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ABSTRACT

It is shown that given the potentials for spin 1 zero rest mass fields, the
process of producing field potentials which commute with the generator of gauge
transformations is equivalent to modify the classical commutator (the Poisson
bracket), which holdsvfor these initial potentials, to the Dirac bracket which
describes the commutatlon algebra for the gauge invariant field potentials in
the radiation gauge. Thls result is extended for spin 2 zero rest mass fields
without self-interaction. This last case is taken as the weak field approxima-

tion of the full non-linear gravitational field equations of general relativity.




156

INTRODUCTION

For the Maxwell field is well known that a process for obtaining field
potentials which are gauge invariant, in the Hamiltonian formalism, is obtained
by introducing the transverse field potentials, as those which are  divergence
free. Since a spin 1 gauge transformation adds to the potentials the gradient
of a scalar function, and thus a.longitudinal vector, it is clear that any
divergenceless potential will be invariant under such transformations, as long
as the transverse character is conserved after the transformation. This may

also be seen from the expression for the generator of gauge transformations,

>
(x, x?) d,x

C(x?) = -f Ax, xp, .,

In this formula, A is the gauge function and P, is the canonical momentum densi-
ty for the spin 1 field. Latin indices indicate degrees of freedam going from
1 to 3. Greek indices go from 1 to 4. The term commutator u.zd in this
paper refer to the classical commutator, that is, the Poisson bracket. The metric
tensor is the Minkowski. tensor n1r1 v with signature +2, thus all three-dimensional

operations are done for the metric Ny = Op,gs @nd no distinction is done

between contravariant and covariant indices in three-dimensions.

Given arbitrary (gauge variant) potentials A, we have
[Ai’ C] = Ay

But the divergenceless field functional
1
A?:A. - 3. — B.Aj
1 1 1 vz J
has a null camutator with the gauge generator C. In this paper we show that

the commutation algebra of thetransverse potentials is identical to the algebra
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of the Dirac bracket. It is known that the algebra of the Dirac bracket for
the case of the Hamiltonian formulation of general relativity is realized by the
usual Poisson bracket algebra of the so called "starred field functionals" l,
which describe the field observables of the theory. Thus, we have shown that in
the radiation gauge this conclusion may be extended for the spin. 1 massless
field in flat spacetime. Similarly, it is also proved that the same result
applies to spin 2 massless fields without self interactions. This field is
taken as the weak field approximation for the gravitational field equations of
general relativity.

This result may also be recasted as a proof of equivalence between the A-D-M

3

method for quantization 2 and the B-K method °, in the radiation gauge and

within the approximations presently considered.

With regard to notation, we indicate the partial derivatives by any one of
9
the symbols, 9 ;b — or ¢ ;» for any quantity ¢. Covariant derivatives
axl H
are not used due to our approximation of a linearized gravitational field.

1. GAUGE INVARIANT CANONICAL VARTIABLES FOR THE MAXWELL FIELD IN FLAT SPACETIME.

The Hamiltonian theory for the Maxwell field contains one relation of cons-

traint connecting the three components of the canonical momentum Pp.-

¥

B = 2~ 0 (1)

pr,r
The symbol 22 means equal to zero in the weak sense in Dirac's notation Y We
want to prove that for this case the construction of the "starred field compon-

ents" of B-K formalism is equivalent to the construction of the T-type = Ppoten




158

tials of the A-D-M- formalism. As was stated in the introduction, the P.B. = re-
lations among the starred field camponents is the same as the Dirac bracket among
the potentials themselves. Therefore, as long as we show that the T-type poten-
tials have the same cammtation algebra as the starred potentials, we have proved
that the commutation algebra of the. T-type potentials is the same as the Dirac
bracket algebra among the potentials. This last algebra will be the commutation
algebra for the field observables in.the Hamiltonian formulation, now written

entirely in terms of gauge invariant degrees of freedom.

For introducing the concept of the "starred field potentials' we have to
introduce a gauge condition in terms of the dynamical components for the field.

