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Abstract

A combination of recent astrophysical and cosmological observations seems to indi-

cate that we live in an accelerating Friedmann-Lemâ�tre-Robertson-Walker (FLRW)

universe whose spatial sections are nearly or exactly flat (
0 ' 1). Motivated by

this, and in order to complete our previous investigations on the detectability of

nearly f lat hyperbolic and spherical universes, we study here the problem of ob-

servational detection of the topology of FLRW universes with (exactly) flat spatial

sections. To this end, we first give a complete description of the diffeomorphic clas-

sif ication of compact flat 3-manifolds, and determine the expressions for the injec-

tivity radii (rinj), and for the volume of each class of Euclidean 3-manifolds. There

emerges from our calculations the undetectability conditions for each (topological)

class of flat universes. We also study how the bounds provided by recent cosmologi-

cal observations can be used to identify flat models having undetectable topologies.

To materialize and quantify the study of the detectability of flat topologies we use

the undetectability conditions and an assumption by Bernshte��n and Shvartsman

which permits to establish a relation between topological typical lengths to the dy-

namics of flat models. As a particular result we show that none of the models of

two specific classes of flat universes which satisfy the Bernshte��n and Shvartsman

condition has an undetectable topology, even if current catalogues of clusters of

galaxies are used. A modified version of Bernshte��n-Shvartsman assumption is also

suggested and used to construct a great number of flat universes with undetectable

topology, even if cosmic microwave background radiation is used.
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1 Introduction

A great deal of work has recently gone into studying the possibility that the universe may

possess compact spatial sections with a nontrivial topology, including the construction of

different topological indicators (see, for example, refs. [1] { [3]). A fair number of these

studies have concentrated on cases where the densities corresponding to matter and vac-

uum energy are substantially smaller than the critical density. This was motivated by the

fact that until very recently observations favoured a low density universe. However, recent

measurements of the position of the first acoustic peak in the angular power spectrum of

cosmic microwave background radiation (CMBR) anisotropies, by BOOMERANG-98 and

MAXIMA-I experiments, seem to provide strong evidence that the corresponding ratio

for the total density to the critical density, 
0, is close to one [4, 5].

In addition an important aim of most of previous works in Cosmic Topology has often

been to produce examples where the topology of the universe has strong observational

signals, and can therefore be detected and even determined. Until very recently it was

never considered in detail the possibility that the topology of the universe may not be

detectable from the current astro-cosmological observations due to its almost 
atness.

In two previous articles [6, 7] we have studied the question of detectability of a possible

nontrivial compact topology in locally homogeneous and isotropic universes with total

density parameter close to (but different from) one, i.e. the so-called nearly 
at hyperbolic

or spherical universes. We have employed an indicator Tinj which is defined by the ratio

of the injectivity radius, rinj , to the depth of a given catalogue, dobs. In a recent article

Gausmann et al. [8] have also studied which spherical topologies are likely to be detectable

by using crystallographic methods. An important outcome from these studies [6] { [8] is

that by using any method of detection of topology which rely on observations of repeated

patterns the topology of an increasing number of nearly flat (hyperbolic and spherical)

becomes undetectable as 
0 ! 1. Thus, it would appear at first sight that in the limiting

case 
0 = 1 the topology of FLRW universes would definitely be undetectable. It turns

out, however, as we discuss in the present work, that when 
0 is exactly one the topological

possibilities for the universe are completely different, and the detectability of cosmic

topology may again become possible.

In this article we complete our previous works [6, 7] by extending the analysis of de-

tectability of cosmic topology to the flat cases. We also study how the bounds provided by

recent cosmological observations can be used to identify flat models having undetectable

topologies. The underlying cosmological setting and new results of this paper are stated

and structured as follows.

In Section 2 we give an account of the cosmological framework employed throughout

this work. Section 3 gives a complete description of the diffeomorphic classification of

compact flat 3-manifolds. In this section we also determine the expressions for the injec-

tivity radii rinj and present the formulae (derived in Appendix B ) for the volume for

each class of Euclidean compact 3-manifolds. In Section 4 we present a brief discussion
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of the question of detectability of topology, recasting (and refining upon) some of the

detectability aspects discussed in our previous articles [6, 7]. In Section 5 we use the

results of Sections 3 and 4 in connection with an assumption first suggested by Bern-

shte��n and Shvartsman [9] to materialize and quantify the problem of the detectability

of flat topologies. We note that with Bernshte��n-Shvartsman assumption one can estab-

lish a relation between topological typical lengths to the dynamics of flat models.1 As a

particular result we show that all models of two specific classes of flat universes which

satisfy Bernshte��n-Shvartsman hypothesis have a detectable topology (at least in principle

for some observers) if the existing catalogues of clusters of galaxies are used. However,

we also show that an alternative version of Bernshte��n-Shvartsman assumption leads to

flat universes with undetectable topologies, according to the most recent observations,

and even if CMBR is used. Section 6 contains a summary of our main results and fur-

ther remarks. The details of the isometric classification of compact flat 3-dimensional

manifolds is treated in Appendix A. Finally in Appendix B we present the relevant piece

of calculations which lead to the expressions of the volume of all compact Euclidean

3-manifolds.

