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Abstract

For a degenerate electron gas con�ned to a half-space or a slab the spin

polarization produced by a point �eld is calculated. For the half-space both

in three and one dimensions the analytic solution contains the usual RKKY

polarization around the source plus a polarization wave originating from

the mirror point, however, with the same phase at the border; there both

are cancelled by a third term. In the slab the integrated polarization is

�nite, while it vanishes for the �nite line.
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I. INTRODUCTION

Experiments with magnetic ions in limited metallic samples, such as �lms and layered

structures have been of great interest recently. The question, how the RKKY [1] polari-

sation behaves in inhomogeneous media is relevant. Simple situations are those of a point

ion spin in a half-space or in a slab in three and in one dimensions. This paper solves

these problems to a large extent analytically. The model of a limited space is treated for

simplicity; it does not pretend to represent all the complexities of real surfaces.

II. THE HALF-SPACE

Consider a fully degenerate ideal electron gas �lling the half space x > 0. At the

position x = a; y = z = 0, there is a point exchange �eld in the z direction acting on the

spins of the electrons.

A complete set of one particle wave functions which vanish at the boundary x = 0 is

given by

�k;K;s(x;R) =
p
2 sin(kx) eiK�Rjsi; (1)

where k > 0; R = (y; z), and K = (Ky;Kz). jsi represents the spin wave function for

an electron with spin s = �1=2 in the z-direction. The perturbing Hamiltonian is

H 0 = � �(x� a) �2(R) �z
2
; (2)

where the coupling constant  has the dimension energy�volume, and �z is the Pauli spin

matrix for the z-direction. Yosida [2] has shown that the spin polarization which arises

from the change in occupation connected with the Zeeman splitting of the levels can be

ignored if the restriction not to include diagonal terms in the perturbed wave function

is lifted. Thus we neglect the Zeeman splitting introduced by the perturbation, Eq. (2).

The matrix elements of Eq. (2) are

h�k0;K0;s0jH 0j�k;K;si = �2s sin(ka) sin(k0a) �s0;s: (3)
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The perturbed wave functions are

 k;K;s(x;R) = �k;K;s �
p
2 2s

4�3

2m

�h2

Z 1

0
dk0

Z 1

0
dK 0K 0

Z 2�

0
d'

sin(ka) sin(k0a)

k2 +K2 � k02 �K 02
sin(k0x) eiK

0R cos(') jsi: (4)

All the integrations can be performed analytically using
R1
0 d' eiK

0R cos(') = 2� J0(K 0R),

where J0 is the Bessel function of order zero, sin(k0x) sin(k0a) = 1
2
[cos(k0z�) � cos(k0z+)]

with z� = jx� aj, and [3]

Z 1

0
dk0

cos(k0z�)

C2 �K 02 � k02
=

8>>>><
>>>>:

�
2

sin

�p
C2�K02z�

�
p

C2�K02
for C2 > K 02

��
2

exp

�
�
p

K02�C2z�

�
p

K02�C2
for C2 < K 02

(5)

with C2 = k2 +K2, and [4]

� R b
0 dxx (b

2 � x2)�1=2 sin
�
�
p
b2 � x2

�
J0(xy)

+
R1
b dxx (x2 � b2)�1=2 exp

�
��px2 � b2

�
J0(xy)

= (y2 + �2)�1=2 cos
�
b
p
y2 + �2

�
: (6)

The result is

 k;K;s = �k:K;s +

p
2

8�
2s

2m

�h2
sin(ka)

8<
:
cos

�p
k2 +K2��

�
��

�
cos

�p
k2 +K2�+

�
�+

9=
; (7)

with �� =
q
(x� a)2 +R2. The perturbation produces a superposition of two spherical

waves, one of which originates at the position (a; 0; 0), and the other at the mirror point

(�a; 0; 0).
The spin polarization is given by the terms linear in  of

Ph(x;R) =
Z
occupied states

dk d2K
4�3

X
s

 �k;K;s(x;R)
1
2�z  k;K;s(x;R); (8)

where the sum extends over states with k2+K2 < kF
2, with kF , the Fermi wave number.