We choose the radiation gauge condition,
D= ~ 0 (2)
Ar,r

The two constraints (1) and (2) form a set of two second~cla:s: a¢  .raints ~,
since the P.B. of D with B is,

0,87 =-v2 §(xx") (3)

Therefore, in presence of second class constraints two alternmatives are pos-
sible, or we use the Dirac bracket directly instead of the P.B., cr eguivalent-
ly we still retain the P.B. but modify each component of the dynamical  varia-
bles by adding to them a linear combination of the second-class constraints,

such that it commutes with all second-class constraints. This last alternative

defines the so called "starred dynamical variable". We use this process, by
defining
* > - > > > >
0y - 0 t 1 ' i 1 1
Ai(x,x ) = Ai(x,x ) + f pi(x,x ) Py dgx' + I ai(x,x )Ar,r d,x W

where A. is the vector potential, the configuration type variable in  Yhe
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‘Hamiltonian formalism for- electrddynamics. Sﬁrzilmiy; in place of the canonical
momentum p, We write
* . 1
pi(x,x°) = pi(x,x°) + f Bi(x,x') p]},’r d,x' +f Yi(x,x') Ar,r d,x! (5)

where the coefficients My O Bi and Y; are determined by the conditions

[ o] = [ o]
ERINEY

From the first two conditions (8) and (7) we see that the starred dynamical vari .

(6)

1
o

"
o

(7

ables are gauge invariant, since the generator of gauge trensformations is

cx®) = -[ A(x,x°)B d, x
and all starred dynamical functions commute with C, even if the gauge function A
is also a function of the dynamical variables Ai and p; (we have ~ put p_

2
equal to zero after computing all commutators). For the case of spin 1 = mass-
less fields , the imposition of gauge invariance for the canonical momentum is
not really necessary since p; .is gauge invariant by definition. However, for
spin 2 massless fields this imposition will ba necessary, and since the method
of définiticn of the "starred canonical variables" is general, we have maintain-

ed this condition here.

The conditions (8) and (7) imply in

V2 g (X" = '6‘,i.(>‘2-§') (8)

V2 (XD = 0 (9)
2 - > _ >

Ve B (xx') = 5,,in x') (10)

'y (xx") =0 (11)




"‘,‘ lso-

The solution of (8) and (10) is-vg,iven by,

% *
So that the Ai and p; have the form

Al = A ! : ' ' W (X, X1)p! ' (12)
% 1 1 ' / . > >, ' '
Pi =Py * :; f ]§;§'| ‘,i Pr,r dgx' + f Yi(x,x ) Ar,r dy% (13)

with p; and Y solutions of the Laplace equation. These formulas may be written

as

1

% > >

- - — 1 t 1

Ay = Ay -3y 72 O Ap * f My (%, x T Pror dyx
1

o T ' 1

P =P; ai = Br P + f Yi(x,x ) Ar,r d3X

&% E
Thus, up =o the terms containing W and v., the A, and p; are just the transverse

field variables of the A-D-M theory. It may be shown that the terms in u, and .

‘ % '
do not contribute to the commutation relations of the A; and p; (use (8) or (11)),

[a* *1 5. SGED + [ = 8. (X% (14)
.s = 8., §(x=x!) + — = 8., (x-x
3o Py ik wr \ || /0 ik

El

where § J'.]<(;_§’) is the transverse delta function. Since all fields of interest,
similarly to the case of the A-D-M theory have to be free of singularities and
have to vanish at spatial infinity, we can take as the solution of the Laplace

equation
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ui‘:Yi:O

. ® . * %
In this case the Ai will commute with Pﬁ( (the same for the momentum Pi).’ and
the idenmtification of the “starred field potentials" with the T-type func-
tionals of the A-D-M theory is completed.

T ®_ T
Ay = A5 Py 5P

Fram the relations,

T T W %
[Aii p' ]] = Eﬁis P'j] = l}‘is Pﬂ

(by [f,g] we indicate the Dirac bracket of any given quantities f and g), we
see that the commutation relations among the T-type functional are just the
commutations arising from the Dirac bracket of the initial gauge variant

A; and the original momentum P;-

% * . .
2. THE CANONICAL VARIABLES hij‘ AND pij.~ FOR SPIN 7 IN THE LINEAR APPROXTMATION

Here we extend our previocus conclusions for the weak field approximation
of the general relativistic field equations of the gravitational field. The
field obtained is a spin 2 massless field without self interactions. The cor-

responding Hamiltonian version contains four,relations of constrainrt

*.

