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ABSTRACT

We present a complete theory of massive and massless

spin~two field using Fierz variables AGBU; its relationship

with the standard variable @ and the bridge relation which

V3"
allows the passage from one representation to the other. We
develop the Hamiltonian formalism for both the massive and
the massless cases,

The theory thus presented is nothing but Einstein's
General Relativity in the Jordan-Lichnerowicz formulation.
We then discuss an unification program in which a new short-
-range force is postulated. This force becomes the local

counterpart of gravity in the same way we can think that weak

interaction is the short-range counterpart of electrodynamics.

Key-words: Einstein's theory; Gravity; Fierz variables.
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I - INTRODUCTION

The fundamental variable in Einstein's theory of Gene
ral Relativity (GR) is the syﬁmetric metric tensor guv(x) of a
four-dimensional Riemannian manifold. Thié can be thought of as
the natural extension [endowed with a geometric interpretation]
of the symmetric tensor wuv which is the most fashionable way
to describe a spin two fields

In the realm of field theory, however, the description
of a given field is not unique. The behavior of the distribution
of the energy content of the continuum mediating a given inter-
action throughout the space time can be assigned in various al-
ternative .og equivalent manners. This depends on the choice of
the fundamental variables one = uses to describe the process.
In the specific case we will analyse in this paper (which is
restricted to spin two fields - massive and massless) this choice
can be twofold. Either one uses the so called standard variables

v

uy OF the Fierz variables Auvk'

Although such result is a very old one [1,2], in the
last decades it has been almost forgotten - and the use of Fierz
variables to describe spin two field seems to have lost its
attractiveness. Our purpose here is to try to revert this
situation and to change this unbalanced and arbitrary choice.
However one should ask about the leitmotiv or the usefulness
of a procedure which enlarge the_numﬁér'of fundamental variables,
The same question, of course, could be adressed to Einstein's des-
cription. Indeed, why take 10 variables guv(x) to describe

gravity if we know that this interaction has only two (2) degrees

of freedom (per each space-time point) ? The answer to both of these
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questions is the_same: ... "Nature is not economical of struc-
tures:. only of principles of fundamental applicability"

- A Einstein quoted by A. Salam [3]. The new variable exhibits
its formal qualities in an enlarged vision of the characteri-
zation of the symmetries of the theory, its conservation laws, and
'its relationship with others fields. Besides, we think that

the main difficulties which physicists have faced in the last
decades on the road of the ugification of gravity with other forces
aﬁaintimately'related to the choice of fundamental variables.

We will see that the passage to the new variables provides new
insights into Einstein's general relativity, which can then led

us to a more deep understanding of the theory and even to allow
the productidn of an unification scheme with others inter-
actions (see Chapter 1IV).

The plan of the paper is the following:

In the second chapter we review the eq. of motion of
massive spin two field in Minkowskii space-time in the standard
variable (wuv) and in the Fierz variable (Auvh)'_SEt the scheme
of equivalence and c0mparé both representation.

Then we present the Lagrangian formalism for the free
field, the interacting scheme and the massless limit which
projects us into Einstein's road of geometrization. We exhibit
the gauge freedom of the theory, its enerqgy content and finally
we present a complete description of the Hamiltonian formalism.
We examine the constraints of the theory, show that they are
all second class and led to the exhibition that the theory has
only five dégrees of freedom - as it should be for a massive

spin two field. We then turn to the massless case in which
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some first class constraints appears which indicates the existence
of gauge freedom.

In Section III wechange to general curved space-time and
present Jordan-Lichnerowicz representation of General Relativity.
We exhibit the passage from Fierz variables Auvk to Lanczos poten-
tial Luvl ~- and show that this potential Luvk (which contains all
information of Weyl conformal tensor) is nothing but the form
Fierz variables assume when ;assing to curved space time in the
magsless limit.

We then proceed to present in section IV some new examples
of the aplications of Fierz variables beyond General Relativity.
The main point here is the use of the electro-weak SU(2)xU(1)
unification scheme of Salam-Glashow-Weimberg as a paradigm to
supply a theory of a new short-range force in terms of Fierz
variables. This force becomes the local counterpart of
gravity in the same way we can think that weak interaction is
the shert-range counterpart of electrodynamics. _

We conclude in Section V with a resumé of our results

and some perspectives for the future of the theory.
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II - THE EQUATION OF MOTION OF SPIN-TWO FIELD IN MINKOWSKI SPACE-

~TIME

The Standard Variable

In the standard theory the field of spin two is des-
cribed by a symmetric tensor function wuv which obeys the eguation

of motion: .

(1) [:]wuv w(u ' V)8 +.w;u4v+ LRV (v rQr B E] v) +

- 2 - _
+m (Y, =n, ) =0
in which ¢ = wuu . In this work we mean . the parenthesis { ) to
denote symmetrization, that is:
- + .
Y (uv) Vuv * Py
Taking the trace and the divergence of (1) we obtain two compati-

bility conditions:
(2a) ¥y =0

TV
(2b) W, =0

which guarantees then that wuv has only 10-1-4 =5 degrees of
freedom, as it should be in order to describe a spin-two field.
Since the early days of field theory physicists have
employed this scheme which in turn has acquired a status of
uniqgueness. However, this is not the case, as we shall see soon.

The theory we will present is based in part in the work of Fierz
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in the thirties, when it was already known that it is possible
to describe a spin-two field (and indeed any field of higher
order spin) by equivalent representations. Let us turn to a

specific example for this alternative scheme.

The Fierz Variable

We define a third or@der tensor A which has twenty

UVA
{20) independent components once it obey the properties of being

anti-symmetric in the first two indices and has no pseudo-trace:

*
(3b) A“BB 0

or, equivalently,

+A4A, + A =0 .

A Buoc paB

aBy
The star * operator represents the dual, constructed

by means of the Levi-Civita completely anti-symmetric symbol

€apuy through the expression

1

= 1 PO, -
(4) Agﬁu =7 %aB Apou

Such tensor Auvl can be used to describe a spin-two field, as we

will now show.

From the potential AaBu we construct the field Cusuv

through first order derivatives by the formula
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(5) +

.'c-ﬂ'sl.l\} IAG'B'[UIPV] +_ AU“[“: 8]

1
+-2-A +

' 1
(av) "eu ¥ 7 Agp) Mav T

. . _ l B
A(B\_Jl‘ Rau 2 A(au) Mgy *+
oA “ :

A g, A (naunsv-navnsu)

win MR

in which‘nuv denotes the Minkowskii metric, Ny = diag(+1,-~1,=1,~1).

The symbol [ ] means anti-symmetrisation

IH
Fh
1
]

Trav) ¥ fu0 ~ £,

The tensor Auu is given by

This tensor CaBuv is a new object. We have introduced
it here because it is a good tool to generate a scheme which

describes a spin two field in a very similar way as

Fuv = A, 0 Ay 4

does for spin one field. Such tensor C has only 10 independent

afuv
components. Indeed, from definition (5) it has the symmetries

Caguv = ~Coapv

(6) caBuv = -Canu

= C

CaBuv uvos
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and besides, it has no trace:

GU _ .
CaBuvn 0

The dynamics of the field is given by the equation

(7) - LA O LU

- ,V

From eq. (7) it follows two compatibility conditions: (i) AGBU

is trace-free; and (ii) it has no divergence (in the last index) :

, afu =

(8b) a®®H o9
Y

Thus from the previous 20 components we are left only with
20-4-6 = 10 degrees of freedom. In order to eliminate the exce-

dent 5 degrees we follow Fierz by imposing

*
(9) A% _ o

or, equivalently,

u u v

Note that (8b) and (9) are not independent. Indeed,Wwe can
set U = A in expression (9)' to obtain expression (8b). A direct
counting then shows that there remains only 5 degrees of freedom
(sée later on the Hamiltonian analysis which provides the proof
of this resuit). Indeed, this corresponds to the separation of

condition (9) into its irreducible parts:
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* *
P % aflon]

*
1 . Bl{au)
: B 3 A

The antisymmetric part corresponds to the 6 conditions (8b).
The symmetric part to 5 conditions. In order to prove this last
*
statement, define the symmetric tensor M = AB(a?é
I

has 10 independent components due to the symmetry. It is trace-

. This tensor

less which means 10-1 = 9 quantities left. Finally M*V L =0
- !

which impose 4 more conditions leaving 9-4 = 5 as we claimed.

Using equations (5), (7), (8) and (9) one arrives at the equi-

valent wave equation
(10) (O+=a, =0 .
o afu

The Equivalence

The Fierz (1939) result claims that the above two
representations wuv and Auvk have the same rights to describe a
spin-two field. They imply the same theory and can be shown
to be completely equivalent. There is no best way to prove this
than to exhibit the formula which allows the passage from one

representation to the other and vice-versa. We claim that the

bridge formuli are given by

~{1la) Aiev = You,el ¥ B ey ”

[+
=BV aMelv

and conversely,
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—-g-
1 £ Q £
(11b) ') = = ——= A + —=— A
uv .2m2 (u_v},e 2m2 (v €,v)
1 af
- — A 'ﬂ
3m2 B, UV
in which
- 1-B
Q=138

-

and B is an arbitrary constané.

