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Abstract

From a distributional-theoretical framework, we make efforts in order to fill a gap in

the series of studies which discuss the inheritance of the renormalization behaviour

of a finite temperature field theory (FTFT) from the analogous version in quantum

field theory (QFT) at T = 0. Renormalization is treated as a distributional exten-

sion problem having the mathematical structure disentangled as much as possible

from the physical aspects. The purely technical details essential for the discussion

are briefly reviewed in a handle manner for further theoretical physics applications.

The analysis elucidates some qualitative and quantitative distinctions concerning the

divergences in the perturbation series when it is considered the FTFT version associ-

ated to a given QFT. Despite the differences, it turns clear the reason why the leading

ultraviolet behaviour keeps unaffected when it is considered the FTFT version asso-

ciated to a given QFT. The study is model independent and the approach allows one

to consider the FTFT both imaginary and real time formalism at once in a unified

way in the contour ordered formalism.
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1 Introduction

Statistical Field Theory or FTFT arose from the fact that there are many problems

in QFT exhibit many bodies aspects. QCD deconfinement phase transition, [1], the role

of the quark-gluon plasma in the formation of dark matter in the early universe [2], be-

sides the problems concerning superstring cosmology at finite temperature [3] are some

early examples of applications. The FTFT, in the general case, is a relativistic QFT in

the grand canonical ensemble, i.e., finite temperature and finite density [4, 5]. There are

some classes of formalisms for FTFT, two of then, the so called imaginary time formalism

(ITF) and the real time formalism (RTF) are associated to particular cases of chosen con-

tours in the continuation of the time axis into a complex plane having the imaginary axis

associated to the inverse temperature. An additional class is the thermo field dynamics

(TFD) which is an operator formulation in the C�-algebra context and whose equivalence

to the RTF is established by the reconstruction theorem. The ITF [6] is characterized by

Euclidean propagators resulting from the representation of the inverse temperature as an

imaginary time argument and consequently by the representation of the energy as a dis-

crete set of imaginary poles, the Matsubara frequency, in the complex plane. This formal-

ism is suitable for the calculation of the thermodynamic potential while the calculation of

dynamic properties, like correlation functions and effects of external disturbances can not

be done without a cumbersome and arbitrary non unique process of analytic continuation

from the discrete energies to the complex plane. The non uniqueness of the continuation

can be interpreted as the doubling of degrees of freedom naturally nested in the RTF what

turns it to be suitable for dynamic calculations. It is characterized by a Minkowski space-

time representation for the real time dependent propagators with spectral representation

being functions of a real continuous variable and the effective doubling of degrees of

freedom representing time and anti-time ordering what causes the propagators to have a

matrix 2 � 2 structure. Despite of the above distinction between the ITF and RTF, both

can be interpreted as particular cases of the countour ordered formalism (COF), a complex

contour dependent formalism in which the time component of the support of the fields lies

on a complex plane. In this framework, lines in Feynman graphs are related to complex

contour dependent propagators and time ordering is replaced by contour ordering [7] on

the complex time plane. Under some conditions on analyticity of the propagators, each

contour leads to a specific formulation of FTFT.

As it occurs to the QFT, the FTFT also exhibit ultraviolet divergences. The problem

of how to make sense out of the physical meaning behind the divergences in a mathe-

matically proper way was satisfactorily solved by the known renormalization procedure.

There are some well established prescription currently used in QFT to attribute mean-

ing to the initially divergent distribution terms of the perturbation series associated to the
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quantities of interest. The latter can however be defined only up to certain renormalization

ambiguities which, in principle, can be determined from physical reasonings. In facing the

distinctions between the FTFT and QFT propagators, some questions take place. Once the

divergences are related to some ill-defined products of distributions, the FTFT propagator

would imply in changes on the conditions for the existence of the products and would in-

troduce a temperature dependent renormalization problem. The ambiguities of the renor-

malization procedure associated to the physical parameters would then exhibit qualitative

changes due to the temperature dependence. Moreover, it can also change the asymptotic

divergent behaviour and consequently the amount of arbitrariness involved. The FTFT

propagator, being separable into temperature dependent and independent pieces, causes

the shuffle of the divergences and temperature dependent terms in crossing products in

the higher order terms of the perturbation expansion. Depending on the renormalization

procedure adopted some of those facts can become not clear. ¿From physical reasonings,

one can not expected that the differences would have fundamental consequences to the

UV behaviour because it arises from the short distance limit which is unaffected by the

temperature once the thermal part of the propagator has support on the shell mass and

decays rapidly with growing momentum because of the Bose-Einstein (or Fermi-Dirac)

distribution function. This question has been investigated by many authors using various

techniques, each one putting emphasis on different aspects of the problem. Let us mention

for instance the TFD proof [8], the RFT method [9], the BPHZ momentum space subtrac-

tion procedure [4, 10] besides the framework of axiomatic quantum field theories at finite

temperature [11]. More recently, it has been given by C. Kopper et al. [12] a rigorous

proof of the renormalizability of the massive '4
4 theory at finite temperature based in the

framework of Wilson’s flow equations, to all orders of the loop expansion.

It is our purpose to fill a gap in this series of studies by approaching the problem

from a central aspect of the renormalization which lies on the lack of definition of the

distributional product in some particular context present in the perturbation series and on

the necessary validity extension. These questions turn to be somewhat transparent when

one deeps into the ground of the problem of the divergences and picks up to be studied

the basic divergences themselves. Such an approach allows us to investigate the issue, as

much as possible, in a model independent manner and free of the technical difficulties

of thermal loop calculations way common to the various conventional approaches both

in ITFs and RTFs. Moreover, it is allowed to be adopted the generalized unified frame-

work of the countour ordered formalism (COF) considering at a time both ITF and RTF.

The analysis is done under the light of a systematic use of the ideas and notions of the

distribution theory. The microlocal theory of distributions in x-space is used for the char-

acterization of the singular spectrum in terms of wavefront set of the propagators in order
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to characterize a sufficient condition for the existence of the products. The analysis of the

asymptotic behaviour of the products of distributions near the singular points is done by

the calculation of the scaling degree and the singular order which govern the amount arbi-

trariness present in the renormalization procedure. The whole apparatus furnish the basis

for us to formulate the renormalization as the well posed mathematical problem of the dis-

tributional products support extension. One shows that the number of ill-defined products

to a given order in the perturbation series increases. Furthermore, the ill-defined products

in FTFT have in general temperature dependent factors in addition they would contribute

in principle, to the counting of ambiguities. Nevertheless, the divergences found in FTFT

are showed to arise from that factors having the same nature as those ill-defined ones in

QFT. From the point of view of the renormalization as the extension problem, these fac-

tors can however be treated separately order by order in the perturbation series. Order by

order the problem of the extension in FTFT is showed to reduce to the analogous one of

the ordinary QFT. As a consequence, it is proved that the amount of arbitrariness in the

renormalization procedure, as well the type of the ambiguities remains the same when

passing from a given QFT to the associated FTFT version. There follows that a given

FTFT remains finite when it is considered a renormalized analogous QFT.