~ 0 (15)

(16)

i
=2
I
oy
4
o

%L TS ,rS rr,ss

which correspond to the unigue .constraint (1) for electrodynamics. Here  we
have four constraints due to the fact that a spin 2 gauge transformation

involves four arbitrary gauge functions instead of just one gauge function
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as was the case for the spin 1 massless field. In the Lagrangian formalism,
which is a four-dimensional formalism, for the symmetric second rank Lorentz

tensor hu v? related to the metric gy and to the Minkowski tensor n

v T My * huv

we have the gauge transformation

pv B

hl'm(x) = hw(x) - Au,\)(x> - A\) u(x)

s
involving the four components of the gauge function Au' In the Hamiltonian
theory we obtain a similar structure, but now divided into the gauge trans
formation of the configuration field variables, the hij , and the gauge trans-
formation of the momentum variables Pis- Before writing the expressions for
the generators of these transformations, we give some formilas which will be
necegsary. The weak .field approximaticn (from now on it will be called by
W.F.A.) is given by taking the previous metric g, =N + hu > Where only

v

Ny acts as the metric. The field equations are the spin ’ "'i.-. equation

plus the Lorentz covariant gauge condition

_ v _ _vo _ _ 1 o ..
9" v,.=0,3" =n aa, Y™ hw 5 My N haB (17

We call attention to the fact that in the W.F.A. the momentum p ik is a first
order quantity. The explicit expression for p 1% being obtained by lineari-
zation of the exact formula derived from the Dirac Lagrangian density for
general relativity.

c(n -1 1 _
Pix = <hao,a 2 haa,o) G:ik * 2 <hio,k * hko,i hik,c) (18)

Under a gauge transformation on the potentials hu v? of the form written

before, the p ik change according to
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- _ 2 50 o]
P'i_k'Pi__k vtSikV AT + A ik (19)

The generator for this type of gauge transformation, in the Hamiltonian
theory, ik (recall that n°° = - 1)
6 = -fA?‘(;’c, x°)18L(§, x°) d, x (20)

Since,

[Pixes 9] =‘A°’1.k - 85 V2 A°

The remaining part of the gauge transformations, that is, the part which acts

on the configuration potentials h.

i} 18 generated by

J(x%) = JAS&, YRk, x7) a4 x (21)

Thus, similarly as before, the constraints are basically the generators for

the invariance function group of the theory.

The Lorentz covariant gauge condition (17) is separated into the condi-

tions giving the radiation gauge for spin 2,

Noo = BPog = 0 | (22-1)
ASh m0,B Th_ =0 (22-2)

The set of eight constraints given by (15), (16) and (22-2) is of second

class since, "
e ﬁr'*_] =0, [y, AT =0, [, B;—J
P 2] =-28 G50, [g, 8]

Thus, similarly as before, we define the quantities,

0, [A,B;J=O

é 2 +_+|
(GPSV +8PS) S(x—x")




le4

By = hyy [ GRO RGO 4 x v [ G 3O GO g
+ fsij(i,z') A", x°) 4, x' + [ Yi56(s X1 B G, 0 dy X! (23)
p;j = Py * fxijr&,;')ierc}', x°) dyx' + I¢ij<3*c,?c'>i€L(?c' %) dgx’
+ fwij&, X AGY, x°) dx' + [Tijs(;, %1 B G ®) dyx! (2u)

The coefficients being determined by the conditions
% # :
1] = 1 =
i §)so gl o
where by (} we indicate the set of all eight constraints,
?= { A’ BS’ %L’ ms}
We determine first the coefficients standing on Eq. (23). From the condi

X
tion that h i3 commutes with %r-’ A and Br we get the equations.

+_+' +_+t = > +H —>n_+! 1]
air G,j(x x') + (Sjr' G,i(x x') = ZIBij(x,x )‘5,1,1' (x"-x") d,x
- Y. (;’;n)((s y"2 4 g2 ) 5(;"“ ;l) d x" (25)
ijs sr rs 3
: Hes (X, X') = 0 (26)
%! T ijr 72
3% u.., (x, X") ‘
2 uijr(i’, X') + ilk ~° =0 27
ax'™ ax'T

%

* . . .
For the commutator of h i3 with ﬁL we get no information since h i3

automatically commutes with #L within the gauge conditions presently used.
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We can write (25) in the form

) Y ay

. )
ijr ijs . >
-2 8 - + = (8. 6_.+ 8. 6. ) 8(x-x")
xS sr 61] ax 'S ax 1T 5% 15 ir “sj jr "is
From this equation we can write
> >
- - — !
2 6sr Bij * Yijnr',s‘ * Yijs,r' - (Gir st * Gjr Gis) §(x-x") (28)

For cbtaining (28) we have neglected a divergenceless term ¢ s(;') (such term
may be added to the left, or to the right, side of (28), but as we will see,
we can obtain the desired solution without using this new term). Solving

<

(28) for the Bij’