2 Cosmological preliminaries

We shall assume that the universe is modelled by a 4-manifoldM which allows a (1 + 3)

splitting,M = R�M , with a locally isotropic and homogeneous Robertson-Walker metric

ds2 = �c2dt2 +R2(t)
h
d�2 + f2(�)(d�2 + sin2� d�2)

i
; (2.1)

where t is a cosmic time, c is the speed of light, f(�) = �, sin�, or sinh�, depending

on the sign of the constant spatial curvature (k = 0; �1), and R(t) is the scale factor.

Furthermore, although we will deal only with models with Euclidean spatial sections,

for the sake of comparison we shall initially consider that the 3-space M is a multiply

connected compact manifold, i.e. thatM = fM=�, where � is a discrete group of isometries

of the covering space fM acting freely on fM . The covering space fM takes one of the forms

E3; S3 orH3 [corresponding, respectively, to flat (k = 0), spherical (k > 0) and hyperbolic

(k < 0) spaces]. The group � is called the covering group of M , and is isomorphic to the

fundamental group �1(M).

For non-flat models (k 6= 0), the scale factor R(t) is identified with the curvature

radius of the spatial section of the universe at time t, and thus � can be interpreted as

the distance of any point with coordinates (�; �; �) to the origin of coordinates (in fM ),

in units of curvature radius, which is a natural unit of length and suitable for measuring

areas and volumes. For flat models, � can still be interpreted as the distance of any

1The Bernshte��n and Shvartsman hypothesis is an attempt to establish a connection between local

and global properties of the universe, and may be looked upon as a physical ground for the existence of

a fundamental length in flat cosmological models.
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point with coordinates (�; �; �) to the origin of coordinates in units of R(t), but since the

curvature radius of Euclidean 3-space is infinite, in this case there is no natural unit of

length, so we will measure lengths in megaparsecs (Mpc).

In the light of current observations, we assume the current matter content of the

universe to be well approximated by pressureless dust plus a cosmological constant [10].

The redshift-distance relation in FLRW models with Euclidean spatial sections can be

written in the form

d(z) =
c

H0

Z 1+z

1

dxp

�0 + 
m0x3

; (2.2)

where 
m0 and 
�0 are, respectively, the matter and the cosmological density parameters.

For flat spatial sections we obviously have the constraint 
0 � 
m0 + 
�0 = 1. Finally

we note that the horizon radius dhor is defined as the limit of (2.2) when z !1.

To close this section we remark that it is unlikely that astro-cosmological observations

can fix the density parameter 
0 to be exactly equal to one. However, since the algebraic

structure of the fundamental group of a constant curvature manifold is different for each

one of the three constant curvature 3-geometries, the identification of the topology of

space would unambiguously fix the sign of the 3-curvature. Moreover, if it turns out that


0 is exactly equal to one, topology seems to be the only way to precisely determine such

a sharp value for 
0 [9].

3 Compact flat space forms

In this section we describe the classification of all flat compact 3-manifolds and calculate

the explicit expressions for the corresponding injectivity radii. Further, we also present

the formulae for the volumes of these 3-manifolds, which are obtained with some details

in the Appendix B. The expressions for the injectivity radii are needed to build the

topological indicator Tinj (Section 4), which together with the expressions for the volumes

are employed in Section 5 to concretely discuss the detectability of the topology of classes

of compact flat cosmological models.

The diffeomorphic classification of Euclidean 3-dimensional space forms is well

known [11]. There are ten classes of compact Euclidean 3-manifolds, six of which are ori-

entable. Tables 3 and 3 give the diffeomorphism classes of orientable and non-orientable

compact Euclidean 3-dimensional space forms, respectively. In these tables, the triple

fa; b; cg is a set of three linearly independent vectors in Euclidean 3-space (basis). An

isometry in Euclidean 3-space is denoted by (A; a), where a is a vector and A is an

orthogonal transformation, and the action of (A; a) is given by

(A; a) : x 7! Ax+ a ; (3.3)

for any vector x. An isometry of the form (I; a), where I is the identity transformation,

is written simply as a.
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Class Generators of � rinj Volume

G1 a, b, c 1
2
jaj ja� b � cj

G2 (A1,a), b, c
1
2
minfjaj; jbjg jaj jb� cj

G3 (B,a), b, c 1
2
minfjaj; jbjg

p
3
2
jaj jbj2

G4 (C,a), b, c 1
2
minfjaj; jbjg jaj jbj2

G5 (D,a), b, c 1
2 minfjaj; jbjg

p
3
2 jaj jbj2

(A1,a),

G6 (A2,b+ c), 1
2 minfjaj; jbj; jcjg 2jaj jbj jcj

(A3,a+ b+ c)

Table 1: Compact orientable 3-dimensional Euclidean space forms. Diffeomorphism classes of compact

orientable 3-dimensional Euclidean space forms. The first column contains Wolf's notation for each

class. The second gives the generators of the corresponding covering groups. The third column gives

the injectivity radius, and the fourth the volume. An isometry in Euclidean 3-space is written as (A; a),

where A is an orthogonal transformation and a is a vector. The action of the isometry (A; a) on Euclidean

3-space is given by (3.3), while the orthogonal transformations in the second column are given by (3.4).