The discussion of the pure mathematical aspects is done in a handle manner for fur-

ther theoretical physics applications and the outline of the paper is as follows. We shall

begin in Sec. 2 by describing some basics on the microlocal analysis of singularities where

the wavefront set of a distribution is introduced together with a sufficient condition for

the existence of products of distributions based on its WFSs. The Sec. 3 is devoted to an

elementary introduction to the basic ideas of renormalization theory viewed as the distri-

butional product support extension. In Sec. 4, the comparative analysis of the propagators

of FTFT and QFT as distributions, besides their products, the problem of the renormali-

zation and the perturbation series consequences take place. The Sec. 5 contains the final

considerations. The Appendix recalls some properties of the oscillatory integrals focusing

them as a tool for the calculation of the WFS of distributions.
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2 Microlocal Study of Singularities

The UV divergences are a QFT inherent problem, because the fields, as well its cor-

relation functions, having distributional character are defined on the a continuous space-

time. The perturbation expansions in QFT are made of the product of such distributions.

However, products of distributions with overlapping singularities are in general not well-

defined. Hence, it becomes convenient to shed some light on the problem of the under

which conditions one has or not a well-defined product of distributions. Among the dis-

tributional analysis techniques, the framework of the microlocal analysis[13] is fairly

suitable for the study of the UV divergences. The term microlocal analysis refers to a set

of techniques of relatively recent origin which have turned out to be particularly useful in

analyzing partial differential equations with variable coefficients, including those of par-

ticular interest to quantum field theory. We shall following describe an analytical method

which provides sufficient conditions for the existence of the product of distributions based

on the concept of the wavefront set(WFS) of a distribuiton f , denoted by WF (f). It is

a refined description of the singularity spectrum. Similar notion was developed in some

versions by Sato [14], Iagolnitzer [15] and Sjöstrand [16]. The present definition is due

to Hörmander [13] who has made use of this terminology due to an existing analogy be-

tween the “propagation” of singularities of distributions and the classical construction of

propagating waves by Huyghens.

Let f be a distribution on an open set X � R
d ; then the singular supportW of f

is the complement of the largest relatively open subset X 1 of X whereon f is smooth

(f jX1 2 C1
0 ). A point x0, it is said to be a non-singular pointof a distribution f if there

exists a cutoff function � 2 C1
0 (V ), with support in some neighbourhood V of x0 such

that the Fourier transform

cf�(k) = Z
ddx f(x)�(x)eikx ;

is of fast decrease for all directions k 2 R
d . By a fast decrease in the k direction of û(k),

one must understand that, there is CN 2 R, N = 1; 2; 3 : : : such that (1 + jkj)N jû(k)j �

CN remains bounded. Notice that if x0 is a singular point of distribution f , and � 2

C1
0 (V ) is such that �(x0) 6= 0; then �f is also of compact support and singular in x0.

In this case of an existing singularity x0 in the support of f , there can still occur some

directions in k-space over which c�f is asymptotically bounded. A direction k for which

the Fourier transform û(k) of u(x) 2 D
0(V ) shows to be of fast decrease is called to

be a regular directionof û(k). It suggests that we can single out singular directions as

well as singular point and that for the establishment of these concepts, only the behaviour

of f and of f̂ restricted to an arbitrarily small neighbourhood of the singular point x0 is

relevant.



CBPF-NF-012/03 5

Let f(x) be an arbitrary distribution not necessarily of compact support on an open

set X � R
d . Then, the set of all pairs composed first by the its singular points x 2 X and

second by the associated nonzero singular directions k,

WF (f) = f(x0; k) 2 X � (Rdn0) j k 2 �x(f)g ; (2.1)

is called wavefront setof f . The �x(f) is defined to be the complement of the set of all

k 2 Rdn0 with respect to Rdn0, for which there is an open conic neighbourhood M of k

such that c�f is of fast decrease on M .

In short, to determine whether (x0; k) is in WFS set of f one must first to localize

f around x0, next to obtain Fourier transform f̂ and finally to look at the decay in the

direction k. Hence, the WFS not only describes the set where a distribution is singular,

but also localizes the frequencies that constitute these singularities.

Example2.1. A small “point” scatterer on R.

V (x) = Æ(x) /

Z
ddx 1e� ikx ;

i.e., bV = 1 does not decay in any direction k: WF (Æ) = f(0; k) j k 6= 0g has singularities

in all directions. N

Remarks2.1. We now collect some basic properties of the WFSs:

1. The WF (f) is conic in the sense that it remains invariant under the action of di-

latations, i.e.when one multiply the second variable by a positive scalar. If (x; k) 2

WF (f) then (x; �k) 2 WF (f) for all � > 0.

2. From the definition of WF (f), it follows that the projection onto the first coor-

dinate �1(WF (f)) ! x, consists of those points that have no neighbourhood

whereon u is a smooth function, and the projection onto the second coordinate

�2(WF (f)) ! �x(f), is the cone around k attached to a such point denoting the

set of high-frequency directions responsible for the appearance of a singularity at

this point.

3. The WFS of a smooth function is the empty set.

4. For all smooth function � with compact suport WF (�f) � WF (f).

5. For any partial linear differential operator P , with C1 coefficients, one has

WF (Pf) � WF (f) :
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6. If f and g are two distributions belonging to D0(Rd), with wavefront set WF (f)

and WF (g), respectively; then the wavefront set of (f + g) 2 D0(Rd) is contained

in WF (f) [WF (g). O

In the perturbation scheme of quantum field theories, one finds formal operations on

distributions which can be in general not well-defined. In order to give precise statements

on the existence of the product of these distributions, we appeal a criterion based on the

WFS of the distributional factors the so-called Hörmander’s Criterion. Let u and v be

distributions; if the WFS of u and v are such that the following direct sum

WF (u)�WF (v)
def
= f(x; k1 + k2) j(x; k1) 2 WF (u); (x; k2) 2 WF (v)g ; (2.2)

does not contain any element of the form (x; 0), then the product uv there exists and

WF (uv) � WF (u) [WF (v) [ (WF (u) �WF (v)). Hence, the product of the distri-

butions u and v is well-defined around x, if u, or v, or both distributions are regular in

x. Otherwise, if u and v are singular in x, the product can still exist if the sum of the

second components from WF (u) and WF (v) related to x can be linearly combined with

nonnegative coefficients to vanish only by a trivial manner.

