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1 Introduction.

In the last several years integrable hierarchies of non-linear di�erential equations in 1 + 1
dimensions have been intensely explored, mainly in connection with the discretization of
the two-dimensional gravity (see [1]).

Supersymmetric extensions of such equations have also been largely investigated [2]-[7]
using a variety of di�erent methods. Unlike the bosonic theory, many questions have not
yet been answered in the supersymmetric case.

In this paper we construct the �rst example of a global N = 8 supersymmetric ex-
tension of the KdV equation. The strategy used is based on the derivation of the su-
persymmetric non-linear equations from a generalized hamiltonian system admitting the
\Non-Associative N = 8 Superconformal Algebra" of Englert et al. [8] as a generalized
Poisson bracket. The non-associativity of such an algebra (i.e. the failure in ful�lling
the Jacobi identities) allows to overcome a no-go theorem based on strict mathematical
results. The higher-derivative term in the KdV equation can be seen as induced by the
central extension of the Virasoro algebra. However, the complete list of allowed central
charges for (ordinary) N -extended superconformal algebras has been produced in the
mathematical literature [9]. Central charges can be introduced for N � 4 only. Indeed,
supersymmetric generalizations of KdV up to N = 4 have been constructed [3, 6]. In
order to construct supersymmetric generalizations of KdV for N > 4 one is therefore led
to relax some condition on the nature of the superconformal algebras of Poisson brackets.
Allowing non-associativity as in the N = 8 SCA of reference [8] makes possible to intro-
duce a central extension. It is therefore worth investigating whether this superconformal
algebra can be related to the construction of N -extended superKdVs beyond the N = 4
barrier. This is the purpose of the present paper.

The \Non-Associative N = 8 SCA" involves 8 bosonic and 8 fermionic �elds and is
constructed in terms of octonionic structure constants. Its restriction to its real, complex
or quaternionic subalgebras leads, respectively, to the ordinary N = 1; 2; 4 Superconformal
Algebras (in the last case it is the so-called \minimal N = 4 SCA").

In this paper at �rst we revisit the N = 2; 4 KdV equations in the language of division
algebras. We construct a fundamental domain for the parametric space of the inequivalent
N = 4 KdVs (our results complete and complement the work of [6]) and discuss the issue
of integrability.

Later we apply the same techniques to investigate the most general globally N = 8
invariant generalized hamiltonian for superextended KdV. It turns out that, if we further
assume invariance under octonionic involutions, the hamiltonian is unique up to the nor-
malization factor, giving rise to a unique set of N = 8 KdV equations. Such equations,
consistently reduced to the quaternionic subspace, produce the most symmetric (global
SU(2)-invariant) N = 4 KdV set of equations. This N = 4 KdV system, despite being
the most symmetric one, does not correspond to the integrable point of N = 4 KdV. This
result therefore suggests that the unique N = 8 KdV is not an integrable system.

On the other hand the authors of [10] pointed out that global N = 2 supersymmetric
systems can be obtained from the \minimal N = 4 SCA" Poisson brackets. We extended
here such analysis by investigating the class of global N = 3 and N = 4 supersymmetric
extensions of KdV which can be constructed via the \Non-Associative N = 8 SCA"
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generalized Poisson brackets. The complete solution is reported. In the N = 4 case two
inequivalent classes (both parametric-dependent) of solutions, are found. The existence
of two N = 4 classes is in consequence of the two inequivalent ways of associating three
invariant supersymmetry charges with imaginary octonions (i.e. either producing, or not,
an su(2) subalgebra), while the extra supersymmetry charge is always associated with the
octonionic identity. In the N = 3 case just a single class of parametric solutions is found
since any given pair of imaginary octonions is equivalent to any other pair.

We did not investigate here the issue of integrability since our focus was in the con-
struction of supersymmetric extensions. However, we can notice that in the �rst class of
N = 4 superKdV extension obtained from the \Non-associative N = 8 SCA" the param-
eters can be conveniently chosen so that a consistent reduction to the integrable N = 4
KdV can be made. This leaves room to the possibility that the integrable N = 4 KdV
can be embedded in such a larger N = 4 system which still preserves integrability.

Some further comments are in order. This work is partly a continuation of our previous
one [11] concerning the relation between the \Non-Associative N = 8 SCA" and the
supera�ned octonionic algebra. Indeed, by reconstructing via Sugawara the N = 8
SCA �elds with the a�ne �elds, we can induce on the a�ne �elds a global N = 8 set
of equations, generalizing both the NLS and mKdV equations, as well as the N = 4
construction of reference [12].