From the isometric classification of flat 3-manifolds (Appendix A) one has that for class G1 the vectors

a; b; c can always be ordered such that jaj � jbj � jcj. Further, for the class G2 the vectors b and c can

be always be ordered such that jbj � jcj. Finally, for the classes G3 { G5 one always has jbj = jcj. This

makes apparent why the parameters jbj and jcj do not appear in the expression of rinj for the class G1,

and also why jcj does not appear in the expressions for rinj for the classes G2 � G5.

The orthogonal transformations that appear in the classification of the Euclidean

space forms take, in the basis fa; b; cg, the following matrix forms [11]:

A1 =

0BB@
1 0 0

0 �1 0

0 0 �1

1CCA ; A2 =

0BB@
�1 0 0

0 1 0

0 0 �1

1CCA ; A3 =

0BB@
�1 0 0

0 �1 0

0 0 1

1CCA ;

(3.4)
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B =

0BB@
1 0 0

0 0 �1
0 1 �1

1CCA ; C =

0BB@
1 0 0

0 0 �1
0 1 0

1CCA and D =

0BB@
1 0 0

0 0 �1
0 1 1

1CCA ;

for the rotations, and

E =

0BB@
1 0 0

0 1 0

0 0 �1

1CCA and F =

0BB@
1 0 2

0 1 1

0 0 �1

1CCA : (3.5)

for the reflections.

Class Generators of � rinj Volume

B1 (E,a), b, c 1
2 minfjaj; jbj; jcjg ja� bj jcj

B2 (F ,a), b, c 1
2 minfjaj; jbj; jcjg ja� bj jc� (a+ 1

2b)j

B3 (A1,a), (E,b), c
1
2
minfjaj; jbj; jcjg jaj jbj jcj

B4 (A1,a), (E,b+ c), 2c 1
2 minfjaj; jbj; 2jcjg 2 jaj jbj jcj

Table 2: Compact non-orientable 3-dimensional Euclidean space forms. Diffeomorphism classes of com-

pact non-orientable 3-dimensional Euclidean space forms. The contents of the columns are of the same

type as in Table 3. The orthogonal transformations in the second column are given by (3.4) and (3.5).

Euclidean manifolds are not rigid, in the sense that they can be deformed while still

conserving its zero curvature at every point. As a consequence, manifolds in each class

are topologically equivalent but can have different sizes, and even shapes, i.e. although

diffeomorphic they may not be isometric. For example, a 3-torus can be constructed

by taking any parallelepiped and identifying opposite faces by translations. Usually, it is

considered a parallelepiped with mutually orthogonal faces (a brick), the simplest example

being that of a cube. However, note that parallelepipeds with different volumes give rise to

non-isometric torii. Stretching the parallelepiped in one or more directions while leaving

the volume constant also gives rise to non-isometric torii.

More exactly, the generators of the covering group of a torus form a basis in Euclidean

3-space. But the only condition for three vectors in Euclidean 3-space to form a basis
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is to be linearly independent. No restriction is imposed to the lengths of these vectors,

nor to their mutual orientations, i.e. the angles between them. These six parameters

(three lengths and three angles) uniquely characterize "locally" a torus in 6-dimensional

parameter space formed by the lengths of the basis vectors and the angles between them.

So, two torii with these six parameters approximately equal are non-isometric, but very

similar in shape and size. However, this characterization is not unique ("global"?). This

can be seen by considering any basis fa; b; cg, and using it to construct another basis,

say fa; a+ b; cg, that generates the same fundamental group, and hence the same torus.

Clearly the lengths of the vectors and the angles between them are very different for

these two bases. Thus we have two different sets of these six parameters characterizing

the same torus.

It is therefore clear that, to uniquely characterize isometrically a torus, one has to

perform some identifications in the 6-dimensional parameter space formed by the lengths

of the basis vectors and the angles between them. This resulting quotient space is a kind

of modular space for the torus, and uniquely ("globally") gives the isometric classification

for it. In general the modular spaces are not manifolds, as it is in the special case of the

torus. The isometric classification, i.e. the modular spaces, of Euclidean 3-dimensional

compact space forms is given with some details in Appendix A.