Example2.2. The distributions u; v 2 D
0(R), u(x) = 1

x+i�
and v(x) = 1

x�i�
, with the

Heavyside distributions bu(k) = 2�i�(�k) and bv(k) = �2�i�(k) as their Fourier trans-

forms, have the following WFSs:

WF (u) = f(0; k) j k 2 R
�n0g ; WF (v) = f(0; k) j k 2 R

+n0g :

Thus, from the Hörmander’s Criterion one finds that there exist the powers of un and

vn. The products between u and v do not match the above criterion and do not exist,

indeed. The example clearly indicates that one can multiply distributions even if they

have overlapping singularities, provided their WFSs are in favorable positions. Such an

observation is significant because it makes clear that the problem is not only where the

support is, but in which directions the Fourier transform is not rapidly decreasing! N

Example2.3. The Feynman propagator for massive scalar field

�F(x)
def
= �(x0)�+(x;m

2)� �(�x0)��(x;m
2) ;

can have its WFS constitution studied from the WFS of the Wightman functions,

WF (��) =f((0; 0); (��jkj;��k)) j (k 6= 0) 2 R
3 ; � 2 R+g

[ f((jxj;x); (��jkj;��k)) j x; (k 6= 0) 2 R
3 ; � 2 R+g ; (2.3)

[ f((�jxj;x); (��jkj;��k)) j x; (k 6= 0) 2 R
3 ; � 2 R+g ;
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and from the WFS of �(�t� t0) = ��,

WF ( ��) = f((0;x); (��k0; 0)) j x 2 R
3 ;k0 2 R; � 2 R+g : (2.4)

One can easily conclude that it is not possible to form a non trivial linear combination

with nonnegative coefficients in order to produce a vanishing second component in the

direct sum of the above WFSs. So,

(x; 0) 62 WF (��)�WF (��) : (2.5)

Therefore, from the Hörmander’s criterion, the Feynman propagator can be well-defined

in terms of the above product and

WF (�� ���) � WF (��) [WF (��) [ (WF (��)�WF (��)) : (2.6)

However, in the powers (�F)
n there exist products like �+�� and from (2.3), one can

see that (x; 0) 2 WF (�+)�WF (��) and it occurs for the singular point x = 0. In this

sense, one must be careful when manipulating such products. In fact, they are known to

exist anywhere but x 6= 0. Such an ill-definition, manifested as divergences, requires the

treatment of the renormalization. Notice further that

(x; 0) 62 WF (��)�WF (��): (2.7)

In particular, it can be used

��(x;m
2) =

�i

(2�)3

Z
d4k1 �(�k

0
1)Æ(k

2
1 �m2) e� ik1x :

and b��(k1; k2) = �i(2�)4Æ(k1+k2)�(�k01)Æ(k
2
1�m2) as a representation of the Fourier

transform, to verify that the wavefront set of Feynman propagator has the following co-

variant form [17]:

WF (�F) =f(x1; k1); (x2; k2) 2 (R1;3 � R
1;3 n 0) j x1 6= x2; (x1 � x2)

2 = 0;

k1 k (x1 � x2); k1 + k2 = 0; k21 = 0;

k01 > 0 if x1 � x2 and k01 < 0 if x1 � x2g

[ f(x1; k1); (x2; k2) 2 (R1;3 � R
1;3 n 0) j x1 = x2; k1 + k2 = 0; k21 = 0g ;

where have used the notation that x1 � x2 if x1 � x2 is in the convex hull of the forward

lightcone and x2 � x1 if x1 � x2 is in the convex hull of the backward lightcone. Notice

that the condition k01 > 0 if x1 � x2 and k01 < 0 if x1 � x2 in WF (�F) ensures the

existence of products of Feynman propagators at all points away from diagonal, while

these products do not satisfy the Hörmander’s criterion for multiplication of distributions

over the points of the diagonal, since the sum of the second components of the WFS on

the diagonal can add up to zero. N
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In the appendix we present a method by Hörmander and Duistermaat [18] to compute

the WFSs based on Oscillatory Integral.

3 Elementary Notion of Renormalization Theory

This section is devoted to a brief review on the basic ideas of renormalization the-

ory. In the previous section, it was discussed a sufficient condition for the existence of

the product of distributions. However, it is well known that in the perturbation expansion

there arise formal products of distributions which do not satisfy the Hörmader’s criterion,

deserving then some careful to be treated. Such an ill-definition, manifested as diver-

gences, must be identified and dealt via some renormalization prescription in order to

ensure finite results to physical meaningful parameters. In particular, as we have pointed

out, some products of distributions of the perturbation series are well-defined everywhere

but on the the diagonal – the coinciding points. In the context of the perturbation series

the renormalization consists in the problem of the extension of the ill-defined products

of distributions to that coinciding points. This can be achieved by a Taylor subtraction

on the corresponding test functions. However, the extensions preserving the continuous

linear functional are in general not unique. The amount or degree of arbitrariness can be

evaluated in accordance with the scaling degreeand the singular orderof the distribution,

also called superficial degree of divergence. The scaling degree � of a distribution u at

the coinciding points of Rn is defined to be [19]

�(u) = inf
n
! 2 N j lim

�!0
�!+"u� (') = 0; 0 < " < 1;� 2 R+

o
: (3.1)

The existence of the above limit depends on the behaviour of the distribution u under the

proper scaling transformation x0 = �x for � ! 0. Notice that the scaling degree can be

viewed as a generalization of the notion of the degree of homogeneity of a distribution.1

There follows in a straightforward manner from the definition that

�(uv) = �(u) + �(v) ; �(u+ v) = maxf�(u); �(v)g : (3.2)

The singular order of a distribution u for x1 = � � � = xd is defined by �(u) =

�(u)� d, where �(u) is the scaling degree of u and n is the dimension of the space.