- l +_+' _ > >,
Bij = -3 (aij §(x~-x") Yijr,r'(x’x )) (29)

Now, fram (26) and (27) we have
VVZ T =0

ijr

and since we lock for fields which are free of singularities and which tend

to zero at spatial infinity, we may take
..o =0 (30)

*
The Egs. (29) and (30) allow us to put the h i3 of (23) as

2 B’
% -
h..=h..+Ja..(§,§') S -9z a4 x
ij © i3 ij 5x'S 3
oY (§, x")
1 - ' 1 > 1 1 :
3 J e A' dx' + injs(x, x') B'y dgx (31)
where ﬁij is the trace free combinatdon
- _ _ 1
ij *his ~ 73 %5 4
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*
In order that the hij be of the type TT of the A-D-M theory, it is first of all
%
necessary that the trace of h i3 vanishes. In the formula (23), or equivalent-

ly in (31), the coefficients aij and Yijr are symmetric over i,j (the other

coefficients have the same symmetry). Taking trace in (31), it is simple to

. % . .
verify that h ;3 18 zero only if
->

-> —>' _ -> ' _
a (x, x') = Yesp (x, x') =0

Therefore, the two-point functions aij’ Y have to be symmetric over i1,j and

ijr
for all x and X' have to be trace free. Besides this, they cannot depend on
the dynamical variables since this would generate higher order terms which are
neglected in the W.F.A. Since in (31) we have no further information on the

explicit form for %5 and Y;:,s We can make use of this arbitrarity in the form

jr
of these functions for rewriting (31) with coefficients

!
w|

§.. a

= o,. - »
ij Tss

= -1
Yisr ® Vi3 3 rSij Yssr

in place of the o.. and vy, These last two-point functions are symmetric

] ijr”
over i, j (if the original fwo—point functions di} and Yijr are) and are trace

%
free. This recalibration in (31) implies that hij is trace free, but if we

compute its divergence on xJ we find,

" = -1 G..(x, x' gtz '
ij,j ~ hij,j §'h,i + j aij(x, x") (Bm,m V'Z A" 4, x
az?ljr&, x")
S~ RS E A S
axd ax'r ijs,] s

. . * . . ~
Imposing that the divergence of hij vanishes, we get a relation on the uij and

~

Yijr' This relation, after partial integration may be presented in the form
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104 - X! 1o o 3 . X! ' '
I(S 9; A" - B;) 8(x=x') d; x' = aij,jm'(x’ ) B d, x'+

~ -»>

=~ P 1At v o1 T t oAl 1
+ J “ij,jm'(x’ x") o) A' d, x 3 J Yijr,j(x’ x") 9 A' d, x

1
+J le’](x x )B d, x

We separate this equation into two relations, one containing only 81;1 A', the
other involving only By (this is possible since A and B, represent independent

combinations),

1 At R (o - t Al '
-§j Gj_m o A §(x-x')d,x' = 13,3m'(x x") 8 A' 4, x
L F LG XD A g x!
3 ijm,] 7 m 3
- ' T v . ~ T ! '
J Gis B §(x-x')d, x' = J o‘ij,js'(x’ x') B, d, x
+ J Vijs,j(?" x") B! d, x'
Consequently,
1__ T = > o _]_ ~ > '
5 85 8(x=x'") = 1j,jm'(x’ ) T thjm,j(x’ x')
- ') = - = T T v > 1
8, g §(x=x") aij,:js,(x, x") + YljS,]( s X')

These equations are compatible for &ij = 0, since then we get just one independ

ent equation.

~ , - +_->
YlJS’J(x, ) = ‘Sis S(x=x") (32)




which is a condition fixing the value for ?ijO' Its solution is,

~
b
»

st
H

.. = 8. D . (w—w') - (T 2 T >y
ijs 515 J’j(A x') Sjs D’i(x x') + 3 Gij D’S(x x")

+ % Aer  (x-%") (33)

> > . ; . . .
where D(x-x') iz the Green function of the Poisson equation, and

Z- 0(;-;') = -}— D
VZ

—)_—), - -]; _).-_;'

2
The relation (33) represents a c-number two-point function symmetric over the
first pair of indices and traceless over this pair of indices. Note that the
divergence of Vi' of (33) on x'S gives

>
x') =

~

->
Yijs,s'(x’

J
Njlw 0

->_-> 'y _ -]__ +_-> '
D,ij (x=x") > Gij §(x-x") (35)

which is different from its divergence cn xJ which is given by (77).