A natural way to characterize the shape of compact manifolds is through the size of

their closed geodesics. A suitable indicator is constructed using the injectivity radius

defined by (see [6, 7])

rinj =
1

2
min

(g;x)2e��Pf�g(x)g ; (3.6)

where e� denotes the covering group without the identity map, i.e. e� = � n fidg, and P

is any fundamental polyhedron for M . The distance function �g(x) for a given isometry

g 2 � is defined by

�g(x) = d(x; gx) ; (3.7)

for all x 2 P . Clearly here d is the Euclidean metric. The distance function gives the

length of the closed geodesic associated with the isometry g 2 � that passes through the

projection of x onto M . So, from (3.6) and (3.7) one has that the injectivity radius is

half of the length of the smallest closed geodesic in M , or equivalently, the radius of the

smallest sphere inscribable in M .2

In a globally homogeneous manifold, the distance function for any covering isome-

try g is constant, and so is the length of the closed geodesic associated to g and that

passes through any x 2 M . However, this is not the case in a locally, but not globally,

2Incidentally, as far as we are aware, the injectivity radius was introduced in Cosmic Topology by

Sokolov and Shvartsman [12] who called it the \minimum gluing parameter l". It was defined by saying

that \at distances r < l there isn't a single ghost". In modern terms it means that any survey with

depth smaller than the injectivity radius does not present multiple images nor pattern repetitions (see

Section 4).
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homogeneous manifold, so the calculation of rinj for these cases requires some careful

work.

To compute rinj it is convenient to choose a faithful representation of M , which is the

Dirichlet domain P of �, to be centered at the origin of Euclidean 3-space. Consider the

subset � � e� consisting on the isometries that transform P to a neighbouring cell in the

correspondent tessellation. Thus for all g 2 �, gP \ P is either a face, an edge, or a

vertex of P . Now, for any g = (A; ag) 2 �, the set of points that A leaves unchanged (the

axis of rotation if det(A) = 1, or the plane of reflection if det(A) = �1) passes through
the origin and thus intersects P , so

min
x2P

f�g(x)g = jakgj ; (3.8)

where akg is the projection of ag onto the set of fixed points of A. From eqs. (3.6) and (3.8)

and taking into account the above reasoning we have

rinj =
1

2
min

(g;x)2��P
f�g(x)g (3.9)

=
1

2
min
g2�

�
min
x2P

f�g(x)g
�

(3.10)

=
1

2
min
g2�

fjakgjg : (3.11)

Analyzing separately each case from Tables 3 and 3 one can compute the injectivity

radius for any compact Euclidean 3-dimensional space form. The results are exhibited in

the third column of each table. Let us illustrate this procedure for the case of manifolds

of class G6. Firstly note that the matrices A1, A2 and A3 satisfy the products AiAj = Ak,

where the indices i; j; k run in a cyclic order. Secondly note that the vectors a, b, and

c, are parallel to the axes of rotation of A1, A2 and A3 respectively. As a consequence,

any isometry of the covering group of a manifold of class G6 is of the form � = (Ai; u),

where i = 1; 2; 3 and u is a linear combination of the vectors a, b, and c. Since � has no

fixed points, then the coefficient of a is a non-zero integer if i = 1, and similarly for other

values of i. It is now clear that uk is a multiple of a, b, or c for i = 1; 2 or 3 respectively.

Thus the minimum length of a closed geodesic in a G6 manifold is minfjaj; jbj; jcjg.
To conclude this section note that the volumes of all closed Euclidean 3-manifolds

are listed in the fourth column of Tables 3 and 3. The relevant calculations are given in

Appendix B.

4 Detectability problem in cosmic topology

One may conjecture whether there are fundamental laws that can restrict or even predict

the topology of the universe. Nevertheless, its detection and determination is ultimately

an observational problem. At present it is becoming clear that the detection of a possible

nontrivial topology of the universe may be a difficult problem to accomplish in view of the
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bounds on the cosmological parameters set by recent observations [6] { [8]. Indeed, it was

shown in [6, 7] (see also [8] for detectability of spherical spaces) that, if one uses pattern

repetitions, increasing number of nearly flat spherical and hyperbolic possible topologies

for the universe become undetectable as 
0 ! 1. It would appear at first sight that in

the limiting case 
0 = 1 the topology of such universes would definitely be undetectable.

It turns out, however, that when 
0 is exactly one the topological possibilities for the

universe are completely different, and the detectability of cosmic topology may again

become possible. In this section we shall briefly review some indicators of our approach

to the detectability of cosmic topology in order to make explicit in Section 5 that the

detectability of the topology for the flat cases becomes indeed a concrete possibility.

For cosmological models with compact spatial sectionsM which have nontrivial topol-

ogy it is clear that any attempt at the discovery of such a topology through observations

must start with the comparison between the horizon radius and suitable characteristic

sizes of the manifold M . We use the injectivity radius as a characteristic size of M . The

ratio of the injectivity radius to the horizon radius,

T hor
inj =

rinj
dhor

; (4.12)

is very useful to identify cosmological models whose topology is undetectable through

methods that rely on the existence of multiple images or pattern repetitions in any sur-

vey. In fact, for the case in which T hor
inj � 1 the whole observable universe lies inside a

fundamental polyhedron of M , no matter what is the location of the observer in the man-

ifold (universe). In such cases no multiple images (or pattern repetitions) will arise from

any survey. Thus, any method for the search of cosmic topology based on the existence of

repeated patterns (multiple images) will not be capable of detecting the cosmic topology

| the topology of the universe is definitely undetectable in such cases.