1Let u(x) be an homogeneous function of degree a 2 R, i.e.u(�x) = � au(x) for � > 0. Hence, it is

induced the following relation:

u�(') �

Z
dx0 u(�x0)'(x0) =

Z
dx0 �au(x0)'(x0) =

Z
dx ��du(x)'(��1x) = u('�) ;

where '�(x) = ��d'(��1x). A distribution u on Rdn0 is called homogeneousof degree a if (1) is valid

for' 2 D(Rdn0). If u is a distribution onRd and (1) is valid for all ' 2 D(Rd ), then u is said homogeneous

of degree a on Rd .
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Example3.1. For the distribution Æ 2 D0(Rd) we have:

Æ�(') =

Z
ddx Æ(�x)'(x) =

Z
ddx ��dÆ(x)'(x) = ��dÆ(') :

Thus, the condition

lim
�!0

�!+"Æ�(') = lim
�!0

�!�d+"'(0) = 0 =) ! � d :

The scaling degree is then �(Æ) = d, and the singular order �(Æ) = 0. N

Example3.2. The distribution � 2 D0(R) is such that �(�(t � t0)) = �(t � t0) or

��(') = �('), hence the condition lim�!0 �
!+"��(') = 0 implies that ! � 0, �(�) = 0

and �(�) = �d. N

Example3.3. In the case of the Wightman function �+ we have:

�+(�(x� x0);m2) =

Z
d(d�1)k

(2�)3 2!k
e� ik(�(x�x0)) = �2�d�+(x� x0;�2m2):

Then, one has ! � d � 2, the scale degree is �(�+) = d � 2 and singular order is

�(�+) = �2. N

The following concern the renormalization of divergent integrals. Let the distribu-

tions f 2 D0(R) be represented in terms of continuous linear functionals,

f(') = hf; 'i =

Z
dx f(x)'(x) ; (3.3)

with the test functions ' (x) 2 D (R). In order to illustrate the renormalization as the

problem of the extension, let us set f(x) = 1=x. In this case, f(x) is locally integrable

only away from the point x = 0, causing the integral to be non convergent. So, (3.3) can

not define a regular distribution for f(x) = 1=x, However, if '(x) is supported away from

0, i.e., supp' � Rn0, then the integral (3.3) turns to make sense, with f(') defining a

linear functional onD (Rn0) which is continuous. In accord to the Hahn-Banach theorem

[20] , this functional on D (Rn0) can be extended to the whole D (R). Let #(x) 2 D(R)

be such that #(0) = 1 and D�#(0) = 0. Thus, we can define

U (') =

Z
dx f(x) ['(x)� #(x)'(0)] : (3.4)

The above integral, which converges for all '(x) 2 D(R), is a renormalization of the in-

tegral (3.3). This functional is continuous onD (R) and coincides with f(') onD (Rn0).

It is possible then to obtain an interpretation for the integral (3.3) to ' (x) 2 D (R) such

that ' 7! U(') defines a distribution. The functional U differs of the original functional

only in the neighbourhood of the point x0 = 0, i.e., kx� x0k < r.



CBPF-NF-012/03 10

Unfortunately, the extensions are not unique. One can add to the extended U any

distribution supported at 0 to obtain another extension. Once every distribution whose

support is concentrated at the origin can be written as a finite combination of derivatives

of the Dirac measure at 0, any another extension S singular of order �(S) � �(U) at 0

can be obtained from U by following general expression:

S = U +
X

j�j��(S)

c�D
�Æ(x) ; ! = 0; 1; 2; : : : : (3.5)

In general, if f(x) is a locally integrable function everywhere except at the point

x0 = 0, and if xm+"f(x), for some integer m > 0 and 0 < " < 1, is homogeneous of

degree s > 0, then xm+"f(x) is locally integrable in the neighbourhood of x0 = 0, and a

“renormalization” of f(x) can be achieved by means of a Taylor’s subtraction:

U(') =

Z
dnx f(x)

24'(x)� #(x)
X

j�j��(f)

x�

�!
D�'(x)jx=0

35 ; (3.6)

Remark3.1. Notice that from (3.1) one has ! � 1, �(1=x) = 1, and consequently the

singular order �(1=x) = 0. There follows immediatly (3.4) from (3.6).

In short, the ideas above lead to the procedure of renormalization of Feynman am-

plitudes in quantum field theories. For instance, in the framework of causal perturbation

theory by Bogoliubov-Shirkov-Epstein-Glaser [21, 22] the process of renormalization is

precisely equivalent to the (Hahn-Banach) extension process of time-ordered off diago-

nal distributions to the diagonal of coalescent points. This is achieved by an appropriate

subtraction on the corresponding test functions.

Remark3.2. In the renormalization of Feynman graphs both in configuration and mo-

mentum space, the renormalization constants, for example, the renormalized mass and

coupling constants, there appear as local finite counter-terms which are local polynomials

in the fields and their derivatives, order by order in perturbative theory. In the case of a

power-counting renormalizable theory, the dimensions of these counter-terms do not ex-

ceed the spacetime dimension. It must be emphasized that the arbitrariness contained in

such a free counter-terms is the same to that contained in the constants c� in (3.5). In addi-

tion, the free constants c� are fixed by normalization conditions as well, which define the

physical parameters of the theory, i.e., masses and coupling constants. However, often ad-

ditional physical conditions as the reality, symmetries, Lorentz covariance, causality and

unitarity may impose further restrictions to the free constants, thus limiting the number of

arbitrary of constants or, analogously, of counter-terms. O
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4 Renormalization of Distributions in FTFT

We know take advantage on the adopted distributional approach to treat both ITF

and RTF at once under the framework of the COF. The time component of the support of

the fields lies on a complex plane, lines in Feynman graphs are related to complex con-

tour dependent propagators. Time ordering is replaced by contour ordering [7] what do

not harm the validity of Feynman-Mathews-Salam formula [4]. In general, each contour

leads to a specific formulation of FTFT. However, under some conditions on analyticity

on the propagators, the class of allowed contours are restricted to those which have non

increasing imaginary part [23]. In particular, among the formulations, the Matsubara real-

ization of ITF correspond to a contour on the imaginary-t axis and the closed-time-path,

a RFT formalism, to a closed contour running around the real-t axis in both forward and

backward real time.

In order to study the structure of the renormalization scheme in FTFT, we turn to the

analysis of the distributions and their products present in the perturbation series. The dis-

tributions are checked out via the The Hörmander’s criterion based on its WFSs. Keeping

in mind the renormalization procedure as an extension problem together to the its inherent

arbitrariness governed by singular order, the perturbation expansion is further discussed.

