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Abstract

An N=1{supersymmetric version of the Cremmer-Scherk-Kalb-Ramondmodel
with non-minimal coupling to matter is built up both in terms of super�elds
and in a component-�eld formalism. By adopting a dimensional reduction
procedure, the N=2{D=3 counterpart of the model comes out, with two main
features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic
moment coupling between matter and the gauge potential.
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1 Introduction

Ordinary and supersymmetric planar gauge models have been fairly well investigated over
the past years, in view of several remarkable properties they exhibit. Among their most
relevant features, we could quote: gauge-invariant mass [1], ultraviolet �niteness [2] and
the connection between extended supersymmetry and the existence of self-dual soliton
solutions [3].

A few years ago, a Maxwell-Chern-Simons gauge theory with an additional magnetic
moment interaction was proposed [4], for which Bogomol'nyi-type self-dual equations can
be derived and vortex-like con�gurations appear whenever particular relations between
the parameters are obeyed [5]. An important issue that comes about is the claim of a
relation between the appearance of self-duality and the N=2-supersymmetric extension
of the model.

In this regard, Navr�atil [6] has succeeded in writing down an N=2 Chern-Simons model
with magnetic moment interaction. His paper relies on a special choice of parameters in
order that the supersymmetry be extended. In our work, we also aim at an N=2 version of
the Maxwell-Chern-Simons model with magnetic moment interaction. However, instead
of building up our action directly in (1+2) dimensions and constraining the parameters
so as to achieve an N=2 extension as in [6], we take the viewpoint of �rst formulating
an N=1{D=4 gauge model with a BF-term with no such constraints [7]. Having in mind
a magnetic moment interaction in D=3, we consider matter non-minimally coupled to a
2-form gauge potential in D=4 with completely independent coupling constants (we refer
to the latter as the Cremmer-Scherk-Kalb-Ramond �eld). Upon a convenient dimensional
reduction of the component-�eld action from (1+3) to (1+2) dimensions, we set out an
N=2{D=3 gauge model with a Chern-Simons term and magnetic moment interaction
with the matter sector.

As we shall discuss later, our dimensional reduction procedure must be supplemented
by suitable �eld identi�cations that do not break the supersymmetries of the extended
model. This is necessary in order to ensure that a genuine (non-mixed) Chern-Simons
term drops out in 3 dimensions.

Our paper is outlined as follows. In Section 2, we propose the super�eld formulation
of the N=1{D=4 gauge model with a BF{term and non-minimal coupling between matter
and the 2-form potential. Next, in Section 3, we present the details of the dimensional re-
duction scheme we adopt. The suitable �eld identi�cations, the N=2 transformations and
the N=2{D=3 Maxwell-Chern-Simons action with anomalous magnetic moment interac-
tions are the subject of Section 4. Finally, in Section 5, we draw our General Conclusions.

2 The N=1{D=4 supersymmetric action

We start o� from the following super�eld action:

S4D =

Z
d4xd2�
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where m is a mass parameter, h and g are coupling constants, whereas �;W and V are
super�elds de�ned by the �-expansions below:

� = e(�i��
��@�)

�
'(x) + �a�a(x) + �2S(x)

�
; D _a� = 0; (2)

Wa = �1

4
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V = C(x) + �aba(x) + � _ab
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Here Da and D _a are the supersymmetric covariant derivatives [8]

Da = @a � i��a _a�
_a
@�

D _a = �@ _a + i�a��a _a@�: (4)

and G is de�ned in terms of the chiral spinor super�eld

�a =  a(x) + �b
ba(x) + �2
h
�a(x) + i��a _a@� 

_a
(x)

i
� i����@� a(x)

�i�����b@�
ba(x)� 1
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2
2 a(x); D _a�a = 0; (5)

by

G =
i

8

�
Da�a �D _a�

_a
�
:

The Lorentz-group irreducible representations accommodated in 
ba(x) can be split
as follows:


ba = �ba�(x) + (���)
ba
B��(x); (6)

with �(x) and B�� (x) being complex �elds:

�(x) = P (x) + iM(x);

B��(x) =
1

4

h
B��(x)� i ~B��(x)

i
; (7)

with
~B��(x) =

1

2
"����B

��(x): (8)

In this way, B�� exhibits a self-dual nature:

eB�� = iB��: (9)

B�� is to be read as the 2-form �eld in the CSKR model which emerges when one writes
the action in components; therefore G is referred to as the tensor multiplet[9]. The role
of the remaining �eld components introduced above will become clearer later. Let us
mention that the number of degrees of freedom is actually not as large as it seems. For
instance, both � and �a are chiral super�elds, and the super�eld connection V will be
taken in the Wess-Zumino(WZ) gauge from now on,

V = ����A� + �2��+ �
2
�� + �2�

24(x): (10)
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However, for the sake of clarity, we have written it in its wider form, (3), because some of
the susy variations shall explicitly exhibit the compensating �elds. As usual, an irreducible
representation of the susy algebra, involving just the �eld-strength F�� together with
the gaugino � and the auxiliary �eld � will be found. In fact, the use of a complete
expression for V, as in eq.(3), make it easier to determine the transformation properties
of the components under susy transformations, and will enable us to �nd the proper
identi�cations necessary to formulate a Chern-Simons theory in 3D. Notice also that,
within the action, the spinor super�eld comes into play only through the �eld-strength
super�eld G, which carries just half the degrees of freedom of �a:  a does not appear, �
appears only through M , and on the same token B�� manifests through ~G�, making clear
the resulting relevant degrees of freedom. The component-�eld expansion for G turns out
to be:

G = �1

2
M +

i

4
�a�a � i

4
�� _a��
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1
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�a��a _a
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8
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��2@� ��
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8
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�� _a@��
a � 1

8
�2��22M; (11)

where G��� and its dual, ~G�, are given by

G��� = @�B�� + @�B�� + @�B��;

~G� =
1

3!
"����G

���: (12)

Therefore, the parametrization described above for G exhibits a sort of WZ gauge e�ect
for the spinor superpotential �a in that the individual degrees of freedom carried by the
latter can be grouped into suitable combinations that correspond to the physical �elds.

Going over to components, the action S4D takes the form below:

S4D =
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where we have organized the fermionic �elds so as to form four-component Majorana
spinors as follows:

� (x) �
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and the current J� is given by

J� = �ih
2
('�r�'� 'r�'

�) ; (14)

with
r�' =

�
@� + ihA� + ig ~G�

�
': (15)

Also, there appears a covariant derivative with �5-couplings

r�5X =
�
@� � ihA��5 � ig ~G��5

�
X: (16)

It is noteworthy to pay attention to the presence of the bosonic CSKR Lagrangian among
the �rst 3 terms of eq.(13). We shall see in Section 4 how the corresponding mixing
term can be manipulated so as to give rise to the usual Chern-Simons term. We can also
recognize, in the �rst term in the square brackets, a kinetic piece which corresponds to
the non-minimal coupling of scalar matter to the CSKR gauge �elds. These four terms
de�ne an Abelian gauge invariant theory which we will carefully analyse as a guide to
connect both gauge groups.

It is worthwhile noting that, in order to achieve the four-component spinors in the
expression above, we have chosen the following representation for the �-matrices in (1+3)
dimensions:

�� =

�
0 ��

a_b
��� _ab 0

�
:

Of course, the action is independent of such a choice and in the next section we shall
adopt a Majorana-like representation in order to perform dimensional reduction.

The susy transformations of the components �elds are listed below:

�' = "a�a;

��a = 2"aS � 2i��a _a�"
_aD�'; (17)
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Now, it is clear that the �rst and the second groups form respectively two irreducible
representations of the susy algebra while the last three terms, together with

�F�� = "a�[�a _a@�]�
_a � �" _a��

_aa
[� @�]�a; (20)

close another one. On the other hand, A� transforms along with the compensating �elds
b and b but we can always �x the WZ gauge to eliminate them. In fact, it is not worth
exhibiting the susy transformations of any of the compensating �elds themselves as they
become zero in the WZ gauge. Analogously, in the second group of variations, it can be
seen that (as it occurs in the action) P , the real part of �, is irrelevant,  a does not appear
and B�� contributes only through ~G�. We have however shown the variation of A� just
because it enters the action not exclusively through F��.

The list of �eld variations in terms of four-component spinors is then

�' = E�LX
�X = 2 (S � i��D�'

�) �LE + 2 (S� � i��D�') �RE (21)
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2
�5�

���F��E (23)

�� = � i
2
E��@��;

E being the (in�nitesimal) Majorana-spinor parameter of the susy transformation,

E �
�
"a
�" _a

�
:

3 The dimensional reduction: from D=4 to D=3

>From now on, we shall identify four-dimensional Lorentz indices by �̂ = 0; 1; 2; 3; while
in three-dimensional space-time we will keep bare greek indices, namely, � = 0; 1; 2:

Let us �rst perform the dimensional reduction of the bosonic sector of the susy action,
eq.(13). For this, we will adopt the following procedure: we eliminate the third spatial
coordinate so as to make the D=3-�elds x3-independent [10],

@3(�elds) = 0: (24)
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On the other hand, we will assume that the �̂ = 3 component of the D=4-�elds are taken
as scalars in (1+2) dimensions. In this scheme, the Poincar�e invariance in D=1+3 has
been broken down to the direct product between Poincar�e invariance in D=1+2 and a
U(1) factor. Thus, A� is in the vector representation of the Lorentz group and is a singlet
of such a U(1) while A3 is an independent scalar �eld. The relevant (o�-shell) degrees
of freedom of B�̂�̂ are B�� and B�3 as it is an antisymmetric tensor. Accordingly, in
three-dimensional space, we shall make the following identi�cations:

N � A3; B� � B3�; B�� � "���Z�;

@�Z
� = � ~G3; @�B� � @�B� = G�� ; (25)

with "��� � "���3. Hence, after decomposition, the bosonic terms reduce as given below:

�1

6
G�̂�̂�̂G

�̂�̂ �̂ �! �1

2
G��G

�� + @�Z
�@�Z

�;

�1

4
F�̂�̂F

�̂�̂ �! �1

4
F��F

�� +
1

2
@�N@

�N;

m"�̂�̂ �̂�̂A
�̂@ �̂B �̂�̂ �! 2m"���A

�@�B� + 2mN@�Z
�;

r�̂�
�r�̂� �! r��

�r��� (hN � g@�Z
�)2 j'j2 :

In order to proceed with the dimensional reduction in the fermionic sector, let us
mention that one can always construct a representation of the Cli�ord algebra in the
form of a tensor product of lower dimensional matrices. We use capital ��̂ for Dirac
matrices in the higher dimension and lower case � in the lower dimension. A suitable
set of the 4D �-matrices is the following

�� =

�
� 0
0 -�

�
; �3 =

�
0 i
i 0

�
:

Taking 0 � �y; 
1 � i�z; and 2 � i�x; we have a Majorana representation both in D=4

and D=3. So, in this way, a Majorana spinor in D=4 is real and splits into a doublet of
real Majorana spinors in D=3.

It is worth noting, before dimensionally reducing the fermionic sector, that the relevant
degrees of freedom reorganize themselves as follows. The �eld content of four-component
spinors:

X ! �; !

� ! �; �

� ! �; �

gives rise to the following Dirac spinors

X� = �� i!

�� = � � i� (26)

�� = �� i�
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Namely, the two-component Majorana fermions corresponding to each 4D spinor become
completely independent in 3D and, further, in the reduced action they appear as Dirac
spinors in the particular way indicated in eq.(26). On the same footing, the in�nitesimal
susy parameter will break down into two dissociated spinorial species

E �! "; � ! "� = "� i�; (27)

revealing the existence of two supersymmetries in the reduced theory.

4 The N=2{D=3 Model

In terms of the D=3 bosonic �elds and Dirac fermions de�ned above, the three-dimension-
al action reads

S3D =

Z
d3x
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F��F
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G��G
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4
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i

8
(X�r=�X� +X+r=X+)

+
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4
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��

�X� +X+
��+
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��X�'+X���'
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�
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�X�'
�� i
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8
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�
��@=�� + �+@=�+

�
+
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4h

�
1

2
(��

�J��� � �+
�J��+) + ����h(hN � g@�Z�)''�

�
+''�

�
2h�+

igh

2
(�+�� � ���+)� g2@�M@�M

�
� h

2
('�+X� + '�X��+)

+

����S � ig

4
X��+ +

g2

8
'���+

����2
#)

: (28)

Although it looks so large an expression, it has been written in a rather compact notation
and, again, it can be recognized that it contains a mixed CS theory. Of course, we would
like to know more about its physical meaning, which is still fairly obscure. Actually,
the bosonic sector characterizes a parity-preserving statistical gauge theory which can be
related to superconductivity at �nite temperature [11]. At this point, we should draw the
attention to the Z�{�eld, dual of the two-form B in three dimensions. Its kinetic term is
not built up from the usual �eld strenght, as it is the case for ordinary gauge vector �elds.
An inspection of its Abelian transformation shows that its transverse part can be gauged
away. This is why only its longitudinal part propagates o�-shell. Such a peculiar gauge
�eld does not correspond to any phyisical excitation: a two-form gauge �eld presents no
on-shell degree of freedom in D = 3. So, the kinetic term for Z� is harmless, for no ghost
excitation is present in the spectrum.
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In the next section, we shall �nd a remarkable result coming from a detailed inspection
of the Lagrangian (28) and the susy transformations, suggesting a simple identi�cation
between some of the several �elds appearing at the present stage. Indeed, as we shall
propose later, the 3-divergence of Z� will be identi�ed as the auxiliary component of the
gauge super�eld. Now, let us evaluate the two susy transformations acting on the 3D
�elds. The scalar multiplet transforms as

�' =
1

2
�"�X+;

�S = � i
2
�"+ (D= � ihN)X+ + h�"+��'; (29)

�X+ = 2S"+ + 2 (hN'� iD=') "�;

�X� = 2S�"� + 2 (hN'� � iD='�) "+;

the vector multiplet transformations read as follows

�N = �1

2
(�"+�+ + �"���);

��� = (2� + i@=N)"� � � ~F
�"�;

�� = � i
2
(�"+@=�+ + �"�@=��); (30)

� ~F � = �1

2
(�"+"

����@��+ � �"�"
����@���);

and, �nally, the tensor multiplet components transform according to

�M =
i

4
(�"+�� � �"��+);

��� = �2(@=M + i@�Z
�)"� � 2i� ~G

�"�;

�~(@�Z
�) =

1

4
(�"+ @=�� � �"�@=�+); (31)

� ~G� = � i
4
(�"�"

����@��+ + �"+"
����@���):

These susy variations show on the one hand that S3D is indeed N=2{supersymmetric,
and, on the other hand, they exhibit the key to get one's hands on the underlying Chern-
Simons Lagrangian by making manifest the relevant degrees of freedom to realize the
supersymmetry algebra.

Once the N=2 transformation laws have been cleared up, we shall demonstrate that
the previous susy action (28) may be suitably manipulated so as to give rise to a more
familiar system, namely, the supersymmetric extension of a non-minimal Maxwell-Chern-
Simons theory.

The �rst natural attempt is to associate the two vector gauge �elds and then look for
the corresponding fermionic connection in order to keep both supersymmetries. Doing so,
one gets to the conclusion that, by means of simply identifying A� and B� (A� � B�),
we can complete the remaining identi�cations:

N � �M; � � �1

2
~G3; �� � � i

2
�� (32)
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so as to achieve the connection between the two gauge groups of the outset and obtain a
proper MCS N=2-supersymmetric theory with non-minimal coupling. Of course, as long
as the two sets of �elds transform identically under a symmetry transformation, we may
identify them without breaking supersymmetry.

We also found it convenient to rede�ne the super�elds and coupling constants of eq.(1)
as below:

V ! V=
p
3 G ! G=

p
3

h!
p
3h g !

p
3g m! 3

4
m

the reason being that we wish to get the D=3-action with the canonical kinetic terms. In
so doing, the action of eq.(1) becomes

S4D =

Z
d4xd2�

�
� 1

24
WaWa + d2�

�
�1

6
G2 +

1

8
mVG +

1

16
�e2hVe4gG�

��
(33)

bringing about the usual MCS terms in the N=2-susy action:

SN=2
MCS =

Z
d3x
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1

4
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i

8
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+
ig
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�� g

2
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�ig

2

2
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�
X�

��+'
� � �+

�X�'
�� ig2

2
'�'

�
�+@=�+ + ��@=��

�
+
g2

h

�
1

2
(�+

�J��+ � ��
�J���) + �+�+h(hN � 2g�)''�

�
+''�

�
2h�+ 2gh�+�+ � g2@�N@�N

�
�h
2
('�+X� + '�X��+) +

����S +
g

2
X��� � g2

2
'�+��

����2
#)

; (34)

where now
r�' =

�
@� + ihA� + ig ~F�

�
': (35)

Note that the last transformation changes only the kinetic and topological-mass terms,
but not the interaction terms.

5 General conclusions

We have here obtained the N=2{supersymmetric extension of a Maxwell-Chern-Simons
system with (non-minimal) magnetic moment interaction as the by-product of an N=1{
D=4 Maxwell-BF model with non-minimal coupling between matter and the 2-form
Abelian gauge potential.
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Concerning the results of ref.[6], where the author extends supersymmetry in the
absence of a neutral scalar super�eld, we remark that our procedure provides an N=2{
model containing such an \extra" scalar, N , as a natural consequence of the dimensional
reduction. Thus, its presence is well-justi�ed: it appears as a three-dimensional descent
of the D=4 gauge sector.

Also in contrast to the results of ref.[6], we do not need to impose that all �elds have
the same mass. The reason is that, in our case, we build up the N=2{D=3 action with
independent matter and gauge multiplets. The mass degeneracy then takes place only
inside each multiplet. In ref. [6], in turn, the N=2{D=3 model is formulated in terms of
a single gauge multiplet that encompasses the physical scalar among its components. We
claim that we place ourselves in the appropriate context for generating topological vortices
[12], an issue which has not still been thoroughly investigated.

Our construction is performed in terms of D=3{component �elds. It would also be
interesting to carry out the dimensional reduction while working in superspace, namely,
to dimensionally reduce the N=1{D=4 superspace action without passing through com-
ponents. The D=3 superspace action must be manifestly N=2 supersymmetric and its
component-�eld projection is to be compared with the action as written in eq. (34). The
three dimensional version of the model may also be written in terms of N=1{super�elds.
The results of our e�orts in this direction will be soon reported elsewhere [13].

Finally, by choosing a suitable N=2{matter self-interaction potential one can �nd out
self-dual vortex con�gurations and derive the central charge of the N=2{susy algebra.
These results will be presented in a forthcoming communication [14].
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