We shall now discuss the detectability problem when we restrict the search to specific

catalogues. There are basically three types of catalogues which can possibly be used

in order to search for repeated patterns in the universe: namely, clusters of galaxies,

containing clusters with redshifts of up to z � 0:3; active galactic nuclei (mainly QSO's

and quasars), with a redshift cut-off of zmax � 4; and maps of the CMBR with a redshift

of z � 103. In this way, instead of dhor it is observationally more suitable to consider the

largest distance dobs = d(zmax) covered by a given survey, and define the indicator

Tinj =
rinj
dobs

: (4.13)

In this context, we shall refer to the region covered by a given survey by \observed

universe".

Now, in the cases when Tinj > 1, every source in the survey is inside a fundamental

polyhedron of M , no matter the location of the observer within the manifold. Actually,

the whole \observed universe" lies inside a fundamental polyhedron ofM . So, there are no

multiple images in that survey and every method for the search for topology based on the
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existence of multiple images is not capable of detecting the cosmic topology in this cases |

the topology of the universe is undetectable with this specific survey. Thus, there emerges

trivially from eq. (4.13) and the expressions for the injectivity radii for all classes of flat

manifods given in Section 3 the undetectability conditions for each (topological) class of

flat universes. Equations (5.17) of Section 5 constitute an example of such conditions for

the flat classes G3 and G5 (see also [13] for another explicit example).

The bounds provided by recent cosmological observations [4, 5] can be used to iden-

tify flat models having undetectable topologies, since an absolute lower bound of rinj for

undetectability of flat universes can be obtained by calculating the horizon radius cor-

responding to the limiting values of the density parameters. Indeed, for 
m0 = 0:4 and


�0 = 0:6, one obtains dhor = 12600Mpc from equation (2.2). Thus, flat universes for

which rinj � 12600 have undetectable topologies.3

Some remarks are in order here. The indicator Tinj is useful for the identification

of cosmological models whose topology is undetectable by search methods based on the

presumed existence of multiple images, for when Tinj � 1, the whole "observed universe"

(region covered by a specific survey) lies inside a fundamental polyhedron ofM . However,

it should be noted that without further considerations, nothing can be said when Tinj < 1.

In fact in this case, despite the radius of the depth of a given survey ("observed universe")

be larger than rinj , it may be that, due to the location of the observer, the "observed

universe" would still be inside a fundamental polyhedron of M making the topology

undetectable. This is the case when the smallest closed geodesic that passes through the

observer is larger than 2dobs.

There is the case when dobs is larger than the length of the smallest closed geodesic

that passes through the position of the observer, but not too much larger, so that only a

small fraction of the "observed universe" contains multiple images. Current methods that

look for multiple images are not sensitive enough to detect this small quantity of copies,

so even in this case the topology of the universe would be in practice undetectable until

the suitable refined new methods are developed (and used). These and other points will

be dealt with in future works.

The topology of a given cosmological model being undetectable for a given survey up

to a depth zmax, clearly may be detectable by using other deeper survey. However, the

deepest catalogue (survey) ever constructed will have zmax < zSLS (zSLS � 103 being the

redshift of the surface of last scattering). Thus the quotient (4.13) computed with zSLS
is a lower bound for the indicator Tinj. It turns out that, in practice, there is almost no

difference if we push zSLS to infinite, and take T hor
inj as the lower bound for Tinj (see [6, 7]).

3Note that, e.g., for current catalogues of clusters (zmax = 0:3), the undetectable flat universes are now

those for which rinj � 1170Mpc, making clear that relative lower bounds arise when different catalogues

are used.



CBPF-NF-010/02 10

5 Detectability of flat topologies: a case study

Since there is no natural unit of length in Euclidean geometry, there is no natural way

to relate the typical lengths of the spatial sections of a flat cosmological model with the

density parameters within the General Relativity framework, as in the case of non-flat

cosmological models (see e.g. [9] and [6]). So we have to rely on other kinds of grounds

to establish such a connection.

Following Bernshte��n and Shvartsman [9] we will suppose that the total number of

baryons in our universe equals the reciprocal of the square of the gravitational fine struc-

ture constant,

N = ��2gr =

 
Gm2

p

�hc

!�2
� 2:87 � 1076 ; (5.14)

where G is the gravitational constant, h = 2� �h is Planck's constant and mp is the proton

mass. This hypothesis enables one to construct cosmological models in which the volume

of the universe is related to cosmological parameters and fundamental physical constants.

A word of clarification is in order here. We remark that we are not claiming that (5.14)

is a realistic assumption for constructing theoretical models for our universe. Instead, our

intention here is, in the one hand, to illustrate how a hypothesis like (5.14), that may arrive

from, e.g., a fundamental theory unifying elementary particles with gravity, can be used

to construct models that can in principle be confronted with cosmological observations.