We heavily relied on the Thielemans'package for computing classical OPE's with Math-
ematica [13], supported by our own package to deal with octonionic structure constants.

2 On Division Algebras and the \Non-Associative

N = 8 SCA".

In this section we recall (see [14] and [11]) the basic properties of the division algebra
of the octonions which will be used in the following and introduce the \Non-Associative
N = 8 Superconformal Algebra" according to [8] (see also [11]).

A generic octonion x is expressed as x = xa�a (throughout the text the convention over
repeated indices, unless explicitly mentioned, is understood), where xa are real numbers
while �a denote the basic octonions, with a = 0; 1; 2; :::; 7.

�0 � 1 is the identity, while ��, for � = 1; 2; :::; 7, denote the imaginary octonions. In
the following a Greek index is employed for imaginary octonions, a Latin index for the
whole set of octonions (identity included).

The octonionic multiplication can be introduced through

�� � �� = �����0 + C��� ; (1)

with C�� a set of totally antisymmetric structure constants which, without loss of gen-
erality, can be taken to be

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1: (2)

and vanishing otherwise.
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It is also convenient to introduce, in the seven-dimensional imaginary octonions space,
a 4-indices totally antisymmetric tensor C���, dual to C��, through

C��� =
1

6
"������C��� (3)

(the totally antisymmetric tensor "������ is normalized so that "1234567 = +1).
The octonionic multiplication is not associative since for generic a; b; c we get(�a � �b) �

�c 6= �a � (�b � �c). However, the weaker condition of alternativity is satis�ed. This means
that, for a = b, the associator

[�a; �b; �c] � (�a � �b) � �c � �a � (�b � �c) (4)

is vanishing.
The specialization of the octonionic indices to, let's say, 0; 1 or 0; 1; 2; 3 leads respec-

tively to the complex number or to the division algebra of quaternions.
The octonionic algebra admits seven involutions, speci�ed by the mappings

�0 7! �0; �p 7! �p; �q 7! ��q; (5)

where p takes value in one of the seven triples entering (2), while q speci�es the four
complementary values. The three involutions for the quaternions (with two generators)
are recovered as the restrictions to the 0; 1; 2; 3 subspace.

The N = 8 extension of the Virasoro algebra (Non-associative N = 8 SCA) involves
8 bosonic and 8 fermionic �elds and is constructed in terms of the octonionic structure
constants. Besides the spin-2 Virasoro �eld denoted as T , it contains eight fermionic spin-
3

2
�elds Q, Q� and 7 spin-1 bosonic currents J�. It is explicitly given by the following

Poisson brackets

fT (x); T (y)g = �
1

2
@y

3�(x� y) + 2T (y)@y�(x� y) + T 0(y)�(x� y);

fT (x); Q(y)g =
3

2
Q(y)@y�(x� y) +Q0(y)�(x� y);

fT (x); Q�(y)g =
3

2
Q�(y)@y�(x� y) +Q�

0(y)�(x� y);

fT (x); J�(y)g = J�(y)@y�(x� y) + J�
0(y)�(x� y);

fQ(x); Q(y)g = �
1

2
@y

2�(x� y) + +
1

2
T (y)�(x� y);

fQ(x); Q�(y)g = �J�(y)@y�(x� y)�
1

2
J�

0(y)�(x� y);

fQ(x); J�(y)g = �
1

2
Q�(y)�(x� y);

fQ�(x); Q�(y)g = �
1

2
���@y

2�(x� y) + C��J(y)@y�(x� y) +

+
1

2
(���T (y) + C��J

0(y))�(x� y);

fQ�(x); J�(y)g =
1

2
(���Q(y)� C��Q(y))�(x� y);

fJ�(x); J�(y)g =
1

2
���@y�(x� y)� C��J(y)�(x� y): (6)
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Notice the presence of the central term, essential in order to obtain supersymmetric KdV
equations. Due to the non-associativity of octonions the structure constants of (6) do not
satisfy the Jacobi identity (see [11] for a detailed discussion).

3 The N = 2 and the N = 4 KdVs Revisited.

By restricting the Greek indices to take either the values 1 or 1; 2; 3, we recover from
(6) the N = 2 and the N = 4 Superconformal algebras respectively (in the case of N = 4
the corresponding algebra is known as the \minimalN = 4 SCA"). They can be regarded
as one of the Poisson brackets for the N = 2 and the N = 4 KdVs [3, 6].

