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Abstract

Non-BPS dyon solutions to D3-brane actions are constructed when one

or more scalar �elds describing transverse 
uctuations of the brane, are

considered. The picture emerging from such non-BPS con�gurations is

analysed, in particular the response of the D-brane-string system to small

perturbations.
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I. INTRODUCTION

Solutions to Dirac-Born-Infeld (DBI) theory have recently drawn much attention in
connection to the dynamics of Dp-branes [1]- [15]. Indeed, the DBI action for p + 1
dimensional gauge �elds and a number of scalars describing transverse 
uctuations of the
brane allow static Bogomol'nyi-Prasad-Sommer�eld (BPS) and non-BPS con�gurations,
which can be interpreted in terms of branes and strings attached to them.

Although many (static) properties related to intersecting branes come from super-
symmetry and BPS arguments, speci�c dynamical features depend strongly on the non-
linearity of the DBI action. In particular, those related to the e�ective boundary con-
ditions imposed to strings attached to branes must be investigated using the full DBI
action. Moreover, non-BPS con�gurations might be useful for the study of certain non-
perturbative aspects of �eld theories that describe the low energy dynamics of branes
[16].

BPS and non-BPS (throat) purely electric solutions to DBI theory were constructed in
[3]- [4]. Also the propagation of a perturbation normal to both the string and the 3-brane
action was investigated in [3] for a BPS background. The results obtained show that
the picture of a string attached to the brane with Dirichlet boundary conditions emerges
naturally from DBI dynamics. In [8]- [9] perturbations polarized along the brane in a
BPS background were studied and it was shown that Neumann boundary conditions are
realized in this case.

Other purely electric non-BPS solutions to DBI action for the world volume gauge �eld
and scalar �elds were constructed in [6] where also magnetically charged BPS solutions
were discussed. A detailed study of BPS dyonic solutions was presented later in [10].

In this paper we concentrate in the case of D3-branes and explicitly construct non-BPS
dyon solutions when the U(1) gauge �eld couples to one or more scalar �elds. We then
analyse the solutions in connection with the geometry of the bending of the brane due
to the tension of a (n;m)-string [17]- [18] carrying both electric and magnetic charges.
Studying the energy of these non-BPS con�gurations, we compare the results with those
obtained in the purely electric BPS and non-BPS cases [3]- [10]. We also study small
excitations, transverse both to the brane and to the string, in order to test whether the
response of the non-BPS solution is consistent with the interpretation in which the brane-
string system described corresponds to the appropriate (Dirichlet) boundary condition.

The plan of the paper is as follows: in section II we construct the non-BPS solutions,
with both electric and magnetic charges, to the DBI model for an Abelian gauge �eld in
the world volume, coupled to one scalar. We discuss the properties of the solutions and
compare them to other solutions already described in the literature. We also compute
the renormalized energy and interpret the dyonic non-BPS solution in terms of strings
attached to D3-branes. Then, in section III, we consider small perturbations to the non-
BPS background, normal to the brane and to the string, in order to test the resulting
boundary conditions. Finally, we summarize and discuss our results in section IV.

II. SOLUTIONS OF THE DIRAC-BORN-INFELD ACTION

The D3-brane action in the static gauge takes the form
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S = �T3

Z
d4x
q
�det(��� + T�1F�� + @�Xa@�Xa) (1)

where ��� is Minkowski metric in 3 + 1 dimensions, diag(���) = (�1; 1; 1; 1), F�� is the
world volume electromagnetic gauge �eld strength, Xa are scalar �elds (a = 4; 5; : : : ; 9)
which describe transverse displacements of the brane and

T3 =
1

2�gs
T 2 ; T =

1

2��0
(2)

with gs the string coupling constant. This action can be obtained by dimensional reduc-
tion of a Born-Infeld action in 10 dimensional 
at space-time (xM , M = 0; 1; 2; : : : ; 9),
assuming that the �elds depend only on the �rst 1 + 3 coordinates x� and that the extra
components A4; A5 : : : A9 of the gauge �eld represent the scalar �elds. We shall consider
�rst the case in which there is just one excited scalar �eld, Xa = �a9X. In this case eq.(1)
takes the form

S = �T3

Z
d4x

�
(1 + @�X@�X)

