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1 Introduction.

It is well-known that a connection exists (see e.g. [1]), between the division algebras of

complex numbers, quaternions, octonions and theN -extended supersymmetries, for values

N = 2; 4; 8 respectively. However, the characterization of N -extended supersymmetries

in terms of division algebras is not always worked out explicitly. This is especially true

in the case of the octonions since, being both non-commutative and non-associative, they

present peculiar di�culties.

In the present work we extend to the supersymmetric case the approach and results

obtained by Osipov some years ago in a series of three papers concerning the a�nization

[2, 3] of the octonionic algebra and its Sugawara [2] construction.

We postpone to the Conclusions (where a list of possible applications of the results

here obtained is furnished) the discussion about the motivations of our paper. In this

Introduction we limit ourselves to summarize the main results of the present work.

The algebra of octonions is supersymmetrically a�nized following a proposal made in

[2, 3]. While in [2] the bosonic case only was considered, in [3] a supera�nization was

proposed. The supera�nization introduced here however, formulas (11) and (14), di�ers

from the one in [3]. Our formulation is manifestly supersymmetric, while the one of [3] is

not.

Later we explicitly prove that the supera�ne octonionic algebra (11) is superMalcev,

i.e. it satis�es a graded version of the Malcev identity.

Despite being expressed in terms of manifestly N = 1 super�elds, the (11) supera�ne

algebra is N = 8 supersymmetric. One way of seeing this is in consequence of the exis-

tence of a supersymmetric Sugawara construction given in formulas (16). This Sugawara

realization is a generalization of both the Osipov's construction [2] in the purely bosonic

case (all fermionic �elds set equal to zero), as well as the N = 4 S.C.A. Sugawara of ref-

erence [4], recovered when just the (supera�nized version of the) quaternionic subalgebra

of the octonions is taken into account.

Unlike the purely bosonic [2] and the N = 4 S.C.A. [4] Sugawaras, the Sugawara-

induced �elds (16) do not close a superalgebra due to the presence of extra-terms (de-

pendent on fermionic �elds associated to octonionic structure-constants not belonging to

a quaternionic subalgebra). However, after a suitable limiting procedure is taken into

account, a closed N = 8 generalization of the Virasoro algebra (with one bosonic spin-2

�eld, 8 fermionic spin-3
2
and 7 bosonic spin-1 �elds) is recovered. It corresponds to the

so-called \Non-associative N = 8 S.C.A." introduced for the �rst time by Englert et al. in

reference [5]. Therefore, as a byproduct of our investigation concerning the supera�niza-

tion of the algebra of the octonions and its Sugawara realization, we found as a bonus

its connection with a very remarkable and quite \mysterious" superconformal algebra

appearing in the literature. The latter algebra is not of (super)Malcev type. This point

will be commented in the text.

In order to obtain our results we made extensive use of the Thielemans' package for
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classical OPE computations with Mathematica. We developed our own special package

to deal with octonions.

2 Notations and preliminary results

In this section the basic properties of the division algebra of the octonions, following

[6], are reviewed. They are later used for our construction.

A generic octonion x is expressed as x = xa�a (throughout the text the convention over

repeated indices, unless explicitly mentioned, is understood), where xa are real numbers

while �a denote the basic octonions, with a = 0; 1; 2; :::; 7.

�0 � 1 is the identity, while ��, for � = 1; 2; :::; 7, denote the imaginary octonions. In

the following a Greek index is employed for imaginary octonions, a Latin index for the

whole set of octonions (identity included).

The octonionic multiplication can be introduced through

�� � �� = �����0 + C��
�
; (1)

with C��
 a set of totally antisymmetric structure constants which, without loss of gen-

erality, can be taken to be

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1: (2)

and vanishing otherwise.

It is also convenient to introduce, in the seven-dimensional imaginary octonions space,

a 4-indices totally antisymmetric tensor C��
�, dual to C��
, through

C��
� =
1

6
"��
����C��� (3)

(the totally antisymmetric tensor "��
���� is normalized so that "1234567 = +1).

The octonionic multiplication is not associative since for generic a; b; c we get(�a � �b) �

�c 6= �a � (�b � �c). However the weaker condition of alternativity is satis�ed. This means

that, for a = b, the associator

[�a; �b; �c] � (�a � �b) � �c � �a � (�b � �c) (4)

is vanishing.

We further introduce the commutator algebra of octonions through

[�a; �b] =def �a � �b � �b � �a = fabc�c; (5)

fabc are the structure constants and can be read from (1); we have fabc = 2Cabc (where

Cabc coincides with C��
 for a; b; c = 1; 2; :::; 7 and is vanishing otherwise).
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The above-de�ned commutator brackets [:; :] satisfy the two properties below, which

make the commutator algebra a Malcev-type algebra

[x;x] = 0;

J(x;y; [x; z]) = [J(x;y; z);x] (6)

for any given triple x;y; z of octonions.

J(x;y; z) is the Jacobian

J(x;y; z) = [[x;y]; z]]+ [[y; z];x] + [[z;x];y]: (7)

The second relation in (6) is in consequence of the alternativity property.

Malcev algebras are a special generalization of the Lie algebras, obtained by relaxing

the condition of the vanishing of the Jacobian.

3 The supersymmetric a�nization of the octonionic

algebra.

In this section we introduce the supera�nization of the commutator algebra of the

octonions (5) or, in short, the supera�ne octonionic algebra, which for later convenience

will be denoted as bO-algebra. Since the commutator algebra of octonions (5) is not a

Lie algebra, its supera�nization implies generalizing the concept of supera�nization of a

given Lie algebra G. However, the standard notion of supera�nization should be recovered

when formulas are specialized to the subalgebra of quaternions, which is equivalent to the

Lie algebra sl(2)� o(2).

Given a Lie algebra G with generators gi and structure constants fijk, the superaf-

�ne Lie algebra bG is introduced by associating a bosonic spin-1 �eld ji(x) and a spin-1
2

fermionic �eld  i(x) to each Lie algebra generator gi. These �elds can be thought as com-

ponents of a single fermionic N = 1 super�eld 	i(X) =  i(x) + �ji(x), where X � (x; �)

denotes a superspace coordinate and � is a Grassmann variable satisfying �2 = 0. The

supera�ne bG algebra is introduced through the brackets

f	i(X);	j(Y )g = fijk	k(Y )�(X;Y ) + k � tr(gigj)DY �(X;Y ): (8)

In the formula above X � x; � and Y � y; � are superspace coordinates. �(X;Y ) is the

supersymmetric delta-function

�(X;Y ) = �(x� y)(�� �) (9)

and DY the supersymmetric derivative

DY =
@

@�
+ �@y: (10)
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The last term in the r.h.s. of (8) corresponds to the central extension (in its absence we

obtain the superloop algebra). The trace is taken in a given representation of G (let's say

the adjoint). The formula (8) is manifestly supersymmetric since it is constructed with

N = 1 super�elds and covariant quantities.

In the absence of the central extension, the construction of the superloop extension of

the (5) octonionic algebra is straightforward. The construction of the central extension is

however delicate. In this case it is no longer possible to introduce it by making reference to

a matrix representation since no such representation exists for the non-associative algebra

of the octonions. Our proposal consists in introducing the supera�ne algebra bO, based
on the fermionic super�elds 	a(X), a = 0; 1; 2; :::; 7, through the position

f	a(X);	b(Y )g = fabc	c(Y )�(X;Y ) + k ��(�a � �b)DY �(X;Y ); (11)

where �(�a � �b) denotes the projection over the identity 1 in the composition law.

Some comments are in order. With the above de�nition the correct (anti-)symmetry

properties of the brackets are satis�ed. The algebra is manifestly N = 1 supersymmetric

and, when the formulas are specialized to the quaternionic subalgebra, we recover the

standard supera�nization commented above. Moreover the Osipov's bosonic construction

is recovered when setting the fermionic �elds equal to zero.

We therefore regard (11) as the correct supera�nization of the commutator algebra

of the octonions. It should be noticed that a supera�nization has been proposed in [3]

in terms of component �elds. However the algebra introduced in [3] presents a central

extension which fails to be manifestly supersymmetric, in contrast with the (11) algebra.

The supera�ne bO algebra is superMalcev, as a simple inspection can prove, i.e. it

satis�es a Z2-graded extension of the Malcev properties, where the brackets are now Z2-

graded and the Jacobian is replaced by a superJacobian. The �x grading of the x �eld is

either 0 or 1 according to the bosonic (respectively fermionic) character of x. The graded

brackets are de�ned as

[x;y] = (�1)�x�y+1[y;x] (12)

(x;y denote graded-algebra elements like �elds or super�elds; in the following the graded-

brackets are denoted either as \[.,.]" or as \f.,.g" according to the convenience).

The superJacobian J(x;y; z) is

J(x;y; z) = (�1)�x�z[x; [y; z]] + (�1)�y�x [y; [z;x]] + (�1)�z�y [z; [x;y]]: (13)

With this in mind, formulas (6) can be reinterpreted as conditions for the superMalcev

property.

In component level, the supera�ne bO algebra reads as follows

f a(x);  b(y)g = k�ab�(x� y);

f a(x); jb(y)g = fabc c(y)�(x� y);

fja(x); jb(y)g = k�ab@y�(x� y) + fabcjc(y)�(x� y): (14)
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Here ja(x) ad  a(x) are real �elds. It should be noticed that, for later convenience, in

the above formulas the 	0(X) super�eld has been associated with the i�0 octonion. The

real-valued k is the central charge of the supera�ne bO algebra.

The proof that (14) satis�es the superMalcev conditions (6) consists in a straightfor-

ward check.

4 The Sugawara construction and the N = 8 Non {

associative S.C.A.

In this Section we investigate the Sugawara construction performed with the superaf-

�ne �elds entering the bO algebra (14). We already know that the purely bosonic subal-

gebra admits a Sugawara described in [2], while it is possible to prove that the Sugawara

associated to the quaternionic subalgebra (obtained when the octonionic coe�cients a; b

are restricted to the values 0; 1; 2; 3 only) corresponds to the Sugawara of [4] which realizes

the N = 4 \minimal" Superconformal Algebra. Both such cases are recovered as a special

limit of the Sugawara construction here described.

To be precise we are investigating here the possibility of a closed algebraic structure

in the Enveloping Algebra of bO, thought as an algebra of real �elds endowed with a non-

Lie super-Poisson bracket structure given by equation (14), assumed to satisfy a graded

version of the Leibniz property, i.e.

[xy; z] = x[y; z] + (�1)�x�yy[x; z]: (15)

Speci�cally, we are looking for an N = 8 extension of the Virasoro algebra, covariantly

constructed with the imaginary octonions structure constants (labeled by the greek in-

dices). This requires a spin-2 Virasoro-type �eld T (scalar w.r.t imaginary octonions), a

fermionic spin-3
2
�eld Q (also scalar w.r.t imaginary octonions) and the extra seven spin-3

2

�elds Q�, as well as the seven spin 1 bosonic currents J�.

This problem is well-de�ned and admits a complete solution which can be obtained via

computer algebra. We indeed solved it by �rst rephrasing it in the language of classical

OPE's, which allowed us to perform computations using Mathematica.

The �nal answer is the following. Unlike both the purely bosonic case and the N = 4

SCA quaternionic subalgebra case, no closed algebraic structure can be found for a given

�nite value of k, the a�ne central charge entering (14). This is due to the presence of

the extra-terms (X?)::: (18), depending on the 4-indices structure constant C��
� and

the fermionic �elds  �. All such terms are automatically vanishing for the two above-

mentioned subalgebra cases.

However, a closed algebraic structure can be found after taking a well-de�nite limit

for k !1.

Indeed if we set

T =
1

k2
(jaja +  0

a a) +
1

k
j0

0 �
2

3k3
C��
 � �j
 �

1

k4
C��
� � � 
 �;
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Q =
1

k2
 aja +

1

k
 0

0 �
2

k3
C��
 � � 
;

Q� =
1

k2
( 0j� �  �j0 � C��
 �j
)�

1

k
 0

� �
2

k3
C��
� � 
 �;

J� =
1

k2
 0 � +

1

k
j� �

1

2k
C��
 � 
 (16)

and simultaneously renormalize the Poisson brackets in (14) through

f:; :g 7! f:; :gR = k

2
f:; :g; (17)

we obtain a closed algebraic structure, since all the extra-terms (X?)::: which appear

below are vanishing in this limit.

The result is in fact

fT (x); T (y)gR = �
1

2
@y

3�(x� y) + 2T (y)@y�(x� y) + T 0(y)�(x� y);

fT (x); Q(y)gR =
3

2
Q(y)@y�(x� y) +Q0(y)�(x� y) + (X1);

fT (x); Q�(y)gR =
3

2
Q�(y)@y�(x� y) +Q�

0(y)�(x� y) + (X2)�;

fT (x); J�(y)gR = J�(y)@y�(x� y) + J�
0(y)�(x� y) + (X3)�;

fQ(x); Q(y)gR = �
1

2
@y

2�(x� y) + +
1

2
T (y)�(x� y) + (X4);

fQ(x); Q�(y)gR = �J�(y)@y�(x� y)�
1

2
J�

0(y)�(x� y) + (X5)�;

fQ(x); J�(y)gR = �
1

2
Q�(y)�(x� y) + (X6)�;

fQ�(x); Q�(y)gR = �
1

2
���@y

2�(x� y) + C��
J
(y)@y�(x� y) +

+
1

2
(���T (y) + C��
J


0(y))�(x� y) + (X7)��;

fQ�(x); J�(y)gR =
1

2
(���Q(y)�C��
Q
(y))�(x� y) + (X8)��;

fJ�(x); J�(y)gR =
1

2
���@y�(x� y)�C��
J
(y)�(x� y) + (X9)��; (18)

where the extra-terms (X?):::, vanishing in the k ! 1 limit, are explicitly given by

(X?)::: � (gX?):::(y)�(x� y), with

(gX1) = �
3

2k4
C��
� � � 
j�;

(gX2)� =
12

k5
C�
� 0 � � 
 � �

2

k4
C��
� 0 � 
j� +

12

k5
C�
�� � � 
 � � +

+
4

k4
C�
� � � 
j� �

6

k4
���j�C
�� 
 � � �

6

k4
C��
 � 
j� �;

(gX3)� =
12

k4
C�
� � � 
 � �

2

k3
C��
� � 
j�;
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(gX4) =
5

2k4
C��
� � � 
 �;

(gX5)� =
2

k4
C��
� 0 � 
 � �

6

k4
C�
� � � 
 � �

1

3k3
C��
� � 
j�;

(gX6)� = �
7

3k3
C��
� � 
 �;

(gX7)�� = �
4

k4
���C
�� 0 
 � +

6

k4
(C�
� 0 � 
 � + C�
� 0 � 
 �) +

2

3
C
�� 
 �j� �

�
1

k3
(C�
� � 
j� + C�
� � 
j�)�

1

k3
(C�
� 
 �j� + C�
� 
 �j�) +

+
11

6k4
���C
��� 
 � � � �

14

3k4
(C�
�� � 
 � � + C�
�� � 
 � �);

(gX8)�� =
7

3k3
���C
�� 
 � � � 2C�
� � 
 � � 5C�
� � 
 � + C��
� 0 
 � + C��
� 
j�;

(gX9)�� =
2

k2
C��
� 
 �: (19)

Some comments are in order. The k !1 limit is well-de�ned since the �elds in (16) are

of order O(") in " = 1

k
, while the extra terms (X?)::: in the r.h.s. of (18) are of higher

order in ". They are indeed of the order O("2) or higher. We could have normalized the

�elds (16) to be of order O(1) in ", but in this case the value of the central charge c

in the superconformal algebra would have been 1. The only possibility of recovering a

�nite value for the superconformal central charge c consists in performing the \classical

renormalization" described above. The value of the conformal central charge c is unrelated

with k, the value of the a�ne central charge. The formula (18) presents for c the value

c = �6 (c is obtained as the Virasoro central charge from the �rst equation in (18) and

corresponds to twelve times the coe�cient of �000). However, this value can be normalized

at will (since we are dealing with classical Poisson brackets which satisfy by construction

a graded version of the Leibniz property) through a simultaneous �nite rescaling of both

the �elds (collectively denoted as �i) in (14) (�i 7! z�i) and the Poisson brackets (14)

(f:; :g 7! 1

z
f:; :g). It turns out that c 7! zc and in particular we can set c = 1 whenever is

c 6= 0.

The closed superconformal algebra, recovered for (X?)::: � 0, coincides with the so-

called \Non-Associative Superconformal N = 8 Algebra" introduced for the �rst time in

reference [5].

The term \non-associative" is in reference with the fact that it does not satisfy

a(super)-Jacobi property. It is not even a (super)Malcev algebra. This point can be

understood by noticing that, under the composition law x = x1 � x2, the (super)Jacobi

property is guaranteed for the triple x;y; z, whenever (super)Jacobi is separately satis�ed

for the triples x1;y; z and x2;y; z ( J(x1;y; z) = J(x2;y; z) = 0 ) J(x;y; z) = 0). On

the contrary, the (super)Malcev condition (6) is not automatically closed under such a

composition law. Therefore the super-Malcev property satis�ed by the supera�ne algebrabO does not guarantee a super(Malcev) property for the superconformal algebra extracted

through Sugawara construction. Indeed, an explicit counterexample can be given such



CBPF-NF-011/01 8

that (6) is not veri�ed. It is su�cient to take x � J1(x), y � Q4(y), z � J2(z).

On the other hand the bosonic subalgebra, which is restricted to the �elds T (x) and

J�(x) alone, is a Malcev algebra.

The existence of the (16) Sugawara ensures that the supera�ne algebra bO is compatible

with the global N = 8 supersymmetry. This result is not surprising and would have been

expected since the algebra is obtained in terms of the octonionic structure constants. In

any case the existence of the (16) Sugawara allows us to explicitly compute the global

N = 8 transformations carried by the ja(x) and  a(x) �elds entering (14). Indeed, let us

introduce the N = 8 global supersymmetric charges Qa through

Qa =
I
dxQa(x); (20)

where a = 0; 1; 2; :::; 7 and Q0(x) � Q(x). The supersymmetric transformation properties

for the �elds ja(x),  a(x) are recovered from (14) and (16) after the k !1 limit is taken

into account. We have explicitly

��0Q0
 0 = �0

j0

2
;

��0Q0
j0 = �0

 0

0

2
;

��0Q0
 � = �0

j�

2
;

��0Q0
j� = �0(

 0

�

2
�

2

k2
C��
� � 
 �);

���Q�
 0 = ��

j�

2
;

���Q�
j0 = ���

 0

�

2
;

���Q�
 � = ��(����

j0

2
�

1

2
C��
j
 �

1

k
( � � + C��
 0 
));

���Q�
j� = ��(���

 0

0

2
+
1

2
C��
 

0


 +
1

k
(C��
 
j0 �C��
 0 
 +  �j� �  �j� + C��
� 
 �) +

+
2

k2
(���C
�� 
 � � � C�
� �
� � 2C�
� � 
 �)): (21)

The global supersymmetric transformations, dependent on the in�nitesimal fermionic pa-

rameter �a, are recovered from the above formulas after taking the k !1 limit. Please

notice that no summation is made for what concerns the index �.

5 Conclusions

In this paper we have presented the generalization to the supersymmetric case of some

results due to Osipov [2] concerning the bosonic Malcev a�nization of the commutator

algebra of the octonions and its Sugawara construction. We have introduced the superaf-

�ne Malcev algebra bO, realized by eight bosonic spin-1 and eight fermionic spin-1
2
�elds,
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and have been able to prove that a Sugawara construction exists which maps, after a

suitable limit is taken, these �elds into the N = 8 non-associative superconformal algebra

of reference [5].

As a corollary, the supera�ne algebra bO, besides being manifestly N = 1 supersym-

metric, is globally N = 8 supersymmetric.

Such an algebraic construction can �nd a variety of applications (some of them are

currently under investigation) to a full class of physical problems involvingN = 8 extended

supersymmetries.

E.g. the supera�ne bO algebra de�nes a Poisson bracket structure underlining the

N = 8 supersymmetric extension of the NLS �mKdV equations, while the Sugawara-

induced non-associative superconformal algebra gives the Poisson brackets for an N = 8

extension of KdV. This is the content of a forthcoming paper [7] which extends the

construction of [4] to the present case.

Further topics of investigation concern the geometric approach (see [8]) to the classical

superstring dynamics. It is expected that the motion of a classical superstring in a 10-

dimensional target could be reduced to a octonionic valued superLiouville theory, which

should be naturally described through the superalgebras introduced here. On the other

hand, either WZNW-type models de�ned in the \almost group manifold S7" (the almost

being referred to the fact that it can be recovered from imaginary octonions, whose product

however is non-associative) and the dynamics of generalized tops moving on S7 are likely

to be described by (super)-Malcev algebras. A converse approach, which retains Jacobi

identities at the price of making �eld-dependent the algebraic structure constants (soft-

algebras) has been suggested in [9]. Another natural �eld of investigation concerns the

twistor formalism applied to the Green-Schwarz string (see e.g. [10]).
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