ot

With the choice &. = 0 and .._ i e h', is idoideal
i he choice alj 0 and Yljs given by (33), the hlj i3 ikatical to

the hzg of the A-D-4 theory for spin 2, in the so called N-decamposition for a

. i . 4 3 *
second rank symmetric tensor . From (33), (35) and G55 = 0, we have for h i3
2 1 1

i = -i LN ) -
n .. h.. 6.-hss+‘§- 3 P!

ij ij 7 i3 Y13 ;;"ss h

3 ;Zak ki

-5, = 3 +Es..9 L sl 2o 1
1 v2 khk] 2 "ij s v2 'mhms 2 7s 72 lj ¥2 k%

An inspection on this formula shows that indeed the trace and divergence of

hij are zero. This relation coincides with the usual form for presenting a

IT part of a given tensor hij in the N-decomposition.

The gauge invariance of hi' is made clear, even before the identification

AN 23l

with h™;., since it commutes with the gauge generators (20) and (21) even for

i
1]
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q-number gauge transformations (when the gauge functions depend on the

dynamical variables).

The A-D-M method may be.locked as a process for producing field function--
als such that from given initial arbitrary canonical fields we obtain new
fields which satisfy the gauge conditions A = Bs = 0. The method for obtain-
ing the s‘tar'r*ed‘ﬁ!ield variables is similar in this point, and this is made
clear from the fact that we used only the left hand side of the radiation
gauge conditions for the definition of h?.j , and did not take directly A =
= Bs = 0, rather we showed that the final h*ij may be chosen so as to satisfy
these requiremem:s.

For the momentum P#ij of (24) we cannot use the gauge conditions under

the form (22-2) since this conducts to a contradiction. Indeed, taking the

canmutator of P*ij of (24) with %L’ we get

Lpij’%l',J =0

which cannot be true. For avoiding this difficulty, we rewrite the radia-
tion gauge conditions.for spin 2 in a form slighly different, but mathematical
ly equivalent, 5 the quantity A being replaced by

>~ 0 (36)

= g2 -
Q=V Pgs prs,rs"’

but the remaining conditions B, = 0 are retained. Then,

%

1 !
P Gy 30Ry a4y %0+ [ a5 Ga FOR g x

ij * Pij * J }‘ijr ij

! '
o fuggGh R Qe w0 [ G E B o) x a7

. e s W . . .
The imposition that p i commutes with all constraints leads to the equations.

J
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12 12 T Ty -
v 13r(x’ X' + 9 s 1]8( s X') = 0

yrz yr2 npij(SE, x') +

LT

12 _ a12 T2y =
(Gij v ) ij) §(x~x') = 0

yr2 g2 ¢ij(?c, X') =

yr2 A (x X 4ol x, x') = - 5 <<s + 835 95) §(X-x")

rs :Ljr 93 is

Fram (40) and (39) we conclude that
¢lj =0
1

wij = ;::-f-(¢ x=x') - &, i3 v'2 §(x-x"))

Now we note thal all available two-point functions have to depend on §(x-x")

(38)

(39)

(40)

(41)

(42)

(43)

or

on the Green function D(X-x') , Since they have to be c-numbers. Thus’: any double

differentiation on x'T is equivalent to differentiate on x*, and we may rewrite

(4l) as

2. 2 = - _1-_ A

Differentiation on.x> gives

V2 .. (;,;E') = -

ijs,s (x—x )

w]p—l

which has ag solution

AijS,S(;’ ;') = - %‘J‘ D(X-X") 8 "j,,(X"-X )d x"

1

Differentiation on x'" in Eq. (38) gives,

V'z Tes '(;E, 5(’.') "0
: °

this implies that .

(44)
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[
and thus, Tijs is constant. We take this constant as zero since we know that Pij

cannot depend on the hij’ as it would depend if Tijs do not vanish. The Eq.(ul4}

is integrated over the delta function giving as result,

> +' - - l "‘__>' us
Aijs,s(x’ x') = -5 D,ij(x x") (45)
The solution of this equation is,
1
> >, __1__ 2 -_>__—>' +_+'
Aijs(x’ x') = 5 aij 9 ;;-D(x x') + eijs(x x') (u46)

for eijs(;;;') a c-nurber two-point function symmetric over i,j and divergence-

less over the last index.