On the other hand, we will use Bernshte��n-Shvartsman assumption (5.14) to materialize

and quantify the study of the detectability of flat topologies, since it permits to establish

a relation between topological typical lengths (volume) and the dynamics of flat models.

Since the total baryonic mass is Mb = Nmp, the volume of our universe is

V =
8�

3

GNmp


bH2
0

; (5.15)

where we have used 
b =
8�G�b
3H2

0

, for the baryon density parameter. Taking the current

value for 
bh
2 = 0:03 and H0 = 100h kmMpc�1=s, with h = 0:7 (see, e.g. [5]), one

obtains

V � 2:9 � 109Mpc3 (5.16)

for the volume of the universe.

In order to illustrate the method of analysis of detectability of topology in these models,

let us restrict to those ones whose spatial sections have a G3 or G5 topology. Note that

the expressions for both rinj and the volumes of these two classes are identical, and the

other classes can be treated in a similar way. Let us also consider that we are looking for

multiple images with a catalogue of clusters of galaxies with redshift cut-off zmax = 0:3.

Using the values 
m0 = 0:3 and 
�0 = 0:7 (see [4, 5]) one obtains dobs = 1200Mpc. From

Table 3 we have that the region of undetectability is given by
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jbj > 2 dobs if jaj � jbj ;
jaj > 2 dobs if jaj < jbj : (5.17)

This region is shown in Figure 1, together with a curve of constant volume given

by (5.16). This figure shows that the region of undetectability does not intersect the

curve of constant volume, making clear that it may be possible to detect the topology

in such universes. However, the possibility of detecting and even deciding the topology

in these models depends on other factors such as the location of the observer in M , and

the quality and reliability of the catalogues and methods used for the search of repeated

patterns. We will deal with these problems in forthcoming articles.

Before closing this section we mention that if one introduces a modified version of

Bernshte��n-Shvartsman assumption in which N equals the reciprocal of the square of a

new gravitational fine structure constant now given by

��2gr =
�
Gmpme

�hc

��2
� 9:68 � 1082 ; (5.18)

where me is the electron mass, following the above reasoning one obtains a figure in

which the curve of constant volume lies in the undetectability region, making clear that

the topology of such flat universes of class G3 is undetectable even CMBR is used. We

shall not go into details of such a simple (and rather similar) calculations here for the

sake of brevity.

To close this section we note that the above results are insensitive to substantial

variations of the values of the cosmological density parameters 
m0 and 
�0. In fact,

even for the extreme cases of Einstein-de Sitter (
m0 = 1) and pure cosmological constant

(
m0 = 0), the constant volume curve does not cross the undetectability region of Figure 1

if Bernshte��n-Shvartsman assumption is used, whereas if the above mentioned modified

version of this assumption is employed one arrives at flat universes with undetectable

topologies.

6 Conclusion and further remarks

It is becoming generally known that the detection of a possible nontrivial topology of

the universe may be a difficult problem to accomplish in view of the bounds on the

cosmological parameters set by recent observations which seem to indicate that we live

in FLRW accelerating universe with nearly flat spatial sections [6] { [8]. Indeed, we

have shown in [6, 7] that if one uses pattern repetitions, an increasing number of nearly

flat spherical and hyperbolic possible topologies for the universe become undetectable as


0 ! 1. It would appear at first sight that in the limiting case 
0 = 1 the topology of

such universes would definitely be undetectable.

However, when 
0 is exactly one the topological set of possibilities for the universe is

completely different from the nearly (but not exactly) flat cases, and we have shown that
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the detectability of cosmic topology may again becomes possible according to the most

recent astrophysical and cosmological observations.

We have given a first prime of the diffeomorphic classification of compact flat 3-

manifolds, and determined the expressions for both the injectivity radius rinj and the

volume for each class of Euclidean compact 3-manifolds.

We have used the expression of the injectivity radius for the classes G3 and G5, and
the topological indicator Tinj in connection with Bernshte��n-Shvartsman [9] assumption

to materialize and quantify the problem of the detectability of flat topologies. As a

particular result we have shown that all models of these two classes of flat universes that

satisfy Bernshte��n-Shvartsman hypothesis have a detectable topology (at least in principle

for some observers) if the existing catalogues of clusters of galaxies are used. We have

also shown that a modified version of Bernshte��n-Shvartsman assumption leads to flat

universes of classes G3 and G5 with undetectable topologies.

We have also presented a brief discussion of the question of detectability of topology

and refined upon some of the detectability aspects discussed in our previous articles [6, 7].

Finally, we note that it is believed that a theory of quantum gravity or quantum

cosmology would be able to set close relations between the dynamics of the universe,

its material content, shape and size. Such a theory should, in principle, predict the

detectability (or undetectability) of the topology of our universe given the current bound

for cosmological density parameters. Thus the considerations and the results of the present

paper as well as those in refs. [6, 7] may become a framework of the observational tests

of this kind of fundamental theories.

Acknowledgments

We thank CLAF and CNPq for the grants under which this work was carried out.