Ph(x;R) =
1

25�4

2m

�h2

Z kF

0
dk
Z pk2

F
�k2

0
dK K

Z 2�

0
d' sin(kx) sin(ka)

� eiKR cos(')

8<
:
cos

�p
k2 +K2��

�
��

�
cos

�p
k2 +K2�+

�
�+

9=
; + c.c. (9)
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Once more these integrals can be performed analytically. We obtain

Ph =


8�3

2m

�h2
[I�� � I�+ � I+� + I++] ; (10)

where the two indices refer to the index of z� and �� in integrals like

I�+ =
Z kF

0
dk
Z pk2

F
�k2

0
dK K J0(KR) cos(kz�)

cos(
p
k2 +K2�+)

�+
: (11)

With K = q sin(�); k = q cos(�); dk dK = q dq d�

I�+ =
Z kF

0
dq q2

cos(q�+)

�+

Z �=2

0
d� sin(�)J0(qR sin(�)) cos(qz� cos(�)): (12)

which becomes [5]

I�+ =
Z kF

0
dq q

cos(q�+)

�+��
sin(q��): (13)

The remaining integrals are elementary. The �nal result can be expressed with the RKKY-

function

R(x) =
k4F
4�3

2m

�h2
sin(x)� x cos(x)

x4
(14)

as

Ph = R(2kF ��) +R(2kF �+)� (�� + �+)2

2���+
R(kF (�� + �+)): (15)

The �rst term is the usual RKKY polarization in in�nite space. The second term corre-

sponds to a reected wave originating from the mirror point (�a; 0; 0). The third term

compensates the �rst two terms at the boundary and is of the same order as the others

in the whole half space. See Figs. 1 and 2.

The RKKY polarization in thin wires has been discussed [6] with the method of

Feynman path integration, where, however, only direct and reected waves appear.

The existence of a direct wave and of a reected wave in Ph(x;R) could be expected.

The fact is, however, that the magnetic polarizations belonging to the two waves are

equal at the surface. They do not compensate each other. Since the total polarization

at the surface, where the electron density vanishes, must be zero, a third term which

compensates the two previous terms becomes unavoidable. This third term extends over

the whole space with similar amplitudes as the other two terms.
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III. INTEGRATED POLARIZATION IN THE HALF-SPACE

The integrated polarization as a function of the position a of the source

P(a) =
Z
half space

d3r Ph(x;R) (16)

is an important quantity. The integral over the �rst two terms in Eq. (15) add up to the

integral over the �rst in in�nite space

Z
d3xR(2kF ��) =

kF
8�2

2m

�h2
: (17)

For the third term elliptic coordinates are adequate. The rotational ellipsoid with half

axes A and B

x2

A2
+
y2 + z2

B2
= 1 (18)

allows the parametrization

x = A cos(') (19)

y = B sin(') cos( ) (20)

z = B sin(') sin( ): (21)

Here B =
p
A2 � a2, where the focal distance a is the position of the point �eld. The

excentricity � = a=A is connected with the two radii by

�1 = A+ � x; �2 = A� � x: (22)

The Jacobian J of the transformation, dx dy dz = J da d'd becomes J = sin(') [A2 �
a2 cos2(')]. Then J (�1 + �2)2=(�1�2) = (2A)2 sin('), so that

Z 1

0
dA

Z �=2

0
d'
Z 2�

0
d sin(') (2A)2R(2kFA) =

kF
8�2

2m

�h2
sin(2kF a)

2kF a
: (23)

Thus

P(a) = kF
8�2

2m

�h2

"
1 � sin(2kF a)

2kF a

#
: (24)
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With distance there is a oscillatory behaviour with decreasing amplitude. The overshoot-

ing or suppression of the polarization depends on how the RKKY oscillations �t into the

distance between the source and the surface. The average of the probability density of

the wave functions on the Fermi surface SF is

hj�k;K;s(a; 0)jiSF =
1

4�

Z 2�

0
d'
Z �

0
d� sin(�) 2 sin2(kF a cos(�) (25)

= 1� sin(2kfa)

2kF a
: (26)

Eq. (24) combined with Eq. (26) is a special case of a general theorem [7].

