimensional auxiliary space

and the local quantum space CN
1 
Cd

2 , with d the dimension of the representation of the

associated algebra satis�ed by the operators in the entries of the matrix L.

Following the general procedure of Faddeev et al [1], we introduce the monodromy

matrix

T (x; q; fpg) = Ln0(x; q; fpg) � � �L2(x; q; fpg)L1(x; q; fpg) ; (8)

acting on the tensor product of an auxiliary (horizontal) space CN and a quantum (ver-

tical) space 
 = CN
1 
 � � �CN

n0
.

The transfer matrix is de�ned as the trace of the monodromymatrix (8) in the auxiliary

space:

� (x; q; fpg) = trT (x; q; fpg) =
NX
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The Yang-Baxter equations (3) imply the commutativity of the transfer matrix for di�er-

ent spectral parameters,

[� (x; q; fpg); � (y; q; fpg)] = 0 ; (10)

which reects the integrability of the model. In fact, the eigenvalue problem for a N -state

integrable model is exactly solved by the Algebraic Nested Bethe Ansatz method [13].

This procedure is carried out in (N � 1) steps and the Bethe Ansatz equations for the

level \l" (l = 1; � � �N � 1) are given by
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Here nN = 0; x(0) = 0; Ni = ni�1 � ni and
Q0

i=1 is assumed to be one. Therefore, the

eigenvalue problem of the transfer matrix (9) is reduced to a system of coupled algebraic
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equations for the Bethe Ansatz parameters x
(l)
k ; (l = 1; � � �N � 1; k = 1; � � � nl). We

observe that each parameter x(l) couples just with its neighbour-level parameter x(l�1)

(except x(1)(x(N�1)), which couples only with x(2)(x(N�2))).

From the transfer matrix (9), we get a multiparametric version of a quantum Hamil-

tonian for a n0 length SU(N) chain through
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Let us now show that the general Hamiltonian (13) describes a SU(N) chain with

twisted periodic boundary conditions. For that sake we perform the similarity transfor-

mations generated by
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The coe�cients �� are �xed when we impose the conditions

p��Ue
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i e��i+1U
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under which (13) particularizes to the Hamiltonian for the SU(N) spin chain with twisted

periodic boundary conditions
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The case N = 2 was previously discussed in the literature [14,15].

The multiparametric Hamiltonian (13) is not quantum group invariant. Nevertheless,

the quantum group structure also appears in this context. The underlying algebraic

structure is obtained directly from the FCR (7) noting that nowWi andX�� are considered

as abstracts elements of the algebra. Besides, the W� are now combinations of a central

element Z and operators Ĥ�,
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N
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that respectively concide with I and H� in the fundamental representation and the coef-

�cients w�� are the same as given in relation (6). The commutation relations are then
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remembering that Ĥ� = W� �W�+1.

The coproduct is obtained by considering the product of two L0s acting on two internal

spaces; we �nd
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Thus, the introduction of a central element has allowed us to construct a coherent co-

product which makes appear the underlying algebraic structure of the SU(N) chain with

twisted boundary conditions.
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