C
B
P
F
-N
F
-0
1
0
/
0
2

13

0

2

4

6

8

1 2 3 4 5 6 7 8

Figure 1

F
ig
u
re

1
:
T
h
e
u
n
d
etectab

ility
region

in
th
e
(jaj;jbj)

p
lan

e
[d
e�
n
ed

b
y
(5.17)]

for
u
n
i-

verses
w
ithG

3
an
dG

5
top

ologies.
A
lso

a
con

stan
t
volu

m
e
cu
rve,

w
h
ose

ex
p
ression

is

given
in

T
ab
le
1,
for

th
e
valu

e
of

th
e
volu

m
e
giv

en
b
y
(5.16).

T
h
e
v
ertical

ax
is
rep

-

resen
tsjaj,

w
h
ile

th
e
h
orizon

tal
ax
is
giv

esjbj.
S
in
ce

th
e
cu
rv
e
d
oes

n
ot

in
tersect

th
e

u
n
d
etectab

ility
region

it
is
p
oten

tially
p
ossib

le
to

d
etect

th
e
sh
ap
e
of
su
ch

u
n
iverses,

w
ith

G
3
an
d
G
5
top

ologies,
u
sin

g
catalogu

es
of

clu
sters

of
galax

ies
(z

m
a
x
=
0:3).



CBPF-NF-010/02 14

Appendices

A Isometric classification of flat 3-manifolds

In this appendix we shall present in full details the isometric classification of compact Eu-

clidean 3-dimensional space forms following the reasoning scratched by Wolf (see Lemma

3.5.11 and comments below on pages 123 { 124 of [11]). The isometric classification can

be collected together in the following theorem:

Theorem A.1 The isometric classi�cation of Euclidean 3-dimensional compact space

forms is as follows:

1. The class G1 is parametrized by the equivalence classes SL(3; Z) �A(T 3) �O(3), where
A(T 3) is the matrix whose rows are formed by the vectors of a base of Euclidean

3-space that generates the covering group of the torus.

2. The class G2 is parametrized by the ordered triples (jaj; r; w), where the pair (r; w)

parametrizes the bidimensional torus generated by the vectors b and c.

3. The classes G3, G4 and G5 are parametrized by the ordered pairs (jaj,jbj).

4. The classes G6, B3 and B4 are parametrized by the ordered triples (jaj,jbj,jcj).

5. The classes B1 and B2 are parametrized by the triples (r; w; jcj), where the pair

(r; w) parametrizes the double covering of the modular space of the bidimensional

torus generated by the vectors a and b, which interchanges the generators of the

lattice. Additionally, for the class B2, we have the constraint jcj > ja+ 1
2bj.

Proof. We begin by constructing the modular space for the simplest classes, namely G3,
G4 and G5. Consider first the class G3 and note that Ba = a, Bb = c, and Bc = � (b+ c).

Since B is an orthogonal transformation, it follows that jbj = jcj = jb+ cj, and from

hb; ci = hBb;Bci
= �hc; b+ ci
= �hb; ci � jcj2 ;

one finds that the angle between b and c is �=3. Furthermore, a is orthogonal to b and

c. We have then that all the angles between the basis vectors are fixed, and two lengths

(those of b and c) are equal, leaving just two free parameters, namely jaj and jbj. It is

now clear that the ordered pair (jaj; jbj) parametrizes isometrically manifolds of class G3.
Manifolds of classes G4 and G5 are analyzed in a similar way, by just looking at the

action of the transformations C and D on the basis vectors, respectively. One obtains the

following:
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G4. The three basis vectors are mutually orthogonal, and b and c are of the same length.

The ordered pair (jaj; jbj) parametrizes isometrically this class.

G5. The vectors b and c are of the same length and the angle between them is �=6,

furthermore a is orthogonal to both b and c. Again, the ordered pair (jaj; jbj)
parametrizes isometrically this class.

Let us now turn our attention to manifolds with 3-dimensional modular spaces, i.e.

manifolds of classes G6, B3 and B4. In all these cases the basis vectors are mutually

orthogonal, as can be seen by analyzing the action of the transformations A1, A2, A3 and

E on the vectors a, b and c. Moreover, there is no restriction on the lengths of these

vectors, so the parameter space is 3-dimensional. In order to see that these classes are

parametrized by the ordered triple (jaj; jbj; jcj) note that the vector a is the only one that
enters as a translation along the axis of rotation of a screw motion. Also, for the classes

B3 and B4, the vector b is in the invariant subspace of the reflection E, while c is not. On

the other hand, for the class G6, the vector b is in the invariant subspace of the rotation in

the screw motion (A2; b+c), while c does not have an analog property. Clearly, the vectors

a, b and c play distinguished roles as translations in the generators of the corresponding

fundamental groups.

We now briefly review the isometric classification of the bidimensional torus in order

to continue with the proof of theorem A.1. The generators of the fundamental group of a

2-torus are two linearly independent vectors in the Euclidean plane, say � = fa; bg. These
two vectors generate a lattice in the plane, namely

�� = fna+mb : n;m are integersg :

Actually, the lattice �� is the orbit of the origin under the action of the group generated

by the basis �.