A integral over a gives the integrated polarization from a homogeneous �eld. Since

Z 1

0

sin(2kF a)

2kF a
=

�

4kF
=
�F
8

(27)

with kF = 2�=�F , the integrated Pauli susceptibility of a half space is reduced near the

surface as if a slab of width �F =8 were missing.

IV. THE SLAB

For a slab or �lm of thickness L the boundary condition that the wave functions vanish

for x = 0 and x = L is assumed. We thus use the complete set of wave functions

'n;K;s(x;R) =

s
2

L
sin

�
n�x

L

�
eiK�R; n = 1; 2; : : : : (28)

The perturbed wave function becomes

�n;K;s(x;R) = 'n;K;s �
p
2 2s

(2�)2L3=2

2m

�h2

1X
n0=1

Z 1

0
dK 0K 0

Z 2�

0
d'

� sin(n�a=L) sin(n0�a=L)

(n�=L)2 +K2 � (n0�=L)2 �K 02
sin(n0�x=L)eiK

0R cos(') jsi: (29)

The sum over n0 can be performed with the aid of Poisson's formula [8] which yields

for D > 0:

1

2D2
+

1X
n=1

cos(nC)

D2 � n2
=
�

2

1X
n=�1

sin(DjC + 2�nj)
D

(30)

1

2D2
+

1X
n=1

cos(nC)

D2 + n2
=
�

2

1

D

1X
n=�1

e�DjC+2�nj: (31)
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We can again use Eq. (6) for the integration over K 0. With the dimensionless quantities

Q =
q
n2 + (KL=�)2; �l;� =

�

L

q
R2 + (jx� aj+ 2lL)2 (32)

the wave function Eq. (29) becomes

�n;K;s(x;R) =

s
2

L
sin

�
n�x

L

�
eiK�R

+

p
2

8L3=2
2s

2m

�h2
sin

�
n�a

L

� 1X
l=�1

"
cos(Q�l;�)

�l;�
� cos(Q�l;+)

�l;+

#
: (33)

The polarization now reads

Pf (x;R) =
X
n

occupied states

Z
d2K
(2�)2

X
s

��n;K;s(x;R) �z
2 �n;K;s(x;R): (34)

Which are the occupied states? Let �F be the energy of the highest occupied level.

It corresponds to a wave number kF through �F = �h2k2F =(2m). The x-component of the

wave vector is quantized as �n=L, while the y- and z-components are continuous. We call

nF the highest value of n for which occupied states exist. Both nF and kF are determined

by the total electron density N . They must reproduce the number of electrons per unit

surface of the slab through

NL

2
=

nFX
n=1

Z pk2
F
�(�n=L)2

0

2�K dK

(2�)2
=

1

4�

nFX
n=1

(
k2F �

�
�n

L

�2
)

(35)

2

�
NL3 = nF

 
LkF
�

!2

� 1

6
nF (nF + 1)(2nF + 1) (36)

and ful�ll the relation

nF � kFL=� < nF + 1: (37)

nF counts the number of half waves within the thickness L of the slab. The Eqs. (36)

and (37) yield unambigously nF and kF . For nF � 1 they lead to nF � kFL=� with

kF = (3�2N)1=3, so that n3F � (3=�)NL3. kF and the energy as functions of N are

di�erent analytical expressions for each value of nF (N); numerically, however, the two

functions are remarkably smooth.
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Now Eq. (34) becomes

Pf (x;R) =
�

4L4

2m

�h2

nFX
n=1

sin
�
n�a

L

�
sin

�
n�x

L

� 1X
l=�1

(Il;� � Il;+); (38)

where the indexes l;� or l;+ refer to those of �.