These non-linear equations can be constructed by looking for the most general hamilto-
nian with the right dimension (i.e. whose hamiltonian density has dimension 4) invariant
under global supersymmetric charges given by

R
dxQ(x) and

R
dxQ�(x). This approach

was used to construct the N = 2 KdV in [3], while the N = 4 KdV was obtained in terms
of a harmonic superspace formalism in [6].

For what concerns the N = 2 case we summarize here the results of [3]. We avoid
writing explicit formulas since they can be immediately recovered from a suitable reduction
of the N = 4 KdV results as discussed later. Up to a normalization factor, the N = 2-
invariant hamiltonians depend on a single real parameter, denoted as \a", which labels
inequivalent N = 2 KdVs. Three special values for a, i.e. a = �2; 1; 4, correspond to
the three inequivalent N = 2 KdV equations which are integrable. The integrability for
these special values of a was at �rst suggested (and proven for a = �2; 4) in [3] after
checking the existence of higher order hamiltonians in involution among themselves and
with respect to the original a-dependent N = 2-invariant one. Later the integrability
of a = 1 was proven in the �rst reference of [5] with the explicit construction of the
corresponding Lax operators.

Here we extend the analysis of [3] to the N = 4 KdV case. In particular we are able
to fully determine the moduli space of inequivalent N = 4 KdVs. Our results extend and
complete those originally appeared in [6].

The most general N = 4-invariant hamiltonian of right dimension depends on 5 pa-
rameters (apart the overall normalization factor) and is explicitly given by

H =
Z
dx[�2T 2� 2Q0Q� 2Q0

�Q� + 2J 00

�J� + x�TJ�
2 + 2x�QQ�J� � ���xQ�Q�J +

1

3
���(x� � x�)J�J�J

0 � 2z����TJ�J �

2z1Q(Q2J3 +Q3J2)� 2z2Q(Q3J1 +Q1J3)� 2z3Q(Q1J2 +Q2J1) +

2z1Q1(Q2J2 �Q3J3) + 2z3Q3(Q1J1 �Q2J2) + 2z2Q2(Q3J3 �Q1J1)�

z1J1
0(J2

2 � J3
2)� z3J3

0(J1
2 � J2

2)� z2J2
0(J3

2 � J1
2)]; (7)

where the convention over repeated indices is understood and �; �;  are restricted to
1; 2; 3, while �123 = 1.

In order to guarantee the N = 4 invariance the three parameters x� must satisfy the
condition

x1 + x2 + x3 = 0; (8)
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so that only two of them are truly independent (together with the three z�'s they provide
the �ve parameters mentioned above). However, the further requirement for the hamil-
tonian to be invariant not only under global N = 4 supersymmetry, but also under the
three involutions of the N = 4 Superconformal Algebra (obtained by ipping the sign
of the four �elds J�, Q�, for � = 1; 2, � = 1; 3 and � = 2; 3 respectively, while leaving
unchanged the remaining four �elds) kills the three z�'s parameters, which must be set
equal to zero.

The most general hamiltonian of such a kind is therefore given by

H =
Z
dx[�2T 2� 2Q0Q� 2Q0

�Q� + 2J 00

�J� + x�TJ�
2 + 2x�QQ�J� � ���xQ�Q�J +

1

3
���(x� � x�)J�J�J

0]: (9)

where of course (8) continues to hold.
Since any given ordered pair of the three parameters x� can be chosen to be plotted

along the x and y axis describing a real x � y plane, it can be easily proven that the
fundamental domain of the moduli space of inequivalent N = 4 KdV equations can be
chosen to be the region of the plane comprised between the real axis y = 0 and the y = x

line (boundaries included). Five other regions of the plane (all such regions are related
via an S3-group transformation) could as well be chosen as the fundamental domain.

In the region of our choice, the y = x line corresponds to an extra global U(1)-
invariance, since the hamiltonian whose parameters live in this line is in involution with
the global charge

R
dxJ3 (namely fH;

R
dx � J3g = 0). The origin, that is x1 = x2 = x3 =

0, is the most symmetric point, corresponding to a global SU(2) invariance, the given
hamiltonian being in involution with respect to the three

R
dx � J� charges.

The equations of motion for the whole class of inequivalent N = 4 KdV's are given by

_T = �T 000 � 12T 0T � 6Q00Q� 6Q�
00Q� + (4 +

x�

2
)J 000

� J� +
3

2
x�J�

00J�
0 + 3x�(TJ�

2)0 +

6x�(QQ�J�)
0 � 3x���(Q�Q�J)

0 + ���(x � x�)(J�
00J�J � J�J�

0J 0

);

_Q = �Q000 � 6(TQ)0 � (4 +
x�

2
)(Q�

0J�)
0 + (2�

x�

2
)(Q�J�

0)0 + 3x�(QJ�
2)0 �

���(x � x�)(Q�J�J)
0;

_Q� = �Q�
000 � 6(TQ�)

0 + (4 +
x�

2
)(Q0J�)

0 � (2�
x�

2
)(QJ�

0)0 + 3x�(Q�J�
2)0 +

���(x � x�)(QJ�J)
0 + ���(4 +

x

2
)(Q�

0J)
0 � ���(2�

x

2
)(Q�J

0)0 +

2(x� � x�)(1� ���)(J�Q�J�)
0;

_J� = �J�
000 � (4 +

x�

2
)(TJ�)

0 + (2 �
x�

2
)(QQ�)

0 � 2(x� + x�)Q�Q�J� �

���(1�
x�

4
)(Q�Q)

0 � 2���(x � x�)QQ�J + ���(4 +
x

2
)(J�

0J)
0 +

3x�J�
0J�

2 + 2(1 � ���)(x� � x�)J�J�
0J�: (10)

where the constraint x1 + x2 + x3 = 0 is satis�ed and (x1; x2) take value either in the
region I � fx1; x2jx2 � x1 � 0g or in II � fx1; x2jx2 � x1 � 0g. Each given pair
(x1; x2) 2 I [ II labels an inequivalent N = 4 KdV equation.
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The three involutions (each one associated to any given imaginary quaternion) allows
to perform three consistent reduction of the N = 4 KdV equation to an N = 2 KdV, by
setting simultaneously equal to 0 all the �elds associated with the � 's which ip the sign
(confront the discussion in the previous section). Therefore the �rst involution allows to
consistently set equal to zero the �elds J2 = J3 = Q2 = Q3 = 0, leaving the N = 2
KdV equation for the surviving �elds T;Q;Q1; J1. Similarly, the second and the third
involution allows to set equal to zero the four �elds labeled by 1; 3 and 1; 2 respectively.
It turns out that to each such reduction only one free parameter survives, namely x1, x2
or respectively x3.

This remaining free parameter coincides up to a normalization factor with the free
parameter a of reference [3]. More speci�cally

a =
1

4
x� (11)

with � = 1; 2; 3 according to the reduction.
As a consequence, a necessary condition for the integrability of theN = 4 KdV requires

that for a given pair (x1; x2) 2 I [II each one of the three reductions produce for a one of
the known integrable values of a, namely �2; 1; 4. It is then easily checked that there are
only two points in I [ II, both in the U(1)-invariant x1 = x2 line, implying integrability
for the three reduced N = 2 KdV's. The solutions are
i) x1 = x2 = �8, (x3 = 16) and
ii) x1 = x2 = 4, (x3 = �8).

The �rst point, which produces the a = �2 and the a = 4 integrable N = 2 KdV's
after reduction, is the integrable point discussed in [6]. For what concerns the second
point, despite the fact that it allows the reduction to the a = 1 and the a = �2 inte-
grable N = 2 KdV's, it does not seem to correspond to an N = 4 integrable hierarchy.
We explicitly constructed the most general global N = 4 and U(1) invariant hamiltonian
whose hamiltonian density has total dimension dimension 6. This would correspond to
the third hamiltonian in the KdV hierarchy ((9) would be the second hamiltonian). This
hamiltonian however fails to be compatible with the third hamiltonian of the correspond-
ing integrable N = 2 KdV's. More precisely, the three (two independent) reductions
to N = 2 produce hamiltonians which should coincide with the third hamiltonian of
the N = 2 KdV for the corresponding value of a. While this is true for the �rst so-
lution (x1 = x2 = �8, x3 = 16), this is no longer true for the second choice of values
(x1 = x2 = 4, x3 = �8), as we explicitly veri�ed.

This computation does not yet rule out the possibility that ii) would be a point
of integrability for the N = 4 KdV. It would still be possible that it corresponds to an
integrable hierarchy with a \missed" hamiltonian for the hamiltonian density of dimension
6.