Without loss in generality, let us consider the case of a single, scalar field �(x) in FTFT

associated to spinless particles with mass m > 0. The generalization of the present pre-

scription to any field with arbitrary spin is straightforward.

Gc(x; x0) = �c(t� t0)h�̂(x)�̂(x0)i+ �c(t
0 � t)h�̂(x0)�̂(x)i: (4.1)

The brakets h� � � i stand for statistical average related to states of a complete orthogonal

basis of the Fock space. The index (c) accounts for the contour ordering in the complex

time plane-t (t = x0 + ix4) whose the imaginary and real parts are interpreted to be the

inverse temperature and actual time respectively. For the contour ordering prescription

given by �c(t � t0), it is supposed that the contour c is monotonously increasing and

regular parameterized by a real � 2 R parameter, C = ft 2 C j Re t = x0(�); Imt =

x4(�); � 2 Rg and �c(t � t0) = �(� � � 0). The spectral decomposition of �̂ in terms of

plane waves has the ordinary form,

�̂(x) =

Z
d3k

(2�)32!k

h
ake

�ikx + ayke
ikx
i
; (4.2)

though the normalization of the Fock space states for the thermal case include the statisti-

cal distribution of the particles associated, in the present case, the Bose-Einstein statistic

given by N(k0) =
1

e�k0�1
. Hence,

haykaki = (2�)32!kN(wk)Æ(k� k
0) (4.3)

haka
y
ki = (2�)32!k [N(wk) + 1] Æ(k� k

0) (4.4)
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The correlation functions C>(x; x0) = h�̂(x)�̂(x0)i = C<(x0; x) turns to have the follow-

ing spectral expansion

h�̂(x)�̂(x0)i =

Z
d4k

(2�)4
e�ik(x�x

0)�(k) [1 +N(k0)] ; (4.5)

where �(k) = 2� [�(k0)� �(�k0)] Æ(k2 � m2). Their Fourier transforms, related by
~C<(k) = �(k) [N(k0) + 1] = e�k0 ~C>(k), can be used in order to write the contour or-

dered propagator in the form

Gc(x; x0) =

Z
d4k

(2�)4
e�ik(x�x

0)�(k) [�c(t� t0) +N(k0)] : (4.6)

Another useful form is obtained after integration on k0,

Gc(x; x0) =�c(t� t0)

Z
d3k

(2�)32!k

n
[N(!k) + 1] e�ik(x�x

0) +N(!k)e
ik(x�x0)

o
+ �c(t

0 � t)

Z
d3k

(2�)32!k

n
[N(!k) + 1] eik(x�x

0) +N(!k)e
�ik(x�x0)

o
:

(4.7)

Although each possible contour would correspond to a specific formalism of FTFT, there

are restrictions on the contours due to the necessary analyticity of the correlation functions

and the KMS condition [4]. These conditions cause the support of the two point function

to be analytic on the strip given by �� � Im (t � t0) � �, which on the closure the

distributional character takes place. Furthermore, for the analyticity of C>(x; x0), which

because of the factor �c(t � t0) has vanishing contributions to the propagator (4.1) if t0

succeeds t on C, it is required that �� � Im (t� t0) � 0. Conversely, for the analyticity

of C<(x; x0), with factor �c(t0 � t), it is required that 0 � Im (t � t0) � �. Combining

both relations one can conclude that if the complex time t1 succeeds t2 on C, then there

follows that Imt2 � Imt1 what imposes that C must have a non increasing imaginary

part. In other words C must have constant or decreasing imaginary part. This is called

monotonousness condition.

At this point, once the adopted approach does not depend on Feynman graphics cal-

culations, we can proceed the analysis without the need in specializing to Minkowiskian

RTF or Euclidean ITF parameterizations of the contour. ¿From (4.7) we select two typical

distributions a temperature dependent piece, G(c)�
mat and a temperature independent piece,

G
(c)�
vac whose labels refer to matter pieceand vacuum piecedue to their origin in (4.4).

G
(c)�
mat (x; x

0) =

Z
d3k

(2�)32!k
N(!k)e

�ik(x�x0); (4.8)

G(c)�
vac (x; x0) =

Z
d3k

(2�)32!k
e�ik(x�x

0): (4.9)
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In terms of these distributions, the general contour propagator turns to be

Gc(x; x0) =�c(t� t0)
h
G

(c)+
mat (x; x

0) +G(c)+
vac (x; x0) +G

(c)�
mat (x; x

0)
i

+ �c(t
0 � t)

h
G

(c)�
mat (x; x

0) +G(c)�
vac (x; x

0) +G
(c)+
mat (x; x

0)
i
: (4.10)

The structure of the propagators of FTFT suggests that, at a given order in pertur-

bation series, the crossing products between matter and vaccum pieces would produce

qualitatively different divergences. Furthermore, one could expect it to have also a prolif-

eration of divergent terms. Another possible distinction between FTFT and QFT version

would be on the amount of arbitrariness through the contribution to the singular order

besides the establishment of a temperature dependent renormalization extension problem.

We are going to verify that in some sense the above fact do occur. The perception of one

or other of these points and the consequences would be difficulted or not depending on

the renormalization procedure adopted.

We now turn to investigate the divergent content of the distributions G(c)�
mat(vac) by

calculating their WFSs. We then proceed the study by using the stationary phase method

discussed in the Appendix. The phases of the above distributions have all the same form

�ik(x � y). Then, it is usefull to unify the notation as much as possible and represent

them all by defining the following integral

G
(c)�
mat(vac) =

Z
d3k

(2�)3

~fmat(vac)(k;m
2; �)

2!k
e�i[!(t�t

0)�k�(x�x0)] ; (4.11)

where ~fmat(k;m
2; �) = N(!k) and ~fvac(k;m

2; �) = 1 and from now on, for simplicity

just ~f(k;m2; �) except where the distinction turn to be necessary. One can define the

phase function '�,

'�(k; x� x0) = � [(t� t0)jkj � (x� x
0) � k] ; (4.12)

to obtain the following oscilatory integrals for the distributions:

G(c)� =

Z
d3k

(2�)3
a�mat(vac)(t� t0; jkj;m2)e�i'�(k;x�x0) : (4.13)

where

a�mat(vac)(t� t0; jkj;m2) =
~fmat(vac)(k;m

2; �)

2!k
e�i[(!�jkj)(t�t

0)] (4.14)

is the asymptotic symbol. From the definition of the phase function (4.12) and from the

discussion in the Appendix one can easily see that it must be such that Im (t � t 0) � 0.

Then, had the monotonousness condition not previously selected the possible contours,

the '� would be ill-defined. Both are in fact manifestations of the necessary analyticity
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of the Green functions. The directions along which the phase in the integrand do not vary

satisfying @k'� = 0 give us the following critical set,

C'� =
�
(x� x0 = (0; 0); k) j (k 6= 0) 2 R

4
	

[
�
(x� x0; k) j ( x� x

0 k k 6= 0 ) 2 R
3 ; (t� t0) 2 C ; k � (x� x

0) > 0;

Re (t� t0) = jx� x
0j; Im (t� t0) = 0 g (4.15)

[
�
(x� x0; k) j ( x� x

0 k k 6= 0 ) 2 R
3 ; (t� t0) 2 C ; k � (x� x

0) < 0;

Re (t� t0) = jx� x
0j; Im (t� t0) = 0 g :

Though there is the restriction to those terms in (4.10) which satisfies the monotonousness

condition, from the additional condition Im (t � t 0) = 0, one can see that there are no

contributions coming from the pieces of the contour with non vanishing imaginary part.

It has important consequences in the analysis of the WFS for the ITFs. Because the set of

singular points of the WFS is a subset of C'� (see Appendix), because ITF-like pieces of

the contour are such that Im (t � t0) > 0, they are free of those singular points and one

can conclude since now that the WFS associated to ITF correlation functions is empty. It

can be now obtained the stationary phase manifold �' to be the set of points of critical

set having the non vanishing four momentum component given by the gradients @�'+ =

(jkj;�k) and @�'� = (�jkj;k). Then,

�'� =
�
(x� x0 = (0; 0); (��jkj;��k)) j ( x� x

0 k k 6= 0 ) 2 R
3 ; � 2 R+

	
[
�
(x� x0; (��jkj;��k)) j ( x� x

0 k k 6= 0 ) 2 R
3 ; (t� t0) 2 C ;

� 2 R+ ; k � (x� x
0) > 0; Re (t� t0) = jx� x

0j; Im (t� t0) = 0 g (4.16)

[
�
(x� x0; (��jkj;��k)) j ( x� x

0 k k 6= 0 ) 2 R
3 ; (t� t0) 2 C ;

� 2 R+ ; k � (x� x
0) < 0; Re (t� t0) = jx� x

0j; Im (t� t0) = 0 g :

The above result can be interpreted as the set of pairs of which the critical character of

the phase is such that it brakes certain natural tendency of the integrals to converge due to

its oscillatory character (SeeRiemman-Lebesgue Lemma [24]). Such pairs are, therefore,

suspect to be responsible to some bad behaviour of the oscillatory integral. As it is dis-

cussed in the Appendix, one has WF (G(c)�) � �'�. Because they are still able to save

the convergence in some or even in all those critical directions, there remains to be studied

the contributions of the asymptotic symbols, a�mat(vac) and, in particular, ~fmat(vac) to the

convergence of the integrals. For the temperature dependent part, to every possible contri-

bution considered in the stationary phase manifold (4.16), the exponential factor e�!k in

the denominator of the integrand ~fmat(k;m
2; �) = N(!k) assures the condition for a fast

decreasing function (see Sec. 2) to be fulfilled in every of those critical directions. This

guarantees the existence of the oscillatory integral and characterizes G(c)�
mat to be a smooth
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function. Its WFS contribution is then empty. However, in the case of the vacuum piece,
~fvac(k;m

2; �) = 1, the factor 1
!k

does not suffice to assure the asymptotic fast decrease in

none of those critical directions. So, every pair in �'� turns to be an element of the WFS.

Therefore we have

WF (G(c)�
vac ) = �'� ; WF (G(c)�

mat ) = ; : (4.17)

Hence, there are no contributions coming from the matter piece temperature dependent

part to the WFS WF (G(c)�). It is necessary to emphasize that the G
(c)�
vac , which was

at the start a contour ordered propagator on the complex t-plane, due to the restriction

Im (t � t0) = 0 has exactly the same singular spectrum as the Wightman function ��,

(2.3), for of the ordinary QFT. Thus, we have settled that

WF (G(c)�
vac ) = WF (��): (4.18)

There follows then the same rules discussed for ��, in particular, for the product ���G(c)�
vac

one has
WF (�� �G(c)�

vac ) = WF (�� ���) ; (4.19)

(x; 0) 62 (WF (��)�WF (G(c)�
vac )); (4.20)

what characterize it as well-defined and consequently, from the results of the condition of

the Hörmander’s criterion (2.2),

WF (�� �G(c)�
vac ) � WF (��) [WF (G(c)�

vac ) [ (WF (��)�WF (G(c)�
vac ))

= WF (��) [WF (��) [ (WF (��)�WF (��)) : (4.21)

Because G(c)�
mat is a smooth function from the property (4) in Remark (2.1), the product

�� �G(c)�
mat is such that

WF (�� �G(c)�
mat ) � WF (��); (x; 0) 62 WF (��) : (4.22)

For this reason, in view of (4.20), (4.21) and (4.22), the FTFT contour propagator G(c),

(4.10), is well-defined as sum of well-defined products. From the property 6 in Re-

marks 2.1 and (2.6)

WF (G(c)) � [ WF (�+) [WF (�+) [ (WF (�+)�WF (�+))[

[ WF (��) [WF (��) [ (WF (��)�WF (��)) ] � WF (�F ) : (4.23)

By other hand, in the higher orders of the perturbative calculations there arise products

of propagators. In special, let us consider those terms in which there are products like

G(c)+
vac �G(c)�

vac . From (4.17) one can see that in the same way of the ordinary QFT for �+,

(x; 0) 2 WF (G(c)+
vac )�WF (G(c)�

vac ) : (4.24)
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It does not match the condition for the Hörmander’s criterion. Indeed, this is also a not

well-defined product if the support of the distributions include x = 0 what turns it to be

a problem to be treated through the renormalization procedure. But products like G(c)s
mat �

G
(c)s0

mat and G
(c)s
mat � G

(c)s0

vac , where s; s0 = +;� are sign indexes, because G(c)s
mat are smooth

functions, they are well-defined. Therefore, when considered products of propagators in

the FTFT, both in RTF and ITF, one can expect that the presence of the matter piece does

not contribute to generate ill-defined terms beside those yet found in the ordinary QFT.

Nevertheless, in the higher orders in the perturbation expansion, it appears as temperature

dependent factors to the ordinary divergences. Roughly speaking, although the ill-defined

products are the same as the QFT ones, they appear with temperature dependent factors.

Lets us focus another character of the renormalization concerning the arbitrariness

or ambiguity of the process and its relation to physical symmetries. As we have discussed

in the section 3, the amount of arbitrariness is governed by the singular order and scale

degree of the distributions involved. Once for G(c)�
mat ,

(G
(c)�
mat )� = G

(c)�
mat (�(x� x0); m2; �)=

Z
d(d�1)k0

(2�)3 2!k0
N(!k0)e

�ik0(x�x0)

= �2�dG
(c)�
mat (x� x0;�2m2; ��1�) ;

then, one has ! � d � 2, the scale degree is �(G
(c)�
mat ) = d � 2 and singular order is

�(G
(c)�
mat ) = �2. Notice further that

�(Gc�
mat) = �(��) = �(G(c)�

vac ) : (4.25)

For the FTFT propagator G(c) in (4.10), �F from the correlation functions and by using

(3.2), the example (3.2) and (4.25) that

�(��Gc�
mat(vac)) = �(G(c)) = �(�F ) = d� 2 ; (4.26)

�(��Gc�
mat(vac)) = �(G(c)) = �(�F ) = �2 : (4.27)

Keep in mind that the ITF matter piece correlation functions are free of singularities

and the RTF ones, despite of the existence of stationary phase points indicating singu-

larities are of fast decrease and in the spite of avoid the complexity introduced by the

doubling of degrees of freedom unnecessary to the present analysis of the distributions

involved in the RFT, we turn to analyze as a representative case of the higher order prod-

uct in the perturbation series the square of the propagator associated to the branch of the

contour which is parameterized forward in the real time only. We consider again the prod-

ucts of propagators arising in the perturbative series. For the products like G(c)s
mat � G

(c)s0

mat ,

G
(c)s
mat �G

(c)s0

vac and G
(c)s
vac �G

(c)s0

vac we have

�(G
(c)s
mat(vac) �G

(c)s0

mat(vac)) = 2(d� 2) ;

�(G
(c)s
mat(vac) �G

(c)s0

mat(vac)) = 2(d� 2)� d : (4.28)
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Notice that the scale degree and singular order is the same for both the matter or vacuum

pieces products. In view of (3.5) one can see that the singular order determines the number

of arbitrary coefficients (counter-terms) in the renormalization procedure. Therefore, in

concerning the renormalization the treatment of the arbitrary constants the matter piece

would require, in the worse case, the same number of counter terms necessary to fix the

ill-defined products in the ordinary QFT. Before we step to the conclusions, let us examine

the example of a overlapping 1-loop in g

4!
�4, a truncated 4-point diagram with two internal

lines connecting two different vertex,

�(4) � g2[G(c)(x� x0)]2 = g2

( X
s=+;�

�s�sG(c)s
vacG

(c)s
vac +

X
s=+;�

�s��sG(c)s
vacG

(c)�s
vac +

+ 2
X
s s0

�s�sG(c)s
vacG

(c)s0

mat + 2
X
s s0

�s��sG(c)s
vacG

(c)s0

mat+ (4.29)

+
X
s s0s00

�s�sG(c)s0

matG
(c)s00

mat +
X
s s0 s00

�s��sG(c)s0

matG
(c)s00

mat

)
:

The sum of products of distributions fall then into different categories. As it was showed

in (4.17) and in the chains of reasoning about, the last term and the before the last are

composed by smooth functions times the product of Heavyside functions. The last one

vanishes because the product of �s��s. As it showed, (4.17) and reasonings just after

(4.24), the product of the correlations functions belonging to the third and forth terms are

well-defined. The forth term vanishes too. The first term shows to be a well-defined prod-

uct as well in accord to (4.18) and (2.7). The only term which exhibits a ill-defined product

is the second one. That product is well-defined elsewhere but at x � x0 = 0. This is the

target of the renormalization procedure in the present case, the problem of the extension

of the validity of that product. The degree of arbitrariness is governed by (4.28) and the

related number of coefficients of (3.5) (counter-terms) associated to is to be determined

by certain physical symmetries. Let us consider now a superior order overlapping loop,

three internal lines connecting two vertex � g2[G(c)(x� x0)]3. One finds the proliferation

of ill-defined terms if compared to the ordinary QFT case. There will arise the ill-defined

product �s�s��sG(c)s
vacG

(c)s
vacG

(c)�s
vac beside others like �s�s��sG(c)s

matG
(c)s
vacG

(c)�s
vac . The former

suffers of the same illness of the second term of (4.29), though a different degree and

is to be treated in a temperature independent fashion. The latter, though the presence of

a matter piece factor, what in view of (4.28), one could expect it to constitute a tem-

perature dependent extension problem. However, from (4.17), (4.24) and the discussion

immediately after, one can easily that the above ill-definition is only to the vacuum pieces

product. Notice that this term was temperature independently treated in a inferior order

of (4.29). This quantitative analysis has showed that despite of the increase in number
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ill-definition and the presence of the temperature dependent factors the extension prob-

lem and the amount of arbitrariness in the singular order dominant term are temperature

independent.

The above example makes clear that the matter piece, being absent of a singular

spectrum, can not include any new contribution to FTFTs concerning the category of ill-

defined products yet found in the ordinary QFT. In other words, the set ill-defined terms

is the same though the occurrence increases. Despite of the existence of a temperature

dependent factors multiplying the ill-defined products, from the point of view of the ex-

tension problem, it can be treated order by order as a vacuum extension problem. Further-

more, the degree of arbitrariness in the process for a given order is limited by the singular

order of the temperature independent piece and, from products of them, there arise order

by order the ill-defined product leading in singular order and degree of arbitrariness.

5 Conclusions

¿From the Hörmanders criterion based on the WFSs of these distributions, one shows

that the contribution to form ill-defined products comes from the temperature independent

pieces only. Hence, the matter piece do not contribute to form divergent terms. The struc-

ture of the propagators of FTFT, being separable into vacuum and matter pieces turns easy

the analysis of the ill-defined products. In fact, one shows that the separation also gen-

erates an increasing on the number of ill-defined products in the perturbation series due

to the mixing of these factors in crossing products in the higher order terms of the per-

turbation expansion. The matter piece appears then as temperature dependent factors of

ill-defined products vacuum pieces in the higher orders of the perturbation series. By other

hand, the calculations of the scale degree and singular order which determines amount of

arbitrariness also shows that one can consider in general the contributions coming from

the matter piece. These facts together can mislead one to face the problem as an inher-

ent temperature dependent renormalization problem. The ambiguities can also be viewed

as inexorably temperature dependent. In some sense the above facts do occur. Focusing

now the perturbation series, the degree of arbitrariness in the process for a given order is

determined by the temperature independent ill-defined product leading in singular order.

This leading in singular order ill-defined product is showed to be temperature indepen-

dent order by order. Once it has the support extended to a given order, in the next order, it

can appears only under a temperature dependent factor what do not harm its already tem-

perature independent renormalized content. Hence, the problem of the extension reduces

order by order to to the analogous one of the ordinary QFT. Consequently, it is proved

that the amount of arbitrariness in the renormalization procedure, as well the type of the
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ambiguities, if conveniently treated, remains the same when passing from a given QFT to

the associated FTFT version. The perception of one or other of these points and the con-

sequences could be difficult or not depending on the renormalization procedure adopted.

There follows that a given FTFT remains finite when it is considered a renormalized anal-

ogous QFT. It is sufficient for one to state that the theories remains finite in FTFT version

when it was renormalized in QFT temperature independent version.

An important role is played by the microlocal techniques is to turn possible to inves-

tigate the matter in a free of the technical difficulties of thermal loop calculations way,

common to the various conventional approaches both in ITFs and RTFs. For that purpose,

the distributional point of view admits a generalized unified framework of the contour or-

dered formalism considering at a time without any particular parameterization for ITF or

RTF contours. The Hörmanders criterion together to the wavefront set of the distributions

show to provide powerful methods for one to make conclusions about the perturbation se-

ries. Once the approach is based in mathematical grounds, although we have appealed to

the scalar �44-theory, the method of analysis is clearly model independent. However, the

Hörmander’s criterion furnishes only sufficient condition for the existence of the prod-

ucts. Therefore for the determination of whether some product which does not match

the criterion is ill-defined, one must use another method. A useful method for physical

applications is to check the convergence of the convolution of the Fourier transforms.

The results concerning the renormalization of FTFT are already known. The present

contribution lies on the method which allows to clarify some points in the comparison

between QFT and FTFT renormalization in the unified contour ordered formalism. The

problem of the divergences were faced from the ground by the mathematical study of

the basic ill-defined products distributions i. e. the lack of definition of the distributional

product on the coinciding points. A central role was played by viewing renormalization

procedure as an extension problem together to the inherent arbitrariness present in the

process whose amount governed by singular order. It furnishes the basis for the study of

the nature of the arbitrariness of the procedure. The technical aspects were briefly revised

in order to make it handle for theoretical physics applications.
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A Oscillatory Integral: Some Basic Concepts

In this appendix, we review some results from the Fourier Integral Operator Theory,

or Oscillatory Integral, that are used in the text. In particular it provides the stationary

phase method [25] to compute the WFS of distributions. This matter is useful in the theory

of pseudodifferential operators in order to find the asymptotic behaviour of an integral of

the form
R
dk e�i�'(k)a(k), when �!1 and ' has critical points.

Pseudodifferential operators generalize the concept linear differential operators with

variable coefficients a(x;D) =
P

j�j�m a�(x)D
�
x with D = i@=@x. To the pseudodif-

ferential operator a(x;D), one can attribute meaning on u(x) 2 D(Rn) by the Fourier

inverse transformation

a(x;D)u(x) =
1

(2�)d

Z
Rd

dnk a(x; k)e�ikxbu(k) ; (A.1)

where bu(k) is the Fourier transform. If a(x; k) 2 C1(X) x is in the open set X � Rd ,

then one defines the space of symbols, Sm(X � Rs), such that���D�
ka(x; k)

��� � C�;
(1 + jkj)m�j�j 8 x 2 
; k 2 R
s ; (A.2)

where 
 is any compact subset of X and D�
x = D�1

x1
� � �D�n

xn , The lower constants C�;�;
,

in (A.2) are semi-norms

kak�;
 = sup
x2
;k2Rs

(1 + jkj)j�j�m
���D�

ka(x; k)
��� : (A.3)

There are more general classes of space of symbols [18], but for the reason that in

general, in the most physical applications it is sufficient to deal with the above spaces, we

restrict ourselves to them.

Let a(x; k) 2 Sm
1;0(X � Rs), then by the Fourier transform, we obtain

Au(x) =
1

(2�)d

Z
ddk e�ikxa(x; k)bu(k) = 1

(2�)d

Z
ddkddy e�ik(x�y)a(x; k)u(y) :

(A.4)

The kernel of A can then be written by means of an oscillatory integral

KA(x; y) =
1

(2�)n

Z
dnk e�ik(x�y)a(x; k) : (A.5)

An oscillatory integral on X � R
s is formally written as

I'(a) =

Z
dk e�i'(x;k)a(x; k) ; (A.6)

where '(x; k) is a phase function and a(x; k) is an asymptotic symbol.
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Let X � R
d be open and � � R

sn0 be an open cone. Let us further consider the set

of all pairs (x; k) 2 X � R
sn0. The set is invariant by multiplying the second component

of the pairs by real positive scalars. It happens because � is itself invariant under this

operation. One defines '(x; k) 2 C1(�) as a phase function in X � � if

1. ' is homogeneous of first degree in k: '(x; �k) = �'(x; k) if (x; k) 2 �; 8 � > 0.

2. Im'(x; k) � 0.

3. d' =
Pn

i=1
@'

@xi
dxi +

Ps

i=j
@'

@kj
dkj 6= 0, i.e., ' has no critical points in �. This

means that at every point in �, some @'

@xi
or @'

@kj
is non-vanishing.

If ' 2 C1(X � Rsn0) is a phase function, we call

C' = f(x; k) 2 X � R
sn0 j'0k(x; k) = 0g ;

the critical set of', where '0k(x; k) =
�

@'

@k1
; : : : ; @'

@ks

�
. The condition '0k(x; k) = 0 sets

the regions on X � R
sn0 over which the phase function has its second component kept

constant. The stationary phase manifoldis the point set

�' = f(x; '0x(x; k)) j (x; k) 2 C'; k 6= 0g ;

with, '0x(x; k) =
�

@'

@x1
; : : : ; @'

@xn

�
. The second component is then settled to be the di-

rections on X � Rsn0 restricted to C' along which the phase '(x; k) has the strongest

sensibility on x. Hence, the behaviour of '(x; k) and a(x; k) near �' determines the sin-

gularities of I'(a). For that reason WF (I'(a)) � �'.
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