Il;� =
1

�l;�

Z p(kFL=�)2�n2

0
dz z J0(

z�R

L
) cos(

p
z2 + n2�l;�) (39)

where z = KL=�.

On the axis, R = 0, the integral Eq. (39) can be performed analytically, yielding

Il;� =
1

�3l;�

"
f1

 
kFL

�
�l;�

!
� f1 (n�l;�)

#
(40)

with f1(x) = cos(x) + x sin(x). The in�nite sum in Eq. (38) converges quickly, because

for large l the di�erence Il;�� Il;+ is proportional to l�3. Pf (x;R)2kF jx� aj is plotted in

Fig. 3.

V. INTEGRATED POLARIZATION IN THE SLAB

To calculate the integral of the polarization over the volume of the slab as a function

of a, it is convenient to write the polarization using Eq. (29) for the wave function.

Pf (x;R) = � X
n

occupied states

Z
d2K

2

L2

2m

�h2
1

(2�)4

1X
n0=1

Z
d2K 0

sin
�
n�a
L

�
sin

�
n0�a
L

�
(�=L)2(n2 � n02) +K2 �K 02

� sin
�
n�x

L

�
sin

 
n0�x

L

!
ei(K�K

0)�R + c.c.; (41)

where the integration overK0 extends over the whole space. The integration over x leads

to

P(R) =
Z L

0
Pf (x;R) dx =

�1
(2�)4L


2m

�h2
X
n

occupied states

Z
d2K sin2

�
n�a

L

�Z
d2K 0 e

i(K�K0)�R

K2 �K 02
+ c.c.:

(42)

With q =K �K0 Eq. (42) becomes
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P(R) = 

L

2m

�h2

nFX
n=1

sin2
�
n�a

L

�Z d2q

(2�)2
eiq�R

Z pk2
F
�(n�=L)2

0

Z 2�

0
d'

2

q2 � 4K2 cos2(')
: (43)

These integrals can be performed analytically. The integrals over ' andK were considered

by Kittel [9] in the evaluation of the spin susceptibility in two dimensions. The result is

P(R) = 

4L

2m

�h2

nFX
n=1

sin2
�
n�a

L

�Z
d2q

(2�)2
eiq�R�0(q; n); (44)

where

�0(q; n) =
1

�

�
�(2kFn � q) +

�
1�

q
1� (kFn=q)2

�
�(q � 2kFn)

�
(45)

with kFn =
q
k2F � (n�=L)2 and � the step function.

The Fourier transform in Eq (44) was performed by B�eal-Monod [10]. The result is

P(R) = 

4L

2m

�h2

nFX
n=1

sin2
�
n�a

L

�
~�0(R;n) (46)

~�0(R;n) = � k2Fn
2�

[J0(kFnR)N0(kFnR) � J1(kFnR)N1(kFnR)] : (47)

The spacial integration over R is immediate from Eq. (44)

p(a) =
Z
d2R P(R) = 

8�

2m

�h2
nF

2

LnF

nFX
n=1

sin2
�
n�a

L

�
: (48)

A further integration over a

Z L

0
da p(a) =



8�

2m

�h2
nF � kFL

8�2

2m

�h2
(49)

reproduces the Pauli susceptibility in the limit of kFL=� � 1.

VI. SUSCEPTIBILITY IN RECIPROCAL SPACE

Eq. (41) may be written in terms of a generalized susceptibility �(q; n; n0) as

Pf (x;R) =


2L2

2m

�h2

nFX
n=1

1X
n0=1

sin
�
n�

l
a
�
sin

 
n0�

L
a

!
sin

�
n�

L
x
�
sin

 
n0�

L
x

!