Inserting expression (1la) into (1lb) yields precisely
equation (1) for the compatibility; and using (11b) into (1lla)
gives the equation of evolution (10),exhibiting the coherence
of the gystem.

We can even go one step further and propose to consider
(11a,b) as the basic expressions of thé theory which contains, as
we saw above, the evolutionary equations of wuv (eq. (1)) and
Auvh (egq. (10)) as compatibility requirements.

Remark that constraints (2a,b) and (8a,b} of each
representation are not independent but are consequences of each
other through the bridge relations (1la,b}. Let us point out one

more remark. Inserting the value of A in terms of wuv as

BVA
given by (lla} into the definition relation (5}, implies the
presence of higher order derivative terms in the equation of
motion (7). This, of course, is a direct consequence of the bridge
formuli . There is no effect in the causal properties of the theory.
The Cauchy problem remains well posed, as we will see later on.

If we remain in one representation - which one, does not matter -

we have to deal only with well behaved second order derivative

equations. However, if we use one set of equations (say, eq. (7))
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~L0-

and apply the bridge formula to pass to the complementar set of
variables, then, of course, we jump into a theory which contains
necessarily higher order derivatives. this we will call the
Jordan~Lichnerowicz (JL) approach (see section III),

Thus if one does not want to be involved with a higher-
-order derivatives theory one should not use the bridge formuli
and deal-only within one representation. Which one does not

matter. They are completely eéuivalent when described in itself.
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The Lagrangian

The free Lagrangian which gives the equation of motion

of C

aguy (€9- (7)) is given by

2

(12) L = - 1 coBuve + 02

AaBu
8 oBuv 2 TaBu

3

The resemblance with the Lagrangian for spin-1 field is

1

striking. [Note that we have assumed dim A (length ) ~ and

aBu -
that we are using natural units in which f=c-= 1.]

Passing to a general scheme, interaction with other
fields can be made through a current in the same way as juAu
in electrodynamics, for instance.

Let us examine the case of a scalar field interacting
with AuvA‘ _
The free part of the dynamics of the ¢ field is given by

=3 w
(13) Ly = § ¢ 0"V - v(e)

in which ¢ means tbéfcomp;ex conjugate of ¢ and V(¢} is a potential
which is not necessary to specify. : N

We can re-write L¢ in a form more.suitable for our

purposes.,

Define a current Suvk by
14 Swvr ™ P, T ?, M
and : |

Suva = ¢, 1M AT
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This current has two interesting properties (compare with (3a,b)):

(15a) S =

HVA “Syua

{15b) Suvk +.SVlu + sluv = 0

We can then prove immediately that

l'— VA ¢ pv
6 Suvls a ¢,u¢;vn

with allows us to re-write the Lagrangian .L¢ as

= HVA

<
| =

The fact that the current Suvl has precisely the same symmetries

than A induces us to set the interaction of ¢ m‘.th_l\llwt in terms

HVA
of the minimal coupling principle, that is _

' -1 = - MVA _ WVA,
.:_(.16)_,. Liot = € (suw\ + ig¢Auw\) (s igea™ ") VAC))

After some algebraic manipulation this Ltot becomes

16) = i - 1 ) onHV
(16) Lege = (3 + 3 9A00, - 4 g aen"’ +

1 22, . _uh _
+ T 9 ¢¢.auvla vid)

in Mhﬂﬂlghu is the trace Auaa and a,va is the traceless part of

Auvx' that is a = 2

-9 g
HVA HVA 3 Aunvl +'3”Avnul Y
We can then state that the net effectsof the minimal

cbupling of Aﬁvk and ¢ are two: (i) the appearance of the trace

A

Aul as a vector field minimally coupled to ¢, and (ii) a mass-

-term proportional to gz |¢|2 for the A, field.
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~14=
The extrapolation of the above result for other fields
with spin greater than zero is straightforward in Minkowskii

space-time as in an arbitrary Riemannian curved one.

The Case of Spinor Field

The kinematical part of the free Lagrangian for the

-

spinor field V¢ is given by .

(amn L= iW\'uauw

which can, equivalently, be written

an' 1 =57 M08

ulav

=1 -
in which Z“v = 3 (Yuyv YvTu)'
The proof of this is straightforward if one uses the

identity

(18) PV = 25““A°Yp¥5- y VA

The minimal coupling principle, applied to our case, yields

for the coupling of ¥ with Auvk the following substitution:

nvﬁau "“uxgu,
goes into
- .. ]
(19) Ny " "ukau + £ Auvx
Remark that if dim A - (le'mgth)-1 = 17! then the constant f

HVA
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is adimensional. Using (19) into (17)'

_ i ouv A - _ g M _1
L= 1§ 2"y ingya,on 0,88 08 = ABYH R, - gAY

n
>

in which Au =
We arrive at the result that the spinor field ¢ does

not interact minimally with the traceless part of Auvk' but

only with its trace Aucc .

Generalized Interaction

In the standard representation the field wuv couples

to the energy-momentum tensor of the matter (represented by

T%;) ) through the universal term
- HV
(20) Lint = £ Yo Tim

What can we say about this form of describing the interaction in
terms of Fierz variables ? A simple direct way to do this is by the

generalization of the current-field coupling of electrodynamics J”Au

RIZN

via the term Ui

. We saw precedently an example of this. How-
ever,the form (20) leads us to argue that for both schemes to be
coherent J“vl should be constructed in terms of the energy-momentum
tensor Tuv(m).Although the.presence of matter spoils the complete
symmetry of the bridge formula (lla,b) we will take (11b) in its
original form. This is a choice for the assynetry. displayed by the bridge
formuli when there is interaction, exhibiting the distinct roles of

A and wuv when the sources cannot be neglected.

VA )
Using (11b) into (20) we obtain
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-16-
- fr_ 1 a E MV 0 , € TAY
(21) Lint = £l 2 Au v,ET(m) + m Ay e,vT(m)
_ .1 o.B
3m2 A S,aTm]
in which T(m) = Tuu(m)' The action, up to surface terms, takes the
form
_ _ £ HeA /1 : -
(22) S = J Ling 4¢* = m2 J A (é Ty {u,el
1 o -
=% "aruT,e1 ~ 2 PerTy ,a) dgx .

We can use the conservation of. Tuv (m) to eliminate the last
term of (22) (alternatively, we could choose B = 1 in eq. (11) and
consequently Q = 0, without loss of generality, and postpone the

(

discussion of the conservation of Tuﬂ)). From (22) we obtain the

current

-

1

(22) Juer = 2 Txlu,el 6 nl[uT,el

The coupling constant f of (20) is adimensional. We set

it to be given by £ = km?

(in natural units) in order to conform
later on to Einstein's theory of gravity.k is Einstein's constant.
Let us pause for a while and examine more carefully
such current. In order to understand its presence and of (the derivatives
which appears im it) we will introduce a geometric language which
suggests a (future) contact with Einstein's General Relativity.

-

Define, from the "metric" wuv a tensor Ruv ("curva-

ture”) and its trace R by the expressiongz

- o '
(24) RIJ\’ - Z(D 'pl-l\) - w‘u $V) 0 + wr“rv)
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...1?_-;

(25) ﬁ =4 (D 1[) - wasrura)

Setting

Auor T Yau,y T YL

we arrive at an identity (Bianchi-type) involving the

-CaBuv field (defined prlmarlly in terms °f~AaBU) and the asso
ciated "curvature" tensors iuv and R
(26) oy _ 1 gpla,B)._ 1 ulog,Bl

[ ]

Vv 12

-

Such identity has a counter-part in curved space-time. Indeed,

making the transformation which brings C into the Weyl

aBuv

conformal tenscor WaBuv' and ﬁuv into the contracted curvature

tensor, R A we arrive at the well-known.:: Bianchi identity (eq.96b).
We postpone this extension for a later section. Let us here
concentrate our analysis to flat space time only.

The total action S is given by

= - 4 ,_ 1 oBuv
(27) S8p = Sy + Sy = J a4 (-g¢C caBuv +

2
m ol
+ — A Aa

k _UHEA
> A

k
Bu * 2 Tytu,e] ~ 8 "t el

which yields the equation of motion

(28) cOBWY 4 p2poBM _ _ k qule,B] K ulayB]

Subtracting the identity (26} from eqg. {28) we obtain

(29) (R -'% Rn. + kT _ -

no T nua);ﬂ -
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- _ 2

Using the bridge formula, this can be transformed into:

- iz _k ' 2 -
(30) . (Rua IG:R Ma + k Tuu 3 T Mo ¥ 2m wua),B
(Rig-gRMpg+kTyg - 3 Toet2m §0) =0

Equation (30) shows that the description of the theory in terms
of the standard variables wuv can be made only if we impose as an
initial condition an expression containing second order deri-
vatives of wuv- . This is a necessary condition to obtain a
non-ambiguous scheme for the Cauchy data.

We would like to emphasize that the presence of
second order derivatives in the Cauchy data is a consequence of
passing from the AGBU representation(eq(28)) to the standard one.
If we remain .in the Fierz variables, the initial conditions
must be limited to specifications of AuBu and its first deri-
vatives on the Cauchy surface.