The origin (x1 = x2 = x3 = 0) corresponds to the most symmetric point, being
associated to a global SU(2) invariance, as already remarked. In any case it does not
correspond to an integrable point of the N = 4 KdV since its reductions to N = 2 KdV
do not lead to one of the three integrable values of a.
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4 The N = 8 SuperKdV.

In this section we construct the �rst example of an N = 8 supersymmetric extension
of the KdV equation. In order to be able to realize an N = 8 KdV we extend the
method discussed in the previous section to the case of the \Non-Associative N = 8
Superconformal Algebra" (6). The reason why we are forced to make use of a non-
associative algebra has been discussed in the Introduction.

More speci�cally, we started with the most general hamiltonian of right dimension
(its hamiltonian density having dimension equal to 4) constructed with the 16 (8 bosonic
and 8 fermionic) �elds entering (6). Later we imposed some constraints on it. At �rst
we restricted the free coe�cients in order to make the resulting hamiltonian invariant
under the whole set of seven involutions of the N = 8 superconformal algebra. This
is the N = 8 extension of a requirement already encountered in the N = 4 case. The
seven involutions are so de�ned. The �elds T;Q are unchanged, as well as the 6 �elds
Q�; J�, for the �'s taking value in one of the seven triples entering (2). The 8 remaining
�elds Q�; J�, with � labeling the four complementary values (for any given choice of the
original triple), have the sign ipped (Q� 7! �Q�, J� 7! �J�). After having constructed
the most general hamiltonian H invariant under the whole set of seven involutions, we
started imposing the invariance under the N = 8 global supersymmetric transformations,
that is we required

f
Z
dx �Qa(x);Hg = 0; (12)

for a = 0; 1; 2; :::; 7 (here Q0 � Q), while f?; ?g denotes the generalized Poisson brackets
given by the Non-associative N = 8 SCA (6).

It is worth to point out that for this generalized hamiltonian system, the Poisson
brackets are assumed to be classical. In particular they satisfy the Leibniz property (or,
better, its graded version due to the supersymmetry of (6)). The only feature of the
non-associativity of the octonions lie in the non-vanishing of the Jacobi identities for the
structure constants of the (6) algebra. The �elds entering (6) are assumed to be ordinary
(bosonic and fermionic) real �elds.

Needless to say, the get the �nal answer we heavily relied on Mathematica's compu-
tations for classical OPE's, based both on the Thielemans' package [13] and on our own
package to deal with octonionic structure constants.

The �nal result is the following. There exists a unique hamiltonian which is invariant
under the whole set of global N = 8 supersymmetries. It admits no free parameter (apart
the trivial normalization factor) and is quadratic on the �elds. It is explicitly given by

H =
Z
dx[�2T 2 � 2Q0Q� 2Q0

�Q� + 2J 00

�J�]; (13)

(here � = 1; 2; :::; 7 and the summation over repeated indices is understood). This result
implies that there is only one N = 4 KdV system which can be consistently extended to
N = 8 KdV, namely the one which corresponds to the origin of the coordinates (x1 =
x2 = x3 = 0), that is the most symmetric point. While the corresponding hamiltonian for
the N = 4 case admits a global SU(2)-invariance, the N = 8 hamiltonian (13) is invariant
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with respect to each one of the seven global charges
R
dx � J�(x), that is

f
Z
dx � J�(x);Hg = 0: (14)

The seven charges
R
dx � J�(x) generates a symmetry which extends SU(2); it does not

correspond to a group due to the non-associative character of the octonions.
Despite the apparent simplicity and the fact that it is quadratic in the �elds, the

hamiltonian (13) generates an N = 8 supersymmetric extension of KdV which is not
integrable. Better stated, even its N = 4 KdV reduction does not correspond to an
integrable point of the N = 4 KdV.

The equations of motion of the N = 8 KdV are obtained through

_�i = f�i;Hg; (15)

where �i collectively denote the �elds entering (6).
We explicitly obtain

_T = �T 000 � 12T 0T � 6Q00

aQa + 4J 00

�J�;

_Q = �Q000 � 6T 0Q� 6TQ0 � 4Q00

�J� + 2Q�J
00

� � 2Q0

�J
0

�;

_Q� = �Q�
000 � 2QJ 00

� � 6TQ0

� � 6T 0Q� + 2Q0J 0

� + 4Q00J� �

2C��(Q�J
00

 �Q0

�J
0

 � 2Q00

�J);

_J� = �J�
000 � 4T 0J� � 4TJ 0

� + 2QQ0

� + 2Q0Q� � C��(4J�J
00

 + 2Q�Q
0

): (16)

It is a simple exercise to prove that the equations of motion (16) are compatible with the
N = 8 global supersymmetries generated by

R
dx �Qa(x) (a = 0; 1; 2; :::; 7) which provide

the transformations

�a�i(y) = f
Z
dx �Qa(x);�i(y)g: (17)

The above system of equations corresponds to the �rst known example of an N = 8
supersymmetric extension of KdV.

5 On Global N = 3 and N = 4 Extended SuperKdVs

Based On the N = 8 SCA.

The authors of [10] proved the existence of integrable systems, obtained in terms of the
N = 4 Superconformal algebra, which admit only an N = 2 global supersymmetry.

It is worth considering in our context, which involves a larger number of supersym-
metries, which kind of extended supersymmetric systems are supported by the Non-
associative N = 8 SCA. We present the complete analysis of the N = 3 and the N = 4
solutions. We construct the most general N = 3 and N = 4 superextensions of KdV
admitting the Non-associative N = 8 SCA as generalized Poisson brackets. Both such
cases turn out to be parametric-dependent.
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Apart the unique N = 8 solution, N = 4 is the largest number of supersymmetries
which can be consistently imposed (by assuming an N > 4 invariance we automatically
recover the full N = 8 invariance).

Both in the N = 3 and the N = 4 cases, without loss of generality, one of the
invariant supersymmetric charges can always be assumed to be

R
dxQ(x), with Q(x)

entering (6). In the N = 3 case the two remaining invariant supersymmetric charges
(associated with imaginary octonions) can be chosen at will, since all pairs of imaginary
octonions are equivalent. In the formula below, without loss of generality, we chose the
invariant supersymmetric charges being given by

R
dxQ1(x) and

R
dxQ2(x).

The situation is di�erent in the N = 4 case. Now we have three extra invariant super-
symmetric charges to be associated with imaginary octonions. However, two inequivalent
ways in choosing a triple of imaginary octonions exist, depending on whether the chosen
triple corresponds to one of the seven values in (2) (i.e. the triples associated to an su(2)
subalgebra), or not. Two inequivalent classes of solutions, labelled by N = 4 (I) and
N = 4 (II) are respectively obtained. The �rst (I) class can be individuated by choos-
ing, without loss of generality, the three extra supersymmetric charges to be given byR
dxQ1(x),

R
dxQ2(x) and

R
dxQ3(x). The second class (II), without loss of generality,

can be produced by assuming invariance under
R
dxQ1(x),

R
dxQ2(x) and

R
dxQ4(x).

Let us present now the complete solutions.
The most general N = 3 invariant hamiltonian depends (up to the normalization

factor) on 6 free parameters entering x and x� (� = 1; 2; :::; 7).
The seven x� 's satisfy two constraints

x1 + x2 + x3 = 0;

x4 + x5 + x6 + x7 = 0: (18)

The most general hamiltonian is given by

H =
Z
dx[�2T 2� 2Q0Q� 2Q0

�Q� + xQ�
0Q� + 2J 00

�J� � xJ�
00J� + x�TJ�

2 + x�TJ�
2 +

2x�QQ�J� + 2x�QQ�J� � xC��Q�Q�J � x�C���Q�Q�J� +

(x� + x�)C���Q�Q�J� +
1

3
C��(x� � x�)J�J�J

0 + 2x�C���J�J�J�
0]: (19)

where �; �;  are restricted to take the values 1; 2; 3, while �; � are restricted to the
complementary values 4; 5; 6; 7.

The equations of motion for this N = 3 generalization of KdV are directly computed
from (19) by applying the Poisson brackets, like in (15).

The complete set of equations is written down in 37 pages of LaTex. For that reason
they are not being reported here. The corresponding LaTex �le however is available upon
request.

For what concerns the N = 4 cases, the (I) class of solutions involve three free
parameters (up to the normalization factor) entering x and x� (� = 1; 2; 3), where the
x�'s are constrained to satisfy x1 + x2 + x3 = 0.

The most general N = 4 -invariant hamiltonian of type (I) is given by

H =
Z
dx[�2T 2� 2Q0Q� 2Q0

�Q� + xQ�
0Q� + 2J 00

�J� � xJ�
00J� + x�TJ�

2 + x�TJ�
2 +
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2x�QQ�J� + 2x�QQ�J� � xC��Q�Q�J � x�C���Q�Q�J� +

(x� + x�)C���Q�Q�J� +
1

3
C��(x� � x�)J�J�J

0 + 2x�C���J�J�J�
0]: (20)

As before �; �;  = 1; 2; 3, while �; � take the values 4; 5; 6; 7.
The N = 4 (I) equations of motion are explicitly given by

_T = �T 000 � 12T 0T � 6Q00Q� 6Q�
00Q� + (4 +

x�

2
)J 000

� J� +
3

2
x�J�

00J�
0 + 3xQ�

00Q� � 2xJ�
000J� +

3x�(TJ�
2)0 + 6x�(QQ�J�)

0 � 3xC��(Q�Q�J)
0 + C��(x � x�)(J�

00J�J � J�J�
0J 0

);

_Q = �Q000 � 6(TQ)0 � (4 +
x�

2
)(Q�

0J�)
0 + (2�

x�

2
)(Q�J�

0)0 + 2x(Q�
0J�)

0 � x(Q�J�
0)0 +

3x�(QJ�
2)0 � C��(x � x�)(Q�J�J)

0;

_Q� = �Q�
000 � 6(TQ�)

0 + (4 +
x�

2
)(Q0J�)

0 � (2�
x�

2
)(QJ�

0)0 + 3x�(Q�J�
2)0 �

2xC���(Q�
0J�)

0 + xC���(Q�J�
0)0 + C��(x � x�)(QJ�J)

0 +

C��(4 +
x

2
)(Q�

0J)
0 � C��(2 �

x

2
)(Q�J

0)0 + 2(x� � x�)(1� ���)(J�Q�J�)
0;

_Q� =
x

2
Q�

000 + (x� 4)TQ�
0 � 6T 0Q� + 4Q00J� + 2Q0J�

0 + xQJ�
00 + 4C���Q�

00J� + 2C���Q�
0J�

0 +

xC���Q�J�
00 � 2xC���Q�

00J� � xC���Q�
0J�

0 � 2C���Q�J�
00 + x�C���QQ�Q� �

x�C���QJ�J�
0 � 2x�C���QJ�

0J� � 2x�C���Q
0J�J� + 2x�Q�

0J�J� + x�Q�
0J�

2 +

3x�Q�J�
0J� � x�C���TQ�J� + x�Q�J�J�

0 + 2x�Q�J�
0J� +

1

2
C����(x� + x�)Q�Q�Q� �

2x�C����Q�
0J�J� + x�C����Q�J�J�

0 � 2x�C����Q�J�
0J� � x�C����Q�J�J�

0;

_J� = �J�
000 � (4 +

x�

2
)(TJ�)

0 + (2 �
x�

2
)(QQ�)

0 � 2(x� + x�)Q�Q�J� �

C��(1�
x�

4
)(Q�Q)

0 + xC���Q�
0Q� � 2C��(x � x�)QQ�J + C��(4 +

x

2
)(J�

0J)
0 �

2xC���J�
00J� + 3x�J�

0J�
2 + 2(1 � ���)(x� � x�)J�J�

0J�;

_J� =
1

2
xJ�

000 � 4(TJ�)
0 + 2Q0Q� � xQQ�

0 � 2C���Q�
0Q� + xC���Q�Q�

0 � 4C���J�
00J� +

2xC���J�J�
00 + 2x�C���TJ�J� � x�C���QQ�J� + 2x�C���QQ�J� + x�Q�J�Q� +

x�J�
0J�

2 + 2xJ�
0J�J� + 2x�C����J�J�

0J� + x�C����Q�J�Q� + (x� + x�)C����Q�Q�J� :

(21)

The second (II) class of N = 4 solutions is two-parametric. The free parameters can
be chosen to be x1 and x2, while the remaining x� parameters entering the hamiltonian
below are restricted to be

x3 = x4 = �(x1 + x2);

x5 = 0;

x6 = x1;

x7 = x2: (22)

The most general N = 4 (II) hamiltonian is given by

H =
Z
dx[�2T 2� 2Q0Q� 2Q0

�Q� + 2J 00

�J� + x�TJ�
2 + 2x�QQ�J� + C���(x� + x�)Q�Q�J� +
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C���(x� + x�)Q�Q�J� � C���(x� + x�)Q�Q�J� + C���(x� + x�)Q�Q�J� +

2x�C���Q�J�Q� � 2x�C���J�J�J�
0 +

1

3
C���(x� � x�)J�J�J�

0 � 2x�C���J�J�J�
0]:

(23)

where now � = 1; 2; :::; 7, while �; � = 1; 2; 4 and �; �; � = 3; 5; 6; 7.
The complete set of equations of motion for the N = 4 (II) case occupies 13 pages in

LaTex. The given �le is available upon request. Just like the N = 3 case and contrary
to the N = 4 (I) case, these equations of motion cannot be easily compacti�ed since the
�eld labels 1$ 2, 3, 4, 5 and 6$ 7 all play a di�erent role.

Let us conclude this section with a �nal comment. The two classes (I) and (II) of
N = 4 solutions are obviously inequivalent. For what concerns the �rst class we can notice
that by suitably choosing the parameters x�'s being given by x1 = x2 = �8 (x3 = 16),
the resulting generalized KdV system extends the integrable N = 4 KdV based on the
\minimal N = 4 SCA". This leaves the possibility that the N = 4 (I) KdV, for the given
values of the x�'s parameters and for some x 6= 0, could be an integrable system. We plan
to address this issue in the future.

6 Conclusions.

In this paper we investigated the issue of large N supersymmetric extensions of the KdV
equation. The construction of extended supersymmetrizations is important in connection
with integrable hierarchies since extended supersymmetric theories provide the uni�cation
of otherwise unrelated bosonic or lower supersymmetric hierarchies. The case mentioned
throughout the paper of the integrable N = 4 KdV based on the N = 4 SCA, which
encompasses both the inequivalent a = �2 and the a = 4 N = 2 KdVs, is a nice example
of that.

From what concerns the applications of supersymmetry many good reasons are found
to investigate extended supersymmetries. We refer to [15] for a detailed discussion of
various aspects. In this cited paper the matrix-representations of the N extended super-
symmetries have been classi�ed (see also [16]). Besides matrix representations however,
just in the case of the N = 8 supersymmetry, a speci�c realization for it can be obtained
via the non-associative division algebra of the octonions (a detailed discussion of this
topic can be found in [17]). From the point of view of superextensions of KdV, it would
be then quite natural to expect the octonionic realization of the N = 8 supersymmetry
being related with the \Non-associative N = 8 Superconformal algebra" introduced in [8].
The \non-associativity" is here referred to the fact that this algebra does not satisfy the
(super) Jacobi identities. This apparent drawback turns out to be an advantage since it al-
lows to overcome a no-go theorem which prevented so far to construct N -supersymmetric
KdVs for N > 4, due to the fact that no central extension is allowed for superconformal
algebras (of standard type) for N > 4 (see [9]).

In the present paper we used the \Non-associative N = 8 SCA" as a tool to produce
the �rst example of an N = 8 supersymmetric extension of the KdV equation. The system
under consideration involves the 8 bosonic and the 8 fermionic �elds entering the N = 8
SCA. We constructed the N = 8 superKdV equations by deriving them from a generalized
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hamiltonian system admitting the \Non-associative N = 8 SCA" as generalized Poisson
brackets. To our knowledge this is also the �rst example of a (generalized) dynamical
system associated to the given N = 8 SCA.

The main results of this paper can be summarized as follows. We reviewed at �rst
the N = 4 KdV based on the \minimal N = 4 SCA" and constructed the fundamental
domain for its inequivalent supersymmetrizations. Later we investigated the possibility for
an N = 8 superKdV based on the N = 8 SCA. We arrived at a uniquely speci�ed system
of equations given by formula (16). This system corresponds to the N = 8 superextension
of the most symmetric (the SU(2)-invariant) point in the fundamental domain of the
N = 4 KdV. Despite its enlarged symmetry this point is however not an integrable point
of the N = 4 KdV.

In the following we investigated which N supersymmetric extensions (for N > 2) of
KdV are supported by the \Non-associative N = 8 SCA" generalized Poisson brackets.
The complete results are stated as follows. Besides the unique N = 8 case, such extensions
are found for N = 3 and N = 4.

The class of solutions of the N = 3 case depends on 6 free parameters and is reported
in formula (19). For what concerns the N = 4 cases two inequivalent classes of solutions,
named \(I)" and \(II)", are found. The �rst class depends on three free parameters, while
the second one depends on just two free parameters. They are given in formulas (20) and
(23) respectively. For a convenient choice of the parameters of the class (I) solution, the
resulting system of equations generalizes the integrable point of the \minimal" N = 4
KdV, leaving room to the possibility that a global N = 4 system involving the whole set
of N = 8 SCA �elds could correspond to an integrable hierarchy. This is an issue that we
are planning to address in a future work.
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