�
Z

d2q

(2�)2
eiq�R�(q; n; n0); (50)
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where

�(q; n; n0) = � D

�q2

n
�(W 2 � 1) + (1�

p
1�W 2)�(1 �W 2)

o
(51)

with W = 2qkF=D; D = (�=L)2(n2 � n02) � q2. Note that when Eq. (50) is integrated

over x in the interval f0; Lg it coincides with Eq. (44).

VII. THE HALF-LINE

The program of �nding the spin polarisation due to a point �eld in limited spaces,

which was carried out in the preceding sections, can be performed analytically to the end

in the one dimensional case. This may apply to mesoscopic wires which are su�ciently

thin so that the side motion is frozen out by the quantum size e�ect.

Set of wave functions for the half-line:

�k;s(x) =
p
2 sin(kx)jsi: (52)

Perturbing Hamiltonian:

H 0 = � �(x� a) 1
2�z: (53)

As pointed out in section 2, Yosida [2] has shown that the correct polarization can be

obtained from the �rst order perturbation of the wave function alone, if the sums over

continuous states include the diagonal term. We shall again follow this prescription in

the treatment of the half-line. Matrix element:

h�k0;s0jH 0j�k;si = �2s sin(ka) sin(k0a) �s;s0: (54)

Perturbed wave function:

 k;s(x) = �k;s(x)�
p
2s sin(ka)

2m

�h2

Z 1

0

dk0

�

cos (k0(x� a))� cos (k0(x+ a))

k2 � k02
jsi

= �k;s(x)�
p
2s

2k

2m

�h2
sin(ka) [sin (kjx� aj)� sin (k(x+ a))] jsi: (55)
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Polarization:

P1h(x) =
X
s

Z kF

0

dk

�
 �k;s(x)

1

2
�z  k;s(x) (56)

= � 1

2�

2m

�h2

Z kF

0

dk

k
[cos (kjx� aj)� cos (k(x+ a))]

� [sin (kjx� aj)� sin (k(x+ a))] (57)

= � 

4�

2m

�h2
[Si (2kF jx� aj) + Si (2kF (x+ a))� 2 Si (kF (jx� aj+ x+ a))] : (58)

In the unlimited one dimensional space the spin polarization is [11]:

R1(jx� aj) = 

4�

2m

�h2

�
�

2
� Si(2kF jx� aj)

�
: (59)

Thus

P1h(x) = R1(jx� aj) +R1(x+ a)� 2R1

 jx� aj+ x+ a

2

!
: (60)

The last term compensates the �rst two for x = 0. The structure of the formula for P1h(x)

is analogous to the 3 dimensional case. P1h(x) is plotted in Fig. 4.

The question of the order of the integrations and the contribution of the singularity

at k = k0 = 0 has been a dominant theme in the treatment of the spin susceptibility in

unlimited, homogeneous media [2] [11]. The constant term �=2 in Eq. (59) arises from

this singularity [11]. However, in Eq. (60) this term cancels out. In the one dimensional

half-space these questions are not relevant; the wave function Eq. (52) does not even exist

for k = 0.

VIII. INTEGRATED POLARIZATION OF HALF-LINE

It is interesting to evaluate the integrated polarization produced by the point interac-

tion, Eq. (53). In unlimited space it is

Z 1

�1
R1(jx� aj) dx = 

4�kF

2m

�h2
: (61)

In the one-dimensional half-space the integration becomes
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Z 1

0
dxP1h(x) =



4�kF

2m

�h2
f1 � cos(2kF a)g : (62)

The result oscillates with the position a of the point �eld. Eq. (62) also follows from a

general theorem [7]. An integration of Eq. (62) over the position a gives the total spin

produced by a homogeneous �eld of strength . This integral is not properly de�ned;

as a function of the limit of integration it oscillates inde�nitely around the mean value

 � (2m=�h2)=(4�kF )�Volume, which corresponds to the Pauli susceptibility.