From eq. (30) it appeéks natural to impose, as initial

condition, the "Einstein equation”

(31) S,y =R

+ k(T . -
u wo *R(T,

N =

T ”uv} +

2

+2me (v + % n.) = 0

uwv uv

to be valid at an initial hypersurface I. Indeed, from

Suv(Z) = 0 we obtain, on r,
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(32) R ., - Rngg + kTop -

af

Ly Lo
Wi

TnaB + 2rr|2tb0‘B =0 .

Equation (30) then guarantees the validity of the condition suv=°
throughout the whole space-time in the future of I. Thus, the
initial conditions (31) are propagated in the whole ST and

the equations of motion, in the standard variables, become

- 1 2 1
(33) Ryg = = k(Tgg = 5 Tngg) - 2m“(b g + 5 ¥Ungg) .

Substituting ﬁaB by its definition eq. (24) we realize that
eq.{33) is- precisely the equation of mption for the massive spin-two
field 'as given by eq. (1}.

Thus, in the context of the Auvk variables, eq. (33)
for wuv (considered as a dependent variable related to the
fundamental one Auvk through the bridge relation (11)) is
nothing but an initial condition imposed to be satisfied in
a given hypersurface £ . This condition is maintained beyond

I due to the dynamical equation satisfied by-auvk
This fulfils our aim to provide a .coherent ﬁheory of
massive spin two fieid in both representations and the inter-
relations among them. This alternative scheme, using Fierz
variables, 1is the flat space-time version of Jordan-Lichnerowicz

representation of Einstein's General Relativity, as we will see

later on.
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The Massless Limit (Einstein's

Geometric Interpretation)

We have now to face a fundamental question: has the
precedent theory a well-behaved massless limit ? And, assuming
that the answer is yes, can we show the equivalence of such
theory and Einstein's General Relativity 2

We will answer (affirmatively) these questionsg in
two steps. First, we will analyse the case of a weak gravita-
tional field in order to exhibit how smoothly the precedent
theory fits into a geometrical scheme; after that we will
present a resumé of the work of Jordan, Lanczos, Lichnerowicz
and collaborators in order to enlighten the second inquiry.

Let ¢uv(x) represent a small perturbation of the
Minkowski metric:

(34) T, +e o (x) + o(e?)

gl.l\) Hv

in which € is an adimensional small parameter: £2 << g,
Then it follows that the curvature tensor RauBk in first order

is given by

_ . :
(35) Banﬁk v 2 {¢al.u8 + ¢uB,u% '.¢a6,ul - ¢ul,a8}

and the Weyl conformal tensor Waﬁuv takgs the form
(36) Wyguy = — 5 16 + ¢ - ¢
aBuv 2 "Tua,Bv By, pa ug,av

£ E e
- ¢av,uB} -3 ! ] ®oa " % ,ea " % ,ev
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-21-.

£ : - £
+0,00) gy g P00 0, - 9 ey "

£ £
"0 LeB T ¢,Bu}nub +7 ([ Pan

E

£
- = b + -+
o Len ™ %y ,ea T %ant My T

E } n +

€ . €
+_T (O ¢y ~ % JEV ¢y ,eg t ¥,8v7 Tap

- g (06 -8 (0 tgng, = ngyngy)
A simple inspection on (36) and some algebraic mani-
pulations show that it is possible to write, in the first
approximation, the Weyl tensor given by (36) in terms of a

potential BaBu such that.

_ . l .
(37) Wagpv = BaB[u.v] + Buvla,sl * 2 B(uv)"Bu +

1 1 |
Bigw Mav ~ 2 Bav)Ton T Z By *

agA -
B g, (n - “av"Bu)‘.

Wi N

aunBv

Comparison of (36) and (37) yields for BGBU the expression

€ .
(38) Bagu =~ 7 Pua,8 ~ %us,a!

o

n in this approximation,

or, in terms of the Christoffel symbols T

equivalently by

A

| = -1 A Ay
(39) BuBu B 2"nalr8u nBArau) *

We recognize then that (37) is an expression analogous to

eg. (5) and (38) is the bridge formula (lla) with the choice B=0.
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This suggests the identification of the Weyl tensor with the pre-

vious tensor C in the limit of vanishing mass, at least in

afuv
the realm of Minkowskii geometry. The extension of such result
to an arbitrary (i.e., nonweak) gravitational field will be
matter of a future section.

We can then apply to the present massless case all the
resultsQof the precedent section in order to arrive at the
description in the Fierz variables of a (massless) spin two
field.

Let us add one more remark.

The inverse bridge formula (eq. (11b)) cannot be
applied in the limit m = 0 even for small perturbations. The
reason for this is due to the fact that the field ¢uv is mass-
less and the space time background is flat - which inhibits
the construction of a natural quantity with mass dimension.

The situation is somewhat distinct in a curved background. The
reason is that the evolution of small fluctuations of the
generic metric tensor ﬁguv acquires a mass-term induced by

the gravitational field (of the background) in two compe-
titive ways: either directly through the gecmetry (e.qg.

-1/2

Am ~ R ) or by the existence of a force field in the back-

ground characterized by the newtonian constant

Am " (ﬁm’Planck v k-llz'
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Gauge Invariance

In the limit m = 0 some of the constraints of the
theory become arbitrary, exhibiting the gauge freedom of
massless fields {of any spin). We will analyse more carefully
this freedom in the next section. Let us see here what are in
the specific case of the Fierz variables, these symmetries.

Consider the map

(40) Bagy BaBu = Byau T Malpy ~ MgMay

Then it follows from direct calculation upon eq. (37) the in-

variance

[¥P9%) = w . [8°P7M

(41) % aBuv

afuv

which means that the trace Baup is completely arbitrary.

Anocther invariance is obtained by making the map

(42) gG-Bl.l = BGBU + (KGrB - kBra) FY

which yields the same tensor WGBUV'
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The Energy

let us come back to the free Lagrangian (12). The

energy-momentum of the field, by Noether's theorem, is given by

3
a _ ___ 0 HVA _ a
FA
We then obtain
o _ _ AHVAQ _ 45 &®
(44) € = - MV i% 6%-

Alternatively, we . can use Einstein's formalism
of GR to define the energy-momentum tensor Tuu by varying

the geometry:

= 1 — uv
{45) -8 J Y=g 0 d4k =3 l Y g.Tuv 8g d4x
We arrive at the expression
& = - l 2’ o - a (DU, -
(46) L 5 C 8% - A |
_n A aPOES% 4 2m? A%P%a, 4
2 “‘poe 8 Bpo
2 (11} oA
+ m ApoaA 8 + U B LA .
in which U“BA is given by
a6 A _ 0 A, PO A,000
(47) [§] g = C oo AB + CBDU A -+
+_C“ Ap PE ApdpE _ o8 A (p0)

ep P8t Cpep B pog
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Actually, both expressions taB and TGB gives the same
physical content for the distribution of energy. The easiest
way to demonstrate this is by evaluating both expressions (44)
and (46) on mass-shell. Indeed, using eq. (7) for Ayg

M.
into the formula (46) we obtain

a o, VA ' o ,
(48) T g = —cvlu A u,B —».i% 8 8 + divergence

To arrive at this expression a lot of work is saved

if one notes the idéhtity

o uva _ 1 PUVA . (&
which is a direct consequence of the definition of CaBuv' From

(49} we obtain the equivalent relation:

(50) zcauvl GUVA

Aguv,a ¥ C Ayrg,n = Poay,s!

: auy _ 1 2 .o
* Ay @ g =g ¢ &%

. . 2 - afuv
in which ¢~ = caBuvc :

which simplifies the calculation to obtain (48) from (46).
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The Hamiltonian

We have presented in eg. (12) the Lagrangian function

which enablesus to obtain the dynamical equation (7) for AaBu'
However, in order to eliminate undesirable degrees of freedom

we were led to impose upon AGB a further constraint contained in

it
eq. (9). One should like to introduce this condition explicitly
in the Lagrangian . This can’be done by adding to fDO a \
Lagrange multiplier.

To simplify the interpretation of the various quanti-
ties_which appears in the formalism and to make easy the
correspondence with the standard variable formulation,let us
abandon for a while the explicit covariant form of the theory,
performing the conventional 3+1 space-time decomposition .

Adding to Lagrangian (16) the constraints needed to eliminate

the excedent degrees of freedom we set:

ioko _ 1 .ijko

= CTCioke T 2 €

Cc +

(51) L,

ijko

- m2 i, 1 ij . 3 ij
m E;iE; +4°'ija +4BijB +

¢2:] ; _

1
%ri,51 ~ 3 Big,x *

1 ,ijk "1 i
+ 5 A Aijk + 5 Yy +

W=

i35k [z _
+Q [%ijk

b =

1

1
5 Bxi,;

1 _1 )

£

1 L a8 Lijk
+q Ngyle B i),él 09Ty g
in which to simplify our notation we have defined the irreducible

parts of the AaBu field to be given by:
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(52a) ¢ =n,t
(52b) £, = Aoi°
(52¢) Yy = Bgyt
{524) By = Aij°
{52e) uij = Aioj + Ajoi - % ¢ nij
(52£) bi5k = Pijk ~ 3 nkfiAzj]ﬂ

A dot means time derivative.
Note that in the Lagrange multiplier term we did not

use the full condition (9) but only the restrained form

X X k
iy ,0 ¥ 40 ,i T Roi 3

A 0. 'The reason for this is explained
in the note following eq. (9}', which shows that the compatibi-
lity condition (eq. (8b)), which is a consequence of the eq.

of motion,has to be subtracted from the constraint (9).