�
1 +

1

2T 2
F��F

��

�
� 1

16T 4

�
~F��F

��
�2

+
1

T 2
@�XF��F

��@�X

�1=2

: (3)

The equations of motion for time-independent solutions read,

~r �
�
1

R

�
~rX +

1

T 2
( ~B � ~rX) ~B +

1

T 2
~E ^ ( ~E ^ ~rX)

��
= 0

~r �
�
1

R

�
~E + ~rX ^ ( ~E ^ ~rX) +

1

T 2
( ~E � ~B) ~B

��
= 0

~r^
�
1

R

�
~B + ( ~B � ~rX)~rX � 1

T 2
( ~E � ~B) ~E

��
= 0: (4)

Here, the U(1) electric �eld ~E and magnetic induction ~B are de�ned as usual as

Ei = Fi0 ; Bi =
1

2
"ijkFjk: (5)

Concerning R, it is de�ned as

R2 = 1 + (~rX)2 +
1

T 2

�
~B2 � ~E2 + ( ~B � ~rX)2 � ( ~E ^ ~rX)2

�
� 1

T 4
( ~E � ~B)2: (6)

Now, since we are interested in bion solutions [3]- [4] carrying both electric qe and

magnetic qm charges, this necessarily implies that ~E and ~B have delta function sources
(c.f. [19] where dyon con�gurations with an extended magnetic source are constructed).
For the case X = 0 one easily �nds such a solution to (4) in the form
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A0 = � qe
4�

Z 1

r

dr
1p

(q2e + q2m)(4�T )
�2 + r4

(7)

A' =
qm
4�r

(1� cos �)

sin �
; A� = Ar = 0: (8)

This solution can be obtained from the purely electric Born-Infeld one by a duality rotation
[20].

Following [4]- [6] , we construct the general solution by performing a boost (in 10
dimensional space) in the x9 direction leading to

X = �qe
p
a

4�T

Z 1

r

dr
1p

r40 + r4

A0 = � qe
4�

Z 1

r

dr
1p

r40 + r4

A' =
qm
4�r

(1 � cos �)

sin �
; A� = Ar = 0 (9)

where

r40 = (4�T )�2((1� a)q2e + q2m) (10)

and a is related to the square of the boost velocity. The electric and magnetic �elds
associated with (9) take the form

~E =
qe

4�
p
r40 + r4

�r

~B =
qm
4�r2

�r: (11)

Note that since the boost is in the x9 direction, it does not a�ect the transverse xi ; i =
1; 2; : : : ; 8 directions. Moreover, since we are considering static solutions, A' in (9) is not
a�ected and the magnetic �eld remains unchanged by the boost.

These solutions generalize all known (one source) solutions already discussed in the
DBI-brane context, either the BPS or non-BPS ones. Setting qm = 0 we recover, for a < 1,
the electric bions, for a > 1, the electric throat/catenoid solutions and, for a = 1, the
electric BPS solution [3]- [6]. The new solutions we have found generalize these electric
bions and throats to dyonic ones.

Concerning the magnetic �eld ~B, it is important to note that its value is a independent
and has the usual Dirac monopole functional form corresponding to a quantized magnetic
charge. Indeed, the magnetic induction ~H is given by

~H � 1

R

�
~B +

�
~B � ~rX

�
~rX � 1

T 2

�
~E � ~B

�
~E

�
=

qm

4�
p
r40 + r4

�r: (12)

The electric and magnetic charges of the solutions were adjusted so that
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Z
S1

dSiE
i = qe ;

Z
S1

dSiB
i = qm: (13)

It is useful to de�ne the scalar �eld charge qs in the form

qs � T

Z
S1

dSi@
iX =

p
a qe: (14)

In terms of charges, r0 in (10) takes the form

r40 = (4�T )�2
�
q2e + q2m � q2s

�
: (15)

From (9) one can see that, in the range q2s � q2m + q2e , the scalar takes essentially
the form depicted in Fig. 1. Qualitatively, its behavior is similar to the purely electric
solution found in [6] except that the existence of a non-zero magnetic charge lowers the
height of the cusp.

For q2s > q2e + q2m the scalar takes the form of the solution depicted in Fig. 2 which can
be viewed as two asymptotically 
at branes (in fact, a brane-antibrane pair) joined by a
throat of radