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ABSTRACT

We discuss the renormalization aspects of topological super-Yang-Mills field theory in
N=1 superspace. Our approach makes use of the regularization independent BRS al-
gebraic technique adapted to the case of a N=1 supersymmetric model. We give the
expression of the most general local counterterm to the classical action to all orders of
the perturbative expansion. The counterterm is shown to be a BRS-coboundary, imply-
ing that the cohomological properties of the supertopological theory are not affected by
quantum effects. We also demonstrate the vanishing of the Callan-Symanzik S-function
of the model by employing a recently discovered supersymmetric antighost Ward identity.
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1 Introduction

One of the most fruitful theoretical achievements of the last decade has been the construction
of the topological Yang-Mills field theories by Witten [1]. In their original formulation, these
models were conceived to provide an operational tool for the evaluation of the Donaldson’s
invariants of four-manifolds [2].

The topological field theories are also interesting from a physical viewpoint: they are
conjectured to describe the unbroken phase of general covariance in quantum gravity [1].
Hence, it seems justifiable to analyze its ultraviolet behaviour at one-loop level 3, 4, 5, 6, 7, 8]
or even to all orders of the perturbative expansion [9, 10].

On the other hand, one is aware of the remarkable finiteness features displayed by a large
class of supersymmetric quantum field models: non-renormalization theorems [11], miracu-
lous amplitude cancellations [12, 13] and the complete vanishing of the gauge S-function of
some extended theories [14]. By taking all these facts into account, we could eventually ask
ourselves whether manifest supersymmetry may also entail any significant improvement to
the renormalization properties of Witten’s topological model. However, to investigate this
issue in more detail, one should verify if the topological structure of the theory is consis-
tent with the supersymmetric formalism, i.e. if its supersymmetric generalization is indeed
feasible. Fortunately, in ref.[15], Birmingham et al clarified this last point and succeded in
writting down an action functional which generates supersymmetric (anti) self-dual equa-
tions, corresponding to a topological super- Yang-Mills theory at the level of component fields.
Soon after, the complete N=1 (and also N=2) superspace version of the model was built up
by Ader et al in [16, 17], allowing us to employ the powerful superfield machinery which is
known to keep supersymmetry manifest at all steps of the renormalization procedure.

This is the purpose of this letter: to study topological super-Yang-Mills theory in the
ultraviolet regime by using the algebraic BRS technique [18, 19, 20] adapted to N=1 super-
space [21, 22]. As a result, one determines the most general local counterterm to the action
to all orders and in a regularization independent way. We observe then that the number
of field monomials appearing in the counterterm expression is substantially reduced when
compared to the already existent non-supersymmetric computations [9, 10]. This is due
to supersymmetry and to an additional set of symmetry constraints which show up when
a Landau gauge is enforced in superspace, suggesting that supersymmetry might play an
interesting role in the perturbation theory of topological models. The present paper may
be considered as the conclusion to the algebraic renormalization programme of the Witten’s
model which was initiated in [9].

We organize the work as follows: in section 2, one describes the super-topological model in
the classical approximation and in a Landau type gauge, in section 3, we address the problem
of the absence of anomaly in the Slavnov-Taylor identity and determine the counterterm
underlining some of its properties. Section 4 contains some concluding comments.
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2 The Classical Approximation

We start by recalling the notations and conventions adopted by Ader et al in refs.[16, 17]. In
order to properly describe the supersymmetric (anti-)instantonic configurations, one is led
to define the topological N=1 super-Yang-Mills theory in a rigid superspace based on a four-
dimensional Euclidean space instead of a Minkowskian one. As explained in detail in [16],
the geometric invariance group which is of relevance here is SO(4,R) ~ SU(2,C)® SU(2,C)
implying that it is impossible to connect left and right handed spinors through complex
conjugation. The main consequence for supersymmetry is that, in principle, the a and &
indices are to be understood as totally unrelated. Still, all the formal manipulations of N=1
superspace remain valid in the case at hand.

Following the standard construction of the N=1 supersymmetric gauge models, one in-
troduces the gauge real superfield V (the prepotential) which takes values in the adjoint
representation of an arbitrary compact gauge group G. In the antichiral representation the
two independent field-strengths read as:

W, =¢e [—D2 (e"vDaev)] eV (2.1)
and
Wi = D? (¥ Dse™) (2.2)

with D, and Dy standing for the two supersymmetric covariant derivatives. The quantities
(2.1) and (2.2) are then employed to define an action functional that generalizes the second
Chern class in N=1 superspace, viz.

1 I
invz_AT / « a_/d Wd a} .
Simo. m&r{ dSWoW, — [dswawel (2.3)
where dS = d*zD? and dS = d*zD? are the chiral and antichiral integration measures
respectively (see refs.[21, 22]). One can convince himself that the gauge invariant action
Sine. 1s also a topologically invariant object by introducing a deformation or shift as:

51V = ‘I[, S]‘I’ = O, (24)

with ¥ representing the topological ghost, a real superfield belonging to the adjoint rep-
resentation of G and bearing one unit of Faddeev-Popov ghost charge. Now, as it may be
directly seen, the s; operation acts onto (2.3) to give

Y — 1 1 -V o 7 TA/ &
$1Sim. = 5 Tr {/dV(e s167™V) (VoW, — Va0 )} (2.5)

where dV = d*zD?D? is the real integration measure over the whole superspace. It turns
out then that the deformation expressed in (2.5) above 1s zero due to the Bianchi identity:

VoW, = VW4, (2.6)

the gauge supercovariant derivatives V,, and V being given in the antichiral representation
by:
Vo= D,, Vi = eYDge V. (2.7)
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Table 1: Dimensions and Faddeev-Popov ghost charges of the superfields.

VU ey [y [®]® ] 0a | ba |[AJA| BBl 1B B
dm |00 0]0]0|0]3/2[32[2] 22212222
N, o1 |1 ]t 2(2]1]0]2|2]al1]1]1l0]0

Let us also underline another noteworthy aspect about the classical action in (2.3): Sina.
is a pure surface term in flat Euclidean space, as it is its bosonic counterpart (i.e. the
second Chern class). As a consequence, this supertopological piece will not contribute to the
renormalization process one is aiming to analyze. In fact, the field-strengths do obey the
constraint:

D*(WeW,) — DX (WaW4) = 9™ A,,. (2.8)

Now, to quantize the model one has to introduce additional superfields in much the same
way as in [23, 24, 25]: a pair of antichiral spinor superfields (b4, %4) and two couples of chiral
and antichiral ghost superfields, (c4,®) and (¢, ®) respectively. We need moreover the
Lagrange multipliers (B, #) and the antighosts (c_, A) taken as chiral superfields, as well as
their antichiral partners (B, 8) and (¢-,A). All the aforementioned variables are Lie algebra
valued and possess dimensions and Faddeev-Popov ghost charges as attributed in Table 1.
The nilpotent BRS transformations proposed in [16] write as below:

sV =T+ 3[V,cp + 8]+ han (£v)™ (4 — &4)
n=0
=U+(cr—e)+;Vier + ]+ 50V, WVer —ell+--,

oo 2n
sU=—2{U,cy +¢r} =D han y_ (£v) Ly (£v)™ (g — )+
n=1 =1

=3V @+ 8] = > hon (£1)*(2 - @)
n=0
=3 {V e+t -5 {U Ve -} -5V AV, e —a 4+ +
—(®+®)— iV, 0+ 9] - LV, [V, 0+ Q] +---,

scy = —1{cy,c1} + @, s® = —[c;, D],
sty = —3{en, e} + 9, 5@ = —[ey, D],
s = bay sbs = 0,
sA =8, sp =0,
sA =8, B =0,
sc_. = B, sB =0,
se_ =B, sB =0,



-4 - CBPF-NF-010/96

where the constants hy, are given by (ho =1, hy = &, hy = =L ...) and £y (or £L£yg) is for
the Lie bracket!, i.e.
Ly =V, -]. (2.10)

The next step consists in introducing a specific gauge-fixing term in order to restrain the

quantization process to the (anti-)instantonic configurations of the gauge superfield. The
Landau type gauge-fixing action to be adopted here contais three BRS-exact pieces [16]:

Sy= — sTr {/dSdeW"’+/dV(A+7\)\I/+/dV (c_+E_)V}

128
= LTr {/dS’ [EWd — e D? ((s eV)D% ™V + eV D%s e‘v) + Psle W“]] +
198 & o 1 1 a4y
+[aV [(B+ BV + (A +A)s¥ + (B+ B)Y = (c- + E_)SV]}
(2.11)
where
speV = VY _ eV
o n ) ) 2.12
= S LS ey o =1
n=1 " =1
Here, besides the supersymmetric self-duality constraint,
Ws =0, (2.13)

two parameter free gauge-fixings [21] are imposed on the topological ghost and the prepo-
tential respectively. In particular, the non-covariant conditions

D*¥ = D*V =0, (2.14)

are differing from the standard covariant gauge choices of ref.[16]. We stress however that in
the present work one is interested in the ultraviolet properties of the model and the equations
(2.14) are most suitable to accomplish this task, and surely, they cannot modify the physical
output (see also [10]). One should observe that the covariant gauge-fixing on the topological
ghost does indeed play a crucial role in the computation of the topological observables of
the theory [1]. However, we shall not attempt to obtain these latters presently.

To translate the BRS invariance of the model into a Slavnov-Taylor identity, we introduce
external sources (V*, ¥*, ¢*, ¢, ®*, ®*) coupled to specific parts of the transformation laws
n (2.9). The external coupling is then given by:

oo = Tr { Jav P, ey ) + W50+ [dS[Ceser +8750] + [d8 [esey + é*sé]} ,
(2.15)

in which the polynomial

1 oo
P(V,ct,¢4) = §[V,c+ + ]+ D hon (£9)"" (e —E4) (2.16)

n=0

1A grading has to be understood here since ¥ is an anticommuting superfield.
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Table 2: Dimensions and ghost charges of the sources.

V* ‘IJ* clk ét @* @*
dim. | 2 2 3 3 3 3
N, |1 =2 =2—=2]-3]-3

is the gauge transformation part in sV. Moreover, the souces are required to transform in
BRS doublets {9, 10]:
sY* =10, sU* = =Y

sc* =0, s@* = —c*, (2.17)
sc* =0, s®* = —¢c*.

One observes then that S, is also a pure BRS variation:
oy = —sTr { Jav @ PW,c.e)+ [d5 @ crer) + [ dS(é*a+a+)} (2.18)

We collect dimensions and Faddeev-Popov ghost charges of the sources in Table 2. The
complete invariant classical action X is then taken to be:

Y= S_qf + Se:z:t., (219)

which is clearly BRS exact. It should be stressed once more that, due to eq.(2.8), no
contribution is to be expected from Si,,.. As a matter of fact, the constraint (2.8) being
almost obvious in a Minkowskian space-time, will be taken here as a true renormalization
condition specifying that, also in the Euclidean regime, S;,,. is some topological invariant,
1.e. a number.

The Slavnov-Taylor Identity:

The Slavnov-Taylor identity obeyed by the complete action X is:

S(%) =0, (2.20)
with
§S N6 ST 6L 6%
S()= Tr {/dV \D5§+ 55+ 1550~V 5o

5C+ e 5c+ 60* 6@ A 5 c 5(19*
6T _ N8N SEET L 6T 6% 6% 6%
+/ds[ o, scoc, "o s T heay, ”3 B ‘:55*}}_

(2.21)
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From (2.20) above one reads off a nilpotent linearized operator at X:
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Br= Tr {/dv[ 6§)+565% %53 ;\I‘?*&‘;+g§6$*—v*;§*]+
+fas _%—%ﬁ:—%% f%%
2 et ct]s on
+[as é%‘%&i fiai*J“%%J’
+2§5§>*+ “55. T 5R +Bi_5*5:1$>*]}'

Next, we turn to the additional classical Ward identities of the supertopological model.

The Gauge-Fixing Conditions:

The first set of identities consists of the Landau gauge-fixing conditions [20] imposed on the
superfields ¥ and V:
) 8% ) 1 73 6%

== 1Dy =m0, m=mDY, Eeik

63 128 w 128 SB 128 ’ m DV

(2.23)

The Ghost Equations:

Upon (anti)commuting the identities above with (2.20) one gets the following ghost equa-
tions:

6%, -, 68 5% 5%
sa T 5 =0, i T w5 =0
(2.24)
5% sy 58 5%
s Ty = ml'Y ot = DY

The Supersymmetric Antighost Equations:

The antighost equations? are global constraints obeyed by ¥ and may be derived whenever
a Landau gauge is imposed [26, 27]. Presently, we deal with two of them. The first equation
controls the coupling of both ® and ® ghosts:

GY = A (2.25)

class.>

?We thank O. Piguet for pointing out to us the existence and usefulness of these equations in N=1
superspace.
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gz/ds (;5%+ [A,%D +fd5’ (5%+ {A,%D, (2.26)

Al == [aV [¥7,V] - [dS[0%c,] - [d5[8",24]. (2.27)
It can be commuted with (2.20) to give a further Ward identity:

with

and

fz = A-c}l-ass.? | (2'28)
with
5 § 8 5 )
7= fas (5o o] s+ [evss] - [on )
§ [, 6 ) ) 6
o fas (g )+ (R o] - (o) )+ e
+ /dV ([vg%]— \Iféf;])
and

Aloer = [AV (=" VI (97, 9) - [dS ([, 4] +[07,8]) — [dS (1", ]+ (87, 8]). (2:30)

The second antighost equation is related to the ghosts ¢; and ¢;:

G_% =AY, (2.31)
with
R e R I
A )
and
N / dV (=[V*, V] +[0*, 0]) — / dS ([, ¢4 ] +[@*, 8]) — / dS ([, 4] +[®", 8]). (2.33)

It is important to remark that the two supersymmetric antighost equations obtained here,
(2.25) and (2.31), are both classically broken, the breaking pieces being integrated monomials
which are linear in the quantum fields and do not demand specific renormalizations.

Rigid Invariance:

Finally, the anticommutation of the antighost equation (2.31) with (2.20) leads us to the
exact rigid gauge invariance of the model. Indeed, one has:

I/V'r'ig.E = Oa (234)
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where
v o () o e o)
o (e ] )
4 [A, %] + {c_, ;;—} + {ﬂ, 6‘;} + [B,E%D + (2.35)
+ /dS C+,%}+ Q% + -6*,6‘; +{<i>*, 5:1; +{z@d,% +
bl b ) o)

In the next section one will be concerned with the construction of the most general local
counterterm to the complete action given in (2.19). To this aim we shall discuss the quantum
extension of the above derived Ward identities as well as the Slavnov-Taylor identity (2.20).

3 The BRS Cohomology: the Local Counterterm

In this section we follow the same reasoning of refs.[9, 10] to obtain the general counterterm

o (2.19). As a first step, one has to prove the renormalizability of the Slavnov-Taylor
and the Ward identities of the previous section. The gauge conditions (2.23), the ghost
equations (2.24) and the antighost equations (2.25) and (2.31) may be directly shown to
hold at the quantum level just by repeating the arguments of [21, 26]. The Ward identity for
rigid transformations (2.34) is known to be renormalizable thanks to the Whitehead lemma.
Thus, we concentrate our attention on the Slavnov-Taylor identity (2.20).

To study the cohomology of the linearized operator By one introduces a filtering:

5 6 * * 6
N= fav ( stV 5V* Y 5\p*>+
/ds 2er 120 yopl 4o O +2,8 +onl
tocy 50 §B " 6c_ 5B §A
~f(._ 6 = 6 § 1) 5 ) )
+ /dS (2C+E+2¢)5+26 6 +2’l/)a6¢a B +2c__ — +2'36ﬁ+2A )
(3.1)
which induces a decomposition such that
Bz =Y BY, (3.2)
n=0

and

[V, By = nBY). (3.3)
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We give the expressions of B(EO) and B(El):

© _ d by,
B /dV( N*)Jr/ds(@é - 9
+/dS <i>i+ d +B5+B—6——**5 .
8ey T o0s se. 5o
X 6 5
(1) _®)\— !
/dV< g5 — (0 = )5 — s(Deb + B+ B) ot
5
Ls(ﬂJrﬁ+c_+c_)w>+ (3.5)

+[ds ((Dzv*) 5i* (D) ) [as <D2V*) + (D20 52*)'

Now, by means of a simple inspection, one notices that the nilpotent operator Bg)) trans-

forms fields and sources according to a BRS-doublet pattern. Hence the cohomology of Bg])
is empty [28]. As a consequence, the cohomology of By is empty too [29]:

H*(Bs) = 0. (3.6)
The main conclusion here is that the Slavnov-Taylor identity is non-anomalous.

To write down the general counterterm, 33, we notice from the BRS invariance and from
(3.6) that: 3
= BzA, (3.7

here A is an integrated local functional of dimension four and ghost charge minus one.
Moreover, Y has to obey the following stability constraints:

6% 6% 6% 6%
e 20 =Z=0. ==0 3.8
Yo 0, Y] " 6B " 6B ’ (3:8)
together with
&, L, 68 6% _ 6% ) 6% ) 6%
24 1 p2 - 04, 1 p2 — Y2 1 pe - o= 2 —
SA + 128 S+ 0’ SA + 128D S+ 0’ Sc + 128D SV* 0’ Y 128D SV* 0’
(3.9)
and ; 5 3 3
gyx =0, FX =0, G_.¥=0, W,,.2=0. (3.10)

Hence, up to V superfield redefinitions, the local counterterm expressing the potential diver-
gences of the model turns out to be:

5 = ByTr {/dV (VY + 0200 + ag\i'*\IJV)} (3.11)

where, X
Ve=Vr— (e te), U= L (A+A), (3.12)

128
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and @y, a; and a3 stand for arbitrary coefficients. At this point, one observes that the
quantum effects do not modify the cohomological character of the theory, as is also the case
of the purely bosonic topological Yang-Mills theory.

As another interesting conclusion, we notice that, analogously to the bosonic case [6, 7,
9, 10], the Callan-Symanzik B-function does indeed vanish here. This last fact is entirely
due to the supersymmetric antighost equation (2.31) which rules out the counterterm

BTt / d5 (bs%%) = Tr / S (W W) = Tr / S (WoW,,), (3.13)
where the bs-superfield equation of motion and eq.(2.8) were used.

Let us close our investigation by mentioning once more that the above presented results
are regularization scheme independent and hold to all orders of the perturbative expansion.

4 Concluding Remarks

In this work we studied some of the renormalization aspects of the topological super-Yang-
Mills field theory defined in N=1 superspace. By using the algebraic BRS technique in
superspace, i.e. renormalized supersymmetry [21], one was able to show that many of the
well-known properties of the bosonic topological Yang-Mills theory were manifest also in its
supersymmetric extension. In fact, the most general local counterterm of the supersymmetric
model is a BRS-exact integrated polynomial in the fields and sources, indicating that the
cohomological nature of the theory is not affected by quantum fluctuations. Moreover,
the Callan-Symanzik #-function was shown to vanish due to a specific stability constraint,
namely, the antighost equation eq.(2.31), which is seen to hold when the non-covariant
Landau gauge-fixing is imposed onto the topological ghost superfield eqs.(2.14). We believe
that the present study may be of interest in connection with some supertopological gauge
theories which have been proposed in the recent literature [30].
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