IX. THE FINITE LINE

The wave functions vanish at the limits of the interval 0 � x � L. A normalized set

of functions are

'n;s(x) =

s
2

L
sin

�
�nx

L

�
jsi; n = 1; 2; : : : : (63)

Now the wave numbers are discreet. In this case the prescription of Yosida [2] does not

apply; the normal rules of perturbation theory must be followed. First the perturbation,

Eq. (53), must be diagonalized within the degenerate spin states. The resulting energies

are

�n;s =
�h2�2

2mL2
n2 � 2

L
s sin2

�
n�a

L

�
: (64)

Between the levels n; s and n + 1; s there is a gap ��n;s = (2n + 1)�h2�2=(2mL2). While

��nF ;s > jj=L and kBT � ��nF ;s, where T is the temperature, there is no change of

occupation. Here nF is the highest occupied number n. Multiplying the �rst inequality

by nF , the left side becomes larger than twice the Fermi energy, while the right side is

jj times the density of electrons of one spin. In three dimensions this is typically of the

order of 0.3 eV, while 2�nF ;s is of the order 10 eV. We shall assume that L is su�ciently

small, so that there is no change of occupation. In the denominators of the second order

perturbation theory the spin dependent parts of the energy cancel out.

With Eq. (53) the perturbed wave function becomes
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�n;s(x) = 'n;s(x)� s

s
2

L3

2m

�h2
sin

�
n�a

L

�

�
1X

m=1

0
cos((m�=L)jx� aj)� cos((m�=L)(x+ a))

(�2=L2) (n2 �m2)
jsi; (65)

where the sum excludes the term m = n. For non integer n the sum over all integers m

is known [12]. The restricted sum for integer n can be obtained as a limiting value

1X
m=1

0
cos(mC)

n2 �m2
= lim

�!0

(
1X

m=1

cos(mC)

(n+ �)2 �m2
� cos(nC)

(n+ �)2 � n2

)
(66)

= � 2 + cos(nC)

4n2
+
sin(nC) (� � C)

2n
: (67)

With

A = (�=L) jx� aj; B = (�=L) (x+ a) (68)

Eq. (65) becomes

�n;s = 'n;s +

s
2

L3

sL2

4�2

2m

�h2
sin

�
n�a

L

�"
cos(nA)

n2
� 2(� �A)

sin(nA)

n

�cos(nB)

n2
+ 2(� �B)

sin(nB)

n

#
jsi: (69)

Let nF denominate the highest doubly occupied level, so that nF = Int(N=2) with N

the number of electrons. Then these doubly occupied levels give a spin polarization

P1f (x) =
nFX
n=1

X
s

��n;s(x)
1

2
�z �n;s(x): (70)

It can be written conveniently in terms of the function

Q(y) = 
2m

�h2

nFX
n=1

(cos(ny) + n(2� � y) sin(ny))
1

n2
(71)

as

P1f (x) =
1

8�2
f2Q(A+B) +Q(A�B) +Q(B �A)�Q(2A)�Q(2B)� 2Q(0)g: (72)

which is plotted in Fig. 4.

In a one dimensional system nF need not be a large number, and the question arises,

whether the number of electrons is even or odd. Between the unperturbed levels n and
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n+1 there is an energy gap of value (�h2=2m)(�=L)2(2n+1). The above results Eqs. (71)

and (72) give the full polarization when each level is doubly occupied. If a further level

~n = nF + 1 is singly occupied, the lower Zeeman split level gives a contribution to Eq.

(72) as

��~n;s
1
2
�z �~n;s + 2��~n;s

1
2
�z (�~n;s � �~n;s): (73)

The �rst term gives the �rst order contribution of the unpaired spin. The second term of

(73) adds to Q(y) half a term with n = ~n.

For �nite L the integral over the polarization
RL
0 dxP1f (x) vanishes. This can be seen

by an actual integration, which is elementary, but involves detailed considerations of the

ranges of integration for the various terms due to the presence of absolute value func-

tions. The result is expected, since P1f describes the polarization from doubly occupied

levels separated by energy gaps. An additional electron in a singly occupied level has a

polarization of which the �rst term of Eq. (73) integrates to one spin.