We note also that the extra term involving a new
Lagrangian multiplier Q is. just to eliminate from the theory
the ghost function Qijk, as we will see.

The extended set of variables contained in (51) are
. B

Q and Q. The corresponding momenta

ij

¢, gil‘ Yir ai' B

i ij ijk !

canonically conjugated are II, nt, Pl, HiJ, P

i3k

¢ I and P.

19k’ Pijk
From the definition of the momenta we obtain

(583a) Ty = =33 = Ciojo
(53b) pidk _ 8L _ _ ijke | gijk i _cijko
- 844k

and the primary constraints
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8L
4 P., = —— =
(54a) ij 6513 0
)
8L
{54c¢c) Pi-=F~ 0
(54d) m=23Lz
- 6¢ ’
(54e) pidk o 8L . g
8444k
(54£) p=2Lz0
§Q

in which we are using Dirac's [4] notation of weak identities.

Let us use the standard decomposition of arbitrary antisymmetric
tensorain its electric (Euv) and magnetic (Huv’ parts. Define
vovh

Eiv = 7 Clave

viyh

_ *

for an arbitrary vector VY.

Then it follows the properties

Biv = By
Euvv“ =0
Euvnuv = 0
Hiv = Hyy
Hpvv“ =0
Huun““ =0

which implies that E

Here we will choose v' = 6”0 to obtain

and Hpv have both 5 independent components
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Eo-=-c

ij oioj

H.. = -C
ij = " Toioj

Substituting this decomposition in the definition of the momenta

(53) we obtain

H" H"

T3k = Mijmo k = ijm k

Note that the fact that we are dealing with a double pair of
antisymmetric indices makes the c.c. momenta to be associated
not1only with the electric part of the field (as in the case
of spin-1 field) but also with the magnetic part.The deter-
mination of the Hamiltonian follows from the canonical varia-
bles thus defined. The total Hamiltonian (includihg the cons-—

traints) is given by:

I

ije ijks _ -
(55) top = T agg + W08 5 - L

= . pij i3 - 1.k
= I Hij + H (Yi,j 3 Y k ”ij +

ij, m i%y 1,m
t2 1 a:i'jl'm.’-zn (Eir-£+3£rmnifa)+

ijk 13k _
TP g v 1 (Bij,k

rj=
o=

Bri,y ~

-1 _3 4 - piik
7 Bix,i T Mkqif 1,0 -0 7 (i, i1 *

Mera®qy”,e) - M (EE" +

] b

Sl ix . 3 ik | 1 ,ijk
+ 7o h T BB g ATTA
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1.8 1,20 _ oidk ¢ .
+5YY£+§¢) Q (- I,

- 2 1
%1i,i1 T3 Pi5,k Y 3 Bk, v 3 Bxy,i

-+

N W=

1. %2 .8 P

7 (@47+B75) o iy (g 7+B75) g Nyy) #
ik 1j j-

+o @+ oz Pt v v s

+ MII + xj Pj + Dijk P.

Y

in which 237, v3, m, xJ, xidik

:and N are functions of the ca-

nonical variables that allows the introduction of the constraints

(54) into the Hamiltonian, following Dirac's approach.
Conservation of the primary constraints (54) yields

the Secondary ones. Let us find them. We have:

. _ oijk
(56) P = [p,#éTl = o, o

which gives the secondary constraint

(57) Qijk x 0 .
From (54a)
3 k 3 2 T
(58) (Pigedbpd =503  x +5m° By =0
that can be written as:
3 ak 3 .2 - '

This is nothing but the equation of motion (7) cpalu u+m2Apcl - 0
!
for p =i, 0 = 3j and A = 0.
From the conservation of the primary constraint (54b)

we obtain: :
.4 i 1 £ 3 )
(59) il = [nJ,Jﬁb] = =13 ¥ m?ed = o
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]
3
Q

]

| i
[+
2
p

]
[=]

which is the equation of motion (7) for p

and can be written as

(59)* g% - nm?gd =0

r

From the primary constraint (54c) we have:

60) P = qpd, db1 =1 4wy zo0
F

which is obtained by takiﬁg the trace of the equation of motion
(7) for p = i, 0 = j, A = k. From the primary constraint (544):

~-

(61) o= (1, gl = % m%e = 0

which is the compatibility condition (8a) Apco 0 for p = 0.

From the primary constraint (54e)

(62) Pijx = [Pijk’*6T] = - M ™ %qi,91 °
2, .1 1 Ly teg?
* 3855kt 385,53 Prg,a 2005 R ek Y
1, %, 8 _ .
+ 3 leg +B75) 5 oy = O34k F O

We have then obtained the secondary constraints given by eq.
(57), (58), (59), (60), (61), (62).

Note tiiwt: éince N is completely arbitrary we can dis-
card Q and P from the set of canonical variables and treat Q
as mere arbitrary coefficients which have to satisfy no
conditions.

We have now to look for consistency conditions of

preservation of the secondary constraints throughout the evolution
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of the system.

From (57) we get the determination of the Lagrange

maltiplier Dijk:

(63)

fisx = [R50 Bg) = Dygp 3 0

From (58) we determine the Lagrange multiplier 7+,

(64)

Using eq.

(65)

k 1 -k

2 .
[Bs57,x * Bij"(’-r] =3 04,91, ¢

k 2

iy ok 13

(60) we determine Zij:

_ l _ k = - k
239 =2 Y1i,31 T Bi3 .k Bij ok

From the preservation of the constraint (59):

. . . . 2 .
v _ 2] - - 1 pimk 0 B N |
m® . mg,}{g,r]- R SRR S
which determines ¥Y3:
j_1 jR, .50 _ ajol
(66) Y 5 {a ‘+B }'E A )8
using eq. (61).
From constraint (60):
(67) BT A 1 Sl v mxd 4 D2 538
L Y7 0p) =73 ,m, k 2 )
which gives the value of xJ:
(68) oz -1 @3hedhy | = - a3

using eq.

iy 'R
(61). '
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From constraint (61):
(69) [, #p] = M
which determines that M vanishes weakly:
{70) M=z=0

The conservation of the constraint (62) yields:

(7131 1055k %ol = Mi, 31 = Yi,g,k ¥ Y4,i,k *
- + Akmj,i,m - Akmi,j,n + ﬂjmk,i,n._
- ﬁimkfi'm -3 ﬂijz,z,k T
- 3 bkjg,z.i + 3 (-ijgmngm
+ E,z,j + Hﬁz,z + zazjm'g'm) -

1 £m £

L £ m
7 Mk Yi,em® FY e, YU, Y20 !

- m2 A, .

ijk = %15k ¥ O

In order to arrive at this expression we have used expression

{65) and a combination of (59) and (60), that is,

_ £ o _ _

zij

Finally conservation on time of ¢ijk

¢
o
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is guaranteed by a manipulation of eq. (58) and (62).

We have exhausted all equations of the Hamiltonian

scheme. There remains just as an exercise of compatibility of

the'previous set of equations to reproduce the remaining "true®

dynamical

{73)

which can

(74)

(75i

or,

(77)

equations.

We have
s . 1 A 2
£iy . ij ~ _ 1 piki 1 ikj m .13
I z [ ,jéT] 2 > I , I .k + 5 a
be written
. . s - 2

iojo 1l ioji 1 _joik m- _ij _
@ ,ot3C xkt3cC x T 0
ij _ 1 k8(3gd)  _ u2,13
E 2_8 H %,k M™a 0
Evolution of Hljkz

f[ijk = [Hijk, '}{QT] = nk[irj] -

1 31k, 2,13k
2 L

2" 0

or using (53b)

{78)
that is,

{79} .

Aiko - ~koli,i) | % ©o0oli anlk + m2ai3E o
r r

ija ﬁak + gRlicd) _ % ghli Lnj]k + m2aidk _ g



and Ei'

(80)
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There :emains to consider the eveolution of aij' ﬁijk
we have
aij = [aij'%T] x =2 nlj - E(i,])

2 .k 1 m

*3IE Nt 3 YL, et
l . m

=3 Y ,m Mij

which, by using (53a), is nothing but the definition of ciojo

in terms of the Fierz variables (52}

(81)

- I 1 -1
Ciojo =2 %5 * 2%, T YW, *
1 .k 1 m 1 .m
38 xM3 2% 1 e TEY 085

or the substitution of (52) in the previous variables:

(81)"

c, . =a,.°. -a,.°° .
iojo A(:L j) .o A(1 ' 3)
1 A
7 Mi9) " Pootii T IR o,2Mij

]

The evolution of ﬁijk gives:

(82)

Bisk = ljk"é 1] = Mgy * B34, ™
1 1 1
-3 B%i,5 "2 Bk, 77 %kid,5)

1 2 L £
- z ﬂkj(3 Bi -ai ),f, + "4_ nki(B Bj "Gj )'1

|
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which is nothing but the definition of Cijko in terms of Fierz

guantities.
From Ei:
e . _ %
(83) El - [Ei'%T] - Yi -‘ Aio ,R.

or using (52b)

. R, _

From Bij:
(85) B, = [Be.,dbl = 2., =-a.."

ij ijr T ij ij ,2
or
(86) Aijo + iis L = 0

'

and for Yk:

k _ k o w1 = _pjot _ _30]
(87) ¥ = v, Hap) = x S e

which is (84).