It is clear that two different bases give rise to equivalent lattices if they are related by

an orthogonal transformation of the plane, so one can always order the generators so that

(i) jaj � jbj, (ii) a lies along the positive direction of the x�axis, and (iii) b is in the upper

half plane with non-negative first component. Moreover, the bases fa; bg and fa; na+ bg,
with n being a positive integer, give rise to the same lattice, so b can be taken to be such

that its projection to the x�axis lies between 0 and jaj=2. Thus a 2-torus is characterized
isometrically by the pair (r; w), where r = jaj, and w is the complex number representing

the same point in the plane as the vector 1
r
b. The parameter w satisfies the following

conditions:

1. jwj � 1, and

2. 0 � Rew � 1=2 .

Next we study classes with 4-dimensional parameter spaces. Class G2 is the simplest,

the vector a is orthogonal to b and c, and there is no restriction to the angle between these
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two vectors, nor to the lengths of the three basis vectors. Thus ordering the vectors b and

c such that jbj � jcj one concludes that the modular space of the class G2 is (jaj; r; w),
where (r; w) is the modular space for the bidimensional torus generated by b and c.

For the class B1 one notes that the vectors a and b are in the invariant subspace of the

reflection E, and c is orthogonal to it. Since there is no restriction to the angle between

a and b, these two vectors form a bidimensional torus. However, one cannot simply set

the condition jaj � jbj without loss of generality, since the vectors a and b enter in a

very different way in generating the fundamental group of the manifold, i.e. b is a pure

translation while a enters as part of a glide reflection. Hence we use a double covering of

the modular space of the 2-torus generated by a and b to parametrize the class B1, one

sheet parametrizing the case jaj � jbj, the other parametrizing the case jbj � jaj. The

class B2 is similar to the class B1, except that c is not orthogonal to the plane formed by

a and b, but has a projection (a+ 1
2
b) on this plane. This is the origin of the constraint

jcj > ja+ 1
2
bj.

Finally let us consider the class G1, or the 3-dimensional torus. The isometric clas-

sification of the torus has been partially discussed in Section 3. There, we have seen

that bases related by orthogonal transformations give rise to isometric torii, and further-

more, one has to perform additional identifications on the set of bases of 3-dimensional

Euclidean space to give a unique characterization of isometric torii. To put this in math-

ematical (and useful) language, let us first choose as a reference basis the canonical one

(̂{ = (1; 0; 0), |̂ = (0; 1; 0), and k̂ = (0; 0; 1)) to write the components of vectors and

transformations. Now, let us write a basis in Euclidean 3-space as a square matrix whose

rows are the components of the vectors of the basis. If the basis � = fe1; e2; e3g is related
to the basis � = ff1; f2; f3g by an orthogonal transformation, one can write

� = �B ;

where B 2 O(3). In this case, the bases � and � generate two isometric torii.

A lattice in Euclidean 3-space is the orbit of the origin by the action of a group

generated by three linearly independent vectors. Thus if � = fe1; e2; e3g, the lattice

generated by � is the set

�� = fn1e1 + n2e2 + n3e3 : n1; n2; n3 are integersg :

Now, two bases � and � may produce the same lattice, and hence generate the same torus.

In fact, consider the group SL(3; Z) formed by the square matrices of order three with

integer entries and determinant unity. Any two bases related by a matrix A 2 SL(3; Z)

generates the same lattice, for if � = A�, each fi is an integer linear combination of �,

and thus �� � ��. On the other side, � = A�1�, thus �� � ��, and so �� = ��. We have

that two bases � and � generate the same torus if there exist A 2 SL(3; Z) and B 2 O(3)

such that � = A�B.
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B Volumes of flat 3-manifolds

In this appendix we show how to calculate the volumes of compact flat 3-manifolds in

terms of their modular spaces. The calculations are based on the following simple obser-

vations:

1. The volume of a compact manifold of constant curvature equals the volume of any

of its fundamental domains.

2. If � is the covering group of a compact flat 3-dimensional manifold in the form given

in Tables 3 and 3, the orbit of the origin by � is a lattice.

3. A fundamental domain of the lattice generated by the base � = fa; b; cg is the

parallelepiped naturally constructed with these vectors, and thus its volume is ja �
b� cj.

Now, in terms of the correspondent modular spaces given in Theorem A.1, the orbit

of the origin by the covering group of a manifold of any of the classes G1{G5 or B1{B3,

is the lattice generated by the vectors a, b and c. While the orbit of the origin by the

covering group of a manifold of class G6 is a lattice generated by the vectors a, b+ c and

b � c. Finally, note that a manifold of class B4 is a double covering of the manifold of

class B3 with the same parameters, hence its volume doubles that of the corresponding

manifold of class B3.

The results of this appendix are listed in the fourth column of Tables 3 and 3.
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