For a comparison with the results from the half-line, Eqs. (59) and (60), we let L go

to in�nity so that kF = �N=(2L) remains constant. Then

nFX
n=1

sin(nx�=L)

n
)

Z kF x

0

sin(y)

y
dy = Si(kFx) (74)

and

kFL=�X
n=1

cos(nx�=L)

n2
)

1X
n=1

1

n2
=
�2

6
: (75)

In this limit Eq. (72) coincides with Eq. (60). Obviously, the two quantities

limL!1

R L
0 dxP1f (x) and

R1
0 dx limL!1 P1f (x) are not equal, since the �rst vanishes,

while the second is given by Eq. (62). The fact that limL!1 P1f (x) = P1h(x), which

contains the Pauli susceptibility, is the essence of Yosida's [2] remark, that the principle

value integral of the energy denominators yields the \q = 0" term.
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FIGURES

FIG. 1. Polarization Ph(x;R) �� due to a point �eld at a = 4. The factor ��, which is the

distance to the point source, suppresses the divergence of Ph at the source and emphasizes the

oscillations. The polarization vanishes at the surface x = 0. Distances are in units of 1=(2kF )

and Ph is in units of k4F 2m=(4�3 �h2).

FIG. 2. Ph(x;R) �� is plotted along the x-axis and, for increasing R, in a direction perpen-

dicular to the x-axis. Full line: Ph(x; 0) �� versus x; dashed line: Ph(a;R) �� versus R+a. The

dotted line shows the RKKY function R(jx� aj) jx� aj for comparison. a = 4, units as in Fig.

1.

FIG. 3. Pf (x;R) �� is plotted along the x-axis and, for increasing R, in a direction perpen-

dicular to the x-axis. Full line: Pf(x; 0) �� versus x; dashed line: Pf (a;R) �� versus R + a.

Dotted line: the RKKY function R(jx � aj) jx � aj is shown for comparison. a = 4; L = 32,

units as in Fig. 1.

FIG. 4. Polarizations in one dimension. Dashed line: P1h(x); full line: P1f (x); dotted line:

the RKKY function R1(jx� aj). a = 4; L = 32; nF = 5. Distances are in units of 1=(2kF ) and

polarizations in units of 
4�

2m
�h2
.



CBPF-NF-012/94 15



CBPF-NF-012/94 16



CBPF-NF-012/94 17



CBPF-NF-012/94 18



CBPF-NF-012/94 19

REFERENCES

[1] C. Kittel, Quantum Theory of Solids, Wiley, New York (1963).

[2] Kei Yosida, Phys.Rev., 106, 893 (1957).

[3] I.S. Gradsteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic

Press, 4th ed., 1965, pg. 406 and 407.

[4] Tables of Integral Transforms, Bateman Manuscript Project, A. Erd�elyi, Ed.,

McGraw-Hill, New York, 1954, Vol. 2, p. 9 (formula(26)).

[5] Ref. [3], pg. 743, formula 6.688.2.

[6] Gerd Bergmann, William Shieh and Mark Hubermann, Phys. Rev. B46, 8607

(BR)(1).

[7] J.S. Helman and W. Baltensperger, unpublished.

[8] E.C. Titmarsh, Introduction to the Theory of Fourier Integrals, Oxford, Clarendon

press, 2d ed., 1959, pg.60.

[9] C. Kittel (Solid State Physics, edited by F. Seitz, D. Turnbull and H. Ehrenreich,

Academic, New York, 1968), Vol. 22, p.11.

[10] M.T. B�eal-Monod, Phys. Rev. B,36, 8835 (1987).

[11] Y. Yafet, Phys. Rev. B 36, 3948 (1987).

[12] Ref. [3], pg. 40, formulas 1.445-6 and 1.445-8.