0 (x-x') = 0 (47)

ijs,s
The value for Oijs is obtained by imposing consistency of the solution (46) with

the original equation (41). With this end we compute the Laplacian of (46)

2 - 1 2 +_—> ' 2 +_+ '
% Aijs = §-aij Bs D(x~x') +V eijs(x x")
and, also fram (46),
2 ¥ 1y = - 1L 2 Dlx—=!
3 Aijr(x’ x') = -5 .ﬁgj I - D(x-x")

(condition (47) was used). Therefore,
2 > >, .._!-_ 2 +_—>'
9% .. (x, x') = 5 aij 95 Dlx—x")
and the left hand side of the original Eq. (41) is

2 : 2 - _ a2 > 2 > o
v Aijs + BPS Aijr = aij BS D(x-x') + V eijs(x x')

By consistency we should have

- 52 el 2 >y .1 e >
aij Bs D(x-x') + V eijs(x x') = > (st G,i(x X )+6i86,j(x x'))
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This is a differential equation in 0@ Its solution being,

ijs’
_ l i e _]; > >, _;l__ 2 > ¥
eijs = -3 (st‘ o S’i(x x') + Gis > 6’j(xx )) + Vz aij Bs D(x-x")

which may be written as,

- _]; ) +_+' ->_+' _]__ 2 +_+'
eijs =-3 Qsjs D’i(x x') + Gis D’j(x X )\) + o aij as D(x~-x") u8)
The eij s of (48) satisfies the condition (47). Therefore, from (46) we have
- _]; 2 _:_]__ +_-»' _1__ 2 —>_~>'
>‘ijs = -5 Bij Bs - D(x=x') + - aij BS D(x—x"')
_ -_']; +_—>' —>_+'
7 (855 D ") + 85 D 5(x=x")) (49)

We note that by an argument similar to that used for the A-equation, we can

write (43) in the form

. = .._l_ .]_' —)_._)1 - 2 —>_">1 50
‘Plj o3 (6,ij(x x') Gij V2 8(x-x')) (50)

This formula may be simplified to

1 1 > > 1 > >
Y,. = = = o x=x'") - = 6.. —x! 51
1572 o D’lj(x x') > (513 D(x-x") (51)

Using the value for the several coefficients, we can finally write down the

*
formula for the Pij s
*

Pij

- 1 .2 > > 1 a2 1 2
=D.. + — 3%, - - = 2 = - -
pj J 2E):JD’(xx) 2838 2D(:’cx)

_ _]__ +__+,
5 (G.S D’i(x x') + ais D

> >
3 j(x-x'n]jescx') d, x' +

b]

+ :}*J [;l{ D 43 GX" - 68, D(§-§'):[ Qx") d x' (52)

which is a functional of the original mamentum p ;++ As for the configuration

) *
variables, we also have here that Pij = pE
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3. CONCLUSION

In the usual formalism, involving the gauge variant cancnical variables

hij and Pij for the linearized gravitational spin 2 field, the gauge

functions cannot be arbitrarily chosen in the radiation gauge. Under

a gauge transformation the hij change as

Then, the gauge conditions

are valid in a new gauge frame only if

- 2 -
Ay g=0, VA =0

These last relations are equivalent to impose that the left hand side of the

above gauge conditions commute with the generators of the gauge transformations.

EA,J]:O,[BS,J]=0

(if we use in place of the gauge condition A = h =0, the condition
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Q = V2 Pes ~ Prg.pg = 0 a similar situation holds). However, in the case where
b
%* #*
we work with the functicnals hij and Pij no condition need to be imposed on the
gauge functions Ao and AS, since under gauge transformations
*1 %
h.. = h..
13 1]
AR
pij = Pij

% %
and thus hi. ‘and P;s automatically commute with the generators of the gauge trans

J ]
formations.

% %
[A,J 0, |B.,Jdl =0

% N
A,G6l =0, |B,Gl =0.

X ] L
Since EA s J] = [A, J_l , with the same property for the other commutators, we

and also trivially we have,

have that in the Dirac bracket algebra all eight constraints %r’ﬂL’ A and BS

become of the first class. This indeed was the basic idea underlining this new
commutation algebra. What was proven is that this new commutation algebra is
just the commutation algebra of the transverse~transverse field functicnals of

the type used in the so called N-decomposition of the A-D-M formalism.

Since in the A-D-M theory a process is suggested for generalizing . this
for the full non-linear gravitational field equations of general relativity, in
the so called C-decomposition, we may hope that similarly it may also apply for
the starred field functionals underlined in the Dirac commutation algebra. Since
%35 .

. . % e .
no closed and simple form is known for gij and p in general relativity, it

may happen that this analogy turns out useful in this case.
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