Collecting (84), (86) we see that these equations are

pothing but the compatibility condition

oA =
(88) AT a " 0

Finally, the conservation of the constraint (62) is identically
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satisfied - yieléing no subsidiary condition. We note that
¢ijk *~ 0 is a secondary constraint and as such can.be obtained
from a combination of the dynamical equations (37}, (80) and
(86) and the constraint (62). |

Let us now end our Hamiltonian analysis of freedom
by just counting the true degress of freedom of our theory.
Eliminating variables P and Q by the reasons pointed out pre-

viously, we are left with 20 AaB 's and 20 corresponding momenta

9}

which gives 40 quantities; besides, there are 5 Qljk

and its
corresponding momenta (5} which gives 10. Thus the total number
of wvariables are 50.
All constraints being second class; the number of
degrees of freedom to be removed are:
for (é4a)
for (54b)
for (544)
for (54c¢)
for (57)
for (54e)
for (62)
for (71)
for (58)

(O T T T T L e

for (61)
for (59)

W W

for (60)

Adding all these numbers gives 40 second class constraints yielding

50;40 = 5 degrees of freedom - as it should be to describe a

massive spin two field. We have thus accomplished our task to

prove that the present theory gives a complete Lagrangian-
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-Hamiltonian formulation of spin 2 field in Fierz coordinates.

Canonical variables in the
Fierz-Representation
variable Redefinition ' Momenta ¢.C.
L
Azo ¢ 1
o 1 _
Roi 1 &1 g
2' k]
Agg Yy Py
o
A Big Pis
o o 2
Ay j + Aj i 3 ¢nij ij ij
1 £
Bisk = 7 "kriP 518 ijk s4k
84 4% | 85k Pjik
Q ' Q. P

TABLE 2. The fundamental quantities to construct the Hamiltoni
an formalism for the massive (massless) spin 2 field. AGBH is
represented by its irreducible components ¢(1), Ei(3), Yi(B),
Bij(3), aij(S), Aijk(S) and corresponding c.c. variables. We
add ﬂijk and Q for completion of the theory.
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Primarv Constralnts

P=z20

TABLE 3 - The set of primary gonstraints for massive spin two
field.

Secondary Constraints

i

o
o

2
1 k m-E
Hlk . + mzyl

o
o

Hijk + mzsij = 0
¥ . "
ijk -2 -1
T2 % ord,91 © 3 Big,k ~ F Bk,
1 1. L%
5 Byy,i T3 lagTHBYS) gy -
- % (a£i+82i);£ ﬂjk = 0
Qi5x = 0
Meri, 31 = Yi, 9,6 ¥ Y9,i,x t
m m m
ol yim T Mk i,m Y k,im T
m 2. % 1. &
A k,90m T3 i3 L0,k T T Bik L T
1 £ 1 Lm
"3 %5 .01 YT M Yy, W
') £ i m
+ 1243 + H] 2 + 2ﬁj rzrm, - .
1 am. % % 2 m
2 Mk TYi,am FY e, it 02875 g k)
2 )
m ai]k qbijk 0

-

TABLE 4 - The set of secondary constraint for massive spin two
field.
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The Massless Case

We now turn to the case of the Hamiltonian formalism
for the case of massless spin-2 field in Fierz variables.
From Lagrangian (51) taking m = 0 we obtain the Ha-

miltonian (55) with m = 0. Then it is straightforward to obtain

ij _ 3 ik
[P r %r] 2 I ,k ~ 0 .
Conservation of this constraint gives

13k _ 1okl
i g =5 T k70

For Hl:

i Y)
i, %) = - 1,

and conservation of this is guaranteed by

i _ _ 1 -imk -

For the remaining quantities we have, in the same way as for

the massive case:
(1, %] = 0
3 5 L
(p, 4,1 = 127 , = 0

[Agyxe #pd = Digy = O

. _ _ '2— l
(B;5 o g = = Tygi = %%pi,51 * 5 Pigx ¥ 3 Pikyy

1, %..0
+ 5 Bgy,i "7 O3 B e Nkt

(R =
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1, 2,0 ~ X
+ 3 (07 +B75) o My = O34k ¥ 0

Performing the Poisson bracket between eijk and %éT yields

a differential equation to determine zij._ We remark that in

the m = 0 case there appears first class constraints, which
did not appeared in the massive case. This is nothing a surprise
once we ‘know that first class constraints is a material

evidence of the existence ofggauge freedom of the theory.

The second class constraints are

Some combination of those second class constraints
with its derivative are of first class. This will change the
counting of the degrees of freedom. How we arrive at these
combinations ? First of all we note that the combination

Pl:| .+ Hlj . = Q0

: r] ]

is a first class constraint.

Note that plJ ana 1) 3 commutes with all others constraints
r

. ij ij
.21 o H h .+ 1 .
i3k owever the above combination P .5 .3
commute also with eijk - and thus with all constraints-showing

except with @&

its first class category. We then divide eijk into two

parts.

- ; k
a! its divergence, Gij Jk
b} a divergenceless part, Fijk(eabc) with the follo-

wing properties:
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i) It is a combination of ©, and its derivatives

ijk

. ik _
ii) Fljkn 0

. ijk _
iii) Fijke 0
and, of course,
iv) F ij .k =0
8o we divide the 5 constraints Gljk = 0 Iin the 3 conditions

k o \

eij k C 0 arnd the 2 other Eijk'" 0. Our next task isg to

construct an explicit form for the tensor Fijk'

Let us use the operator

=i
o . .
] ] )

m
[v3
[T
I
=3

where 2”1 is the inverse of the Laplacian operator. The pro-
perties of this operator are well known from the theofy of
electromagnetism. The most general tensor Fijk with properties
(i) (ii) and (iii) is

_ ~4 1 ~3
Fijk = %13k * P(Og3500 — 7 Okin05 *
1 g ) ~% 5
+ 2 Oxge05i) * €105, 05 + 6,505 ~ 040005 ¥

- oty - 3b+2c m
Ox2591) "I’“’ "k1i® 312 Om

: Property (iv) determine the coefficients (b) and
(c).

So, Fijk is given by:

_ % 5 -4
= =205, * 9y 12x97 5 T O4ax

F ijk 1j£o x ¥

ijk + 0y

or,
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m £
* "kiie 31 ,m,8)
Obviously Fijk has zero Poisson bracket with Rij

. k \
and with eij Jk* If we calculate the P01s§on bracket Qf Fijk

ij
R J .
r] P r]

with PlJ we obtain

b] =0

a
[Fijk'P

We then conclude that Fijk is a first class constraint. Note

furthermore that Fiﬁk commutes also with Hg

Let us now finally count the degrees of freedom which are

removed by the constraints:

@
t
o
wn o [¥1] [-)] w [ o h =)] %]

o
o
[ =]

Adding all these numbers we obtain 46. The true de-

50-46

7 =2

grees of freedom are then
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as it should be for a massless spin two field.

We note finally that the conservation in time of

k
94k
three unknown Zi

k gives rise to three differential equations for the
r

j-
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III - THE EQUATION. OF MOTION OF SPIN-TWO FIELD IN CURVED

(RIEMANNIAN) SPACE-TIME

One of the attractive feature of the theory we are
presenting here is the property that its generalization tec arbitrary
Riemannian space-time is étraightforward.'ln the standard
represent&tion the generalization of eq. (19) - when passing
to curved space—-time - introdu;es ambiguities, even if one
adheres to the minimal coupling principle (MCP)(5'6'7'B).The simplest
way to see this is'just by noting that eq. (1) contains second
order derivatives {(which appears alsc in the Lagrangian function
see ?able I}. This c¢auses no problem in Minkowskii space-time.
However non-commutativity of covariant derivatives, in an arbi-
trary curved space introduces a factor ordering ambiguity.

This does not occur in the Fierz representation, as we will

now show. Indeed, from the potential AaBu(x) we define the

field CaBuv by the expression suggested by the application of
the MCP:
(89)  c*PWV - 1

Baguivi ¥ Auviessl Y 2 Aav) 98y

1 1l )
A%y " 2 2ev)Tan T 2 Blam)9sv *

Ack

win  we

oir FauIey ~ JavIpy!

in which a semi comma (;) represents covariant differentiation.
Use of MCP in eq. (7) and {12) gives the eg. of
motion o

(90) c“B““,v_+ m? A%BH = ¢
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and for the Lagrangian
— 1 afuv M2 aBy

We emphasize that there is no possibility of ambiguity in the=-
se expressions. We recover the same situation as in the theory
of spin-one field. From the equations of motion we arrive at

the modified compatibility conditions (see eq. (9)):

aBu =
(92a) A gBu~ 0
1 [auvA Bl
(92b) a%By o1y c
] Ju M2 HVA
QUVA

in which w is the conformal Weyl tensor of the curved back-
ground gecometry.
We know from our previcus flat space-time analysis

that in order to impose extra condition on AaBu we must look
*

into AaBu

,g+ beware however of the non-comutativeness of this
r
covariant derivative.

From the tensorial identity.

*
o _ 1 peaB u M u
(93) e S {ApE ;8 Y R so t Ay e }
in which nPe%B o _ _L_ ¢PEOB .13 g = det g,, we conclude that
Y=g

we cannot transport Fierz condition (9) to curved space-time.

Indeed, calling M* the divergence

x
(93,1) %% = a%BM
F
we obtain
T U b _ Ou
(93:2) AT)& ;€ + A)LE :T + AE‘[ rA =M naelT *
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Taking the contraction u = X and using (92,a)

(93,3) AET”_U = -MT + M'°
using (92b) we obtain
I | [paBALO]

&

Just as in the flat space-time case, the relation

ETH
[er] 24 2 7,y

M(er) can be counted independently (of AETU.UJ. However this

symmetric part gives not 10 arbitrary extra condition but

between M implies that only the symmetric part

only 5. The counting is simple: from the 10 components that

the symmetric M has we must extract the trace(10-1=9)- which

(eT)
has been already counted, and the divergence identity

x \
1 W Aeuo

*
afu _ 1 aBpo oy MVA Y
(93,5) A =5 TR ) 58t Z Weypa

Beu 2M2

which takes 4 conditions, leaving 9-4=5 as in flat space—-time.

The proof of (93,5) is straightforward:
*

From the definition J* = a By WE have
I

: a _ 1 of poH ECH CE L PEY
(93,6) J 5 N pU[A jusB * RDEBUA + R BuA +
- poEq
Reg A ;l
uging (92b)
' : 8 *
o _ _ _1 aBpo HVA caoi - oBe
(93,7} J = ;;5 n (wpuvxco )38 + 2R Acsu R gh

From the properties of the dual operador, we have the identity

1

{93,8) R 5 R,

*
uvap '

*
HaBv
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and using the decomposition of R

aBuv into its irreducible parts

we can write

with

M = R

EUTT ETgLiU + R

uoer ~ Recgut = R 190

Finally, collecting all this we arrive at (93,5}

g% = - L naBpo(w

Uv}\) + .]_' f*q (IA
2M? B2

puvlcd
This accomplishes the task of providing a non-ambiguous
coherent set of equations for massive spin-two field in curved
space-time.
Let us now turn to the description of the present theory

in terms of the ancient {standard) variables.
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The Equivaleﬁde

The simplest way to obtain the equivalence formulas
is just to note that eq. {lla,b) can be interpreted as general
expressions in coordinates adapted to arbitrary frames. Then,

we can set

a

= - By, °
(94a) Buev = Yupurel * B Y, v T BV ;a9

and, conversely,

- _ . € 1 (A=B_ €
(94b) L 12 Auvze * M2 138 2w esv)
1 ,o0B
- — A . g -
M2 Bra “uv

Compatibility of these two expressions gives the eq. of motion

in the_¢uv variable:

€ . af
(95) Dl %o = ¥ swase * Vougy * T japp LW 2

af 1 o ' 2
+ Ruava -3 Rq(nq;.v) + M (ww-wgw) = 0

or, equivalently,

' - £ aB -
(35) E]_Wuv w(u JE3V) + wfusv + guv(tlJ ;a8 v

N o , 1 « 2, - -
_RuavB W + 3 Ra(uw v) + M (¢uv Wqu) o .
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Einstein's Theory in Jordan-Lanczos-

~Lichnerowicz Framework

Let us pause for a while and summarize what we have
achieved. We have shown that in flat space-~time it is comple-
tely equivalent to.use standard wuv or Fierz AaBu variables
to deseribe spin two fields,massive and massless. We have ex-
tended this for curved space-time in the case m # Ol Now it is
time to answer the question: what about the m = 0 case ? Or,
in other words, what about non-weak gravity in Fierz variables ?

The road to a complete answer to this question pass
through two independent stages : (i) The Jordan formulation
of General Relativity; (ii) The Lanczos extension of the Fierz
variables.

Let us examine both in this order.

The starting point of Jordan formulatlon of . Elnstein S

GR [9] is the existence of Bianchi identities for the riemannian

geometry.

These identities can be written in two equivalent
ways {10]) , either in the form
(96a) goBuv  _ pula;8]

HAY

or using Weyl conformal tensor

CG@Buv 1 ula;B) _ 1 ulag,B)
(96b) W ;v =3 R , i3 9 R

&

The Weyl conformal tensor W

aBuv is given #y the trace-

less part of the curvature, that is
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1
(97) Wasuv = RQB]J\’ ‘+ 3 Rngau +
1 : 1 1
+ 3 Ryu9av ~ 2 RavIpy 7 2 Rgu9av ~
1 _ .
- % RU9,,98v IavIsy! -

The idea of Jordan and his collaborators was to search
for a new set of equations - similar in its form to (96b) -

such that the right-hand side is identified to a current:

[

aBuv  _ JaBu
(98) W ;v = J

If we intend to make an ulterior contact with
Einstein's GR then the current should be constructed only in

terms of the energy-momentum tensor T

uv

Then, the hypothesis has been made that J admits a

aBu
decomposition in the very convenient form

k k

(99) Jagu = = 2 Tuie;8] * & urel,B)

aBu ~ 2

in which consﬁant k of dimension (energy)—l(length) will be
identified, é posteriori, t® Newton's constant (in natural units}.
Although the leitmotiv that legitimated Jordan et al.
to propose the current (99) was not exhibited in their work,
one is led to suspect, after the precedent sections of our
paper that i£ is indeed the most natural extension, for curved
space-time, of the coupling 6f matter wiﬁh gravity by the

intermediation of a (then hidden) third order potential LaBu'
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Let us now sh@w how this suggestion can become real.

The argument, due originally to Lichnerowicz,. goes
in the following way.

Consider the simultaneous validity of-(96b) and (98,99).
If we note that in passiﬁg'from quasi-Minkowskian space-time to

a curved one the standard variable wuv become the metric guv ’

this eq. needs as Cauchy déta a set .of second order derivatives
of I
We take Einstein's equation to be valid in a given
initial hypersurface I _[the reader should compare our reasoning
here with’ihat in flat space-time presented after eq. (21)1},
that is, | |
(100) (R, - 3 r&" 4+ kT ) = 0
It then follows that the set of equations (96,98) propagates
~ this ccndition beyond the hypersurface L, showing the validity
of Einstein's equations throughout the wholé space-time [11].
After what we have shown up to now we
can state the following: the identification of the theory
of gravity as mediated_by a massless spin two field can be
described either in sténdard vériables wuv or in Fierz vafiAbiés
Auvk' The first choice yields.the Einstein description; and the
second one 1éads to Jordan's scheme of General Relativity.
| The final piece of demonstration of this assertion will be

done next by the identification of Fierz variables in Jordan's

description.
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Lanczos Potential

We.saw previsously how to relate Fierz variables_with
the standard ones in the case of weak gravity (see eq.(38)). How
ever the crucial question on know how this Eould be extrapolated
for strong fields has been a challenge for scientists for a long
period. It was only in 1962, with the work of C. Lanczos that
this problem was settled in a definite and unéuspected way [12,13,
14,15]. |

The knowledge obtained in the previous sections - dealing
with flat space~time - makes us suspect that in the massless limit
the bridge formuli (which allows a complete algorithm of passage
from one representation to the other) do not exist. That this is
indeed true was shown only recently by the work of Lanczos [12]
and later on by Bampi and Caviglia [14]. They showed that a po-
tential LaBu can be constructed, in any Riemannian geometry,
for the Weyl conformal tensor (but not for the full curvature
tensof except in some special case)}. Thus, besides formula (97),
the Weyl tenser admits a representation in terms of a third

order tensor LaBu given by

_ _ e 1 |
(;01) WuBuv - LaBIu:vl.* Luv(a;sj + 3 L(av) Igp *
1 -1 R
*2 5ew%vy T2 ewi%n T 2 Liowy v *
2 _CA
t3 L o: A (gaugsv - guvgBu)
in which
{102a) LaBu = . LBau
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(102b) LGBH + LBua f LHGB = 0 .

Although Lygy has 20 degrees of freedom W has only-10. This

aBuv
shows that there are 10 gauge symmetries hideen in the new
variable. This is analogbqs to the case in Minkﬁwskii space-
~time (eq. (40,42)) - generalized for curved space-time,

| The -Lanczos potential has been considered since its
introduction in 1962 until today, & very special and isolated
property of the traceless part of the curvature tensor (Weyl
tensor). From what we have learned in the previous sections we
can recognize now its real meaning and its natural historical

context: it is nothing but the form Fierz variable takes in the

Einstein's geometric description of massless spin-two field.
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The Dynamics

[Choosing the Fluctuations of the Geometric Quantities]

Once decided to work with Lanczos potential we are
guided almost uniguely to set up a theory in which the dynamics is

provided by the action

(103) 8§55 = J Y-g W

afuv
GBqu d4x

We then face a new problem. As a consequence of the description
- of the gravitational field in terms of geometric quantities, not

only aBy but also 9,y are to be var;ed in the action Sg. We

cannot left LaB to undergo arbitrary fluctuations and keep

B
= frozen - ‘unless we restrict strongly ourselves to a very

particular model. We will not exploré this restricted case here.

Besides, as pointed out by Lanczos [12], "Luvk is re-
.ducible to the metric tensor Iuv only by aq integral operation,
i.e., the value of L, , depends globallyion the geometry of the
menifold, and yet the tensor Luul participates locally in- the
formation of the field equations.”

Thus we should have

(o ay ~
t104h 8sp = J /fE_[M GLaBu + N Gguv] 8 ,% .

In order to develop a definite forﬁ of the variational principle
to yield a coherent general theory we must provide a correlation
between the perturbatidns 6Luvl and Ggpv; Each dhoice of = h
dependence entails a giﬁen model.for'the evolutionary equ  2ns

of the field.
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In the search of such relation we will be guided
by the principle =~ whose roots are to be found in the bridge
formuli (94) - which states that the evolﬁtibn of perturbation.
-Gguv is to be identified with the equation of motion of a
massiQe spin-two field undulating in an arbitrary background
Riemannian space-time, provided by eq. (95)(*); There remains
to fix the vthe of the mass, which could depeﬁd either on
the background geometry {(e.g. m " }ﬁ) or on some independent

universal constant of gravity theory (e.g. m2 a" %).

Let us examine here the consequences of making the

second cheice and set m2 =-§? .

Following eé. (94} we set:

L _ 2 BA_ap

_ A
(105) $g (uav);l}ga 3% [logr;ploued 9

Ly ==K [L

The total Légrahgian

(106)  fpg = /75 (- 5 W, + D

M]
with

_ 1 A nim) o uv
s [ by = B TR s

* - .
( )This proposal is not a new one. Some years ago V,.L. Ginzburg

et al, have examined the problem of describing dynamically ar-
bitrary fluctuations (not necessarilly small ones) ﬁguv over an
average field <guv>‘ Non-linearity of Einstein's equations is res-
ponsible for the possipility-thaﬁﬂ<guv>_apd the total (observed)
metric Iy = <guv>‘+ Aguv do not satisfy the same equation.
Ginzburg et al. [16}, Novello [17],and others have proposed alternative
set of equations to describe the average geometry '<guv>' when

the total metric Iy satisfies Einstein's equations.
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Then for the total action:

Sp = I r 94%

o — aBuv d UV
(107 ey = [ /G WY ar o sdn | 6gh)

in which ’Tuv contains the contribution of Tﬁv(matter) and

Xyy comes from the quadratic Lagrangian of gravity
. = mim)
(108) Tyy = Tu\) + Xy

In this way we can interpret X,y 28 the energy of the gravitatio

nal field, given by

A {ep)_ 1 .2

(109) Xy =0yt Woeov U g W 9,
in which (compare with {46})
A _ EPA. £pA _ PG LA
qu T Tvyep YW Loype ~ W v T po

Thus, finally,from 9, using (105) into (107) we obtain:
(110) W“BU“;v = _-% Tu[a381_+_% gH [oqs 6]
' -

with Tu\) given by eq. {(108).
This system of equations is just the Jordan-Lichnerowicz
system  with the peculiarity that here there is an extra

term for the source Tuv which comes from the geometry.
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IV - USES OF THE NEW VARIABLES A . BEYOND GENERAL RELATIVITY

In the early seventies many scientists have analysed
the properties of a theory which contains a massive gravitoﬁ (18,
19, 20, 21,22). This so called finite-range gravitation suffered
for either be}ng'hon-covariant, dealing with fwo "metrical"
fields or by the addition of a scalar field ¢ which should not
be incorporated in the standard va?iable guv(k). These difficul-
ties can be overcame if we abandon the standard variable

wﬁv and use the Fierz variable Auvl'

.Indeed, we have been
analysing in the previous section the equation of motion of a
massive spin two field given by

(111) c“ﬁ““'ﬁ + m2a%BH = g

or, in a general curved background,

(112) cOBUY 4 n?a%M o g

In either case, these equations are self-consistent and make no
appeal to extra fields or to two metric variables. Besides this
two simple trivial uses, Fierz variables appears of much more
natural use in different contexts. For instance consider the so
calied f-dominance of gravity, a theory which has been invented
By Isham,Salam and Strathdee in the early seventies [23,24,25}].
This theory proposed to translate to the gravitational world

a model of hadron-electrodynamics. The idea developed was

that the photon interacts directly with leptons but only iﬁ614
0 0

rectly with hadrons via a simple p -y mixing — in which p° is

a vector field {actually a p-w-¢ complex). The success of such
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theory led Isham et al. to propose a -similar model for gravity:
this was the f-g theory which treated £,, and guv as two
metric fields obeying equations of motion of Einstein's type
corresponding formally to the strong gravity metric fuv and
the general metric Dy |

It is a simple but elucidative exercise of the advan-
tages of the use of Fierz variables to translate this f-g theory
in our new formalism. We do nét present this model here but
proceed instead to a new application of the Fierz variables in
a somewhat distinct but much more comprising model which can
be synthesized in the search of a definite answer to the single

question:

Does There Exigts a Gravitational Analogque of the Electro-Weak

Unification ?

We have seen.in the precedent sections that the use
of Fierz variable A, (instead of the étandard_one wuv) to
describe spin-2 field gives much more transparency into the
similitude that exists between eléctrodynamics and gravity.
If we follow this road of analogies further on we will be
guided to the suggestive conclusion that there should exists

a new short range force. How this could occur ?

Algebraic Structure
In the seventies a'theory géined an important role
in elementary particle physics, which proposed the modification
of weak and electromagnetic interactions [26,27}. This successful
scheme aimed the unification of a set of three massive vector

(W:, w;, Wg) = w‘i’ which mediate weak processes, and the
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‘photon (Au)-which mediate electromagnetic processes. We could'l
roudhLy sa§ that‘electromaghetic forces acquired a short range
counterpart described in An unique algebraic. scheme by a gauge
theory.The establishment of these extra short range fields |
as companions of the photon provokes naturally fhe question:
should the gravitational interaction have a short-range counter-
part too ? We will contemplate here this hypothesis and examine
the consequences of a theory in which gravity has a distinguiéhed-
local counter-part represented by a new force mediated by

massive spin 2 fields - which we will call, just for future
referencel, the RIO-Force.

To simplify-our presentation we consider the case of
weak gravity that-is, when thé sﬁace—time is in the quasi-
-Minkowskian regime, The extension for arbitrary curved space
time was done in Novello-Heintzmann iProceed. v Mércel'Grossmann
Meeting (ed. Ruffini) 1986). Thus, as we saw previously, the
gravitational field can be coherently and completely described
in terms of Fierz variable, i.e., a third order tensor. Besides
this - and by analogy to the case of electrodynamics ~ we intro-

(i

duce a set of three objects ALB in which the index (i) is

)
u -

an SU-2 index. The theory thus contains 8 fundamental fields,
separated in two sectors: the vector sector Aél’,B- and the

(1) -
afu 'BaBu'

The electro-weak unification scheme of Salam-Glashow-

tensorial sector A

~Weinberg assumes a local SU(2)} symmetry which means that any
group transformation becomes a space~-time dependent function.
The theory then follows the standard rules of the Yang-Mills

gauge model, introducing for consistency an internal
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covariant derivative -in which the vectors A are to be

(1)
] H
treated as SU(2) connections. This means that an infinitesimal
map generated by the space-time dependent function n(l)(x)

(1)
u

induces on A a corresponding inhomogeneous change given

by the formula [28]

113 cap i) _ ¥y _ a(1) _ _idk (1)
( ) GAu Ku Ay : ge n(j)A(k)u +n

in which g is a constant. Thus for any SU(2) object,say V¥, we

define the corresponding covariant derivative by setting

a4 =Yt Y
in which
(115) r zig i

U 2 H 1
and Ty are the Pauli matrices.
The SGW theory deals with spin zero doublets (scalars)
¢2 and spinors (¥). From what we have'learned, in the preceding

sections on the coupling of AaB with scalars and spinors,

13!
we are conducted to treat the tensorial sector as true vectors
of SU(2) and not as connection, leaving this function only

to the electro-weak fields. This means that Aﬁ%& changes

under the form

(116) sald) o xi) _aU) g i3k

HVA HVA VA njauvl(k)

We can then use the definition of the covariant derivative

to write
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(117) al) a0y ik,

Ragullv = Bapu,v v(3) Pagu (k)

The quantities A(l’ and A( ) are the pofentials of the fields

u aBu
:i’ and cééiv thus defined:
plid _ a0 - _ o i3k
(18 By = A T 9T A Av
. cli) N&Y (i) Ald)
(119) Caguv = Paglu(vl * Puvid|sl * 2 Agu ey *
(i) - 151 _ (1)
2 A (av) "B (au) gy A(Bv) o
(1)01 '
*3 3 a“A,(nuu Bv navnBu)_ :

LN

This acomplishes the task of defining of the algebraic
structure of the extended unified theory of the tensorial

sector. Let us now go into the dynamics .

Dynamical Structure

We take Glashow—SalamQWeinberg theory as a paradigm
and construct an analcgous dynamics for the tensorial sector.

For the free part, GSW sets

= - (lguv _ 1 BV
200 rp= - g R - 3,8
in which Buv z B[u,v] .
Correspondingly
- - L (1) LaBuv _ 1 jaBuv
(121) LII g Cau_vﬁ C(i, 3§ D DO‘-BIA\J

in which D is constructed in the standard way, with the

afpv
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potential BaBu' The leptonic part in GSW scheme is given by
| 9Ty i -gAT X u
(122) Ly;y =3 L v, TL.A g'(3 LY, L+TRYRB

u u
Lo 1-vg (v
e

1+Y5

in which 3] and R is the singiet R = ( 5 e .

This part has no correspondent in the tensor sector. This is
due to the transparence of the spinor field to the pure tensor
part (see the spinorial coupling with A#vl in section II ),
Then comes the interaction with a scalar doublet #hich is the

responsible for giving'mass to some of the fundamental fieélds.-

The GSW model sets

123). Co g, 1 -1 42 _ 2.+ t,..2

(123) Lyy = |3,¢~igA 1:¢6 - 5 g'B 6] 2M“9" ¢ + 2h(¢ @)
¢1' .

in which ¢ =‘[¢ J . The gquartic them on ¢ is responsible
2

for allowing the spontaneous symmetry breaking generated by

the vacuum expectation value <¢> = k(gl.

Then we get for the tensorial'sector,_in an analogous

way,

_1 _ P | . 2
(120) Ly =g |30 -a 60, m3ETIA Ly ) 8+ 30B,, 0]

We see that in the absence of the tensors, LV con- -

uv

tributes with a term ¢ u® y0 to the dynamics. This is
. r r

the origin of the factors 2 in front of M and h in L In the SGW

Iv’
scheﬁ%, to recognize the massless photon field, one redefines
the vector fields by rotating A£3) and Bu through an angle 8

such that

e =g sine = g' cosd
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in which e is the electric charge. The fact that in the tenso-

rial sector we are dealing with quantities whose dimensionality.

(i) — -1 ¥ ) . . *
{BaBu] [AaBu ] = (length) (which we assumed in order

to introduce no new constants in the theory) associated to the

is

specificity of the theory we are developping imply that the
corresponding rotation of the tensorial sector (which allows
the characterization of the massless gravitational'field) is

45°. Indeed, by setting

2 2 11 1) {ald

HVA BVA
one obtains from_?v, éfter the spontaneous symmetry breaking
mechanism enters in the action (which has the net result to
take in the Lagrangian the scalar doublet to be given by

= 0
$ P.A (l) )

0 _ 3,
m (Auvk) -2
_ V2
(126) m (Zuvk) = 3 —E-X
m (Auvx) = 0

Remark that we are using the minimal hypothesis:afuniversélity which
‘states that the scalar.field which givéé mass for the vector

sector is the same which provides masses for the tensors. This
‘enables us to obtain from the vectors the value of the vacuum
expectation value of ¢, that is, A - yielding the corres-

ponding numeriéal p:edictions of the existence of three

massive tensors:
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+
m (Aa

Lg) = 369 Gev

m (zaB ) 520,3 GeV ¢

]

and a mass
less one AﬁBu

viton .. The massive partiéles (AEB

which we identify with the (linear) gra

" zaﬁu) are the carriers

of the new short range RIO force.
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V - CONCLUSION

We have presented in this work a complete theoretical
framework to describe spin-two field in terms of Fierz varia-
bles AaBu‘ One of the main results of this is the exhibition
of the great formal similitude between the eguations of motion
of gravity and electrodynamic. Then, one may be conducted to
the question: why there was so lon&“an exile, why physicists
have abandoned for near fourty years almost completely such
Fierz scheme of representation ?

We will find an answer to this questiop by examining
the geometrical interpretation of gravitational phénomena
contained in Einstein's conceptidn.

Ind@ed, if one deals with standard variable ¥,
then some of the known properties of gravity (e.q., its uni-
versality, its coupling with the stress-energy tensor, etc)
provokes naturally the transformation of wuv into a geometric
quantity, e.g. the metric tensor Iy

The same does not occur for A“\)}i, which j.n the realm
of General Relativity is reduced to the Lanczos potentiél, a
quantity that is restrained to be part of the geometry and

which can be used to define the metric g only through some

uv
non-local operations of rather complicated nature. There.were,
however, throughdut all this period; since the advent of Ge-
neral Relativity some disconfort about this metric description.
We can. quote, for instance, the inexistence of a true tensor
which-represents the energy distribution of the gravitational
field. Besides this, the peculiar role of gravity in determi-

ning the properties of the metric.evolution, gives to this



CBPF~NF-012/88

theory a very unique status, making-difficult the generaticn
of an unified scheme containing, besides gravity, other forces.

Anyone who deals with guantization aspects of gravi-
ty has in some way faced the above difficulties,

We have decided to pass to A variables in a

HVA
tentative to overcome all those troubles. Although gome work
has been-left for the future, we think that many advantages

of our new formalism were pul into evidénce in this paper.
For instance, we can quote the Hamiltonian treatment of
section II. As is well known, one of the biggest problem of
quantizing Einstein's theory of gravity comes from the very
complicated structure of the constraints arising from

Gene;al Relativity. In fact, those constraints generate the
dynamics of Einstein's theory making it hardly treatable.

This difficulty led some authors ( Ashtekar {29] ) to
modifications of the basic set of geometric variables, intro-
ducing guantities which are combinations of the extrinsic
curvature and the spin connection. Curiously, these gquantities
appears as a sort of potentials for the Weyl conformal tensor.
Thus, one should suspect that Ashtekar's proposal may be
related intimately with the one.presented here.

In oiir present scheme, as the Hamiltonian analysis
in flat Minkowskii space-time shows, the structure of the
constraints are easier to solve. Indeed, they are very simi-
lar to gauge theories and they do not generate the dynamics
of the theory - which becomes a crucial point of simplifi-

cation.

Note that although we have limited our analysis
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to flat spacc-time it seems that such formal simplicity can'bc
transported for more general cases. The proof of this assertion
seems to be one of the main tasks for the near future.

Finally, it is worth to mention the role of Fierz
variable in the unification progfam of all forces in Nature.
We present such model here for the purpose to exhibit the power
bf our new treatment. |

Let us finish this conclusion with one more remark.
As we saw in this paper, the whole scheme generated using Auvl
variables could be related to Einstein's General Relativity
only after the work of three scientists: L;nczos (who haé.shown,
although implicitly, how Fierz_variables,gould bé related to
the staridard ones), Jordan (who described the dynamics of.gravity
in terms of the divergenée of Weyl tensor) and Lichnerowicz (who -
has shown that Jordan's description is nothing but-Genéral Relati-
vity diéplayed in a distinct formalism). We have thus learned
from the work of these scientists that in terms oleierz variables
the Einstein's equations become nothing but an iniiial condition,
propagated in an invariant form throughout the space-time.

In the present paper we have shown how those pieces
of information from Lanczés, Jordan and Lichnerowicz, when
assembled together, can be used to describe a. theory of gravity

in the realm of Einstein's General Relativity.

Acknowledgement: We would like to thank the group of the Depar-
tamento de Relatividade e Particulas (CBPF) for many discussions

on this subject.
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APPENDIX 1

Variational Principle (Alternative Approaches)

Let us consider the Einstein-Hilbert Lagrangian

8 J-/:E R = J /=g (R . - % Rguv)ﬁguvd4x

In the conventional scheme one considers thét all variation
of the geocmetry are permissable , restrained by the.only

condition that v remains riemannién. Then one arrives at
Einstein's equation |

R].W_-%Rgu\)=0 .

Howéver, as Lanczos has emphasized some years aéo,
the sort of the fluctuations are not contained in the Lagrangian
but must be added to the variationa; principle. Indeed,

- the variational precedure is an algorithm that aligws one to
obtain a given set of equations from a functional once the
variational procedure is given. Different forms of fluctuation
yields distinct equations. In the above example, we used
Einstein-Hilbert scheme which allows complete freedom of
Gguv_. Let us now consider an alternative procedure.

We will assume that fluctuations of the geometry are
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restricted to be such'that 6guv behaves as a massive spin
two field propagatlng in a curved (arbltrary) geometry of
'.metric 9vr the mass being equal to the Planck mass. ThlS
means the restriction the fluctuations to very short range,
of the order of the Planck length. .In general, it is believed
that for a region 'of diménsiou L "those virtual histories of
field evolutidon which contribute most to the propaéation
function in ngnman's path integrai.are those for which &g~
(J. wheeler [30]). I1f we accept this hypothesis, we can employ

the precedent bridge formula and write

ae

= K 51 ks
'ﬁguv - 2 ﬁLﬁ(uV);e g 3 GLGBA:pguvg g

Using this value into the variational formula, we have:

uv 1 pv .
I /~g({R" " - 5 Rg )Gguvd4x

. 4 = vip,al_ 1 viu,,e]l |
=3 J /=g {R ¢ £ 9 'R }'GLuuv o

-

Assuming that the variation 0L are the true independent

apv
ones, we obtain '

1 . 1 : -
2 Rouza) T 12 Iy (uRra) = 0
which ., using Bianchi identity (96b ) transforms into
aguv =
W v = H

If instead of the free field Lg, we take the total Lagrangian

Iplanck .

L
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with a source term:

L = /=g g% R + Lyl

with J § V-g Ly =%J V=g Tuvﬁg IJd4x ¢+ we obtain after some

algebraic manipulation

auv  _ _ k mla;8]  k _ula,,B]
LEERP S te9 T

which is the set of equations assumed in Jordan's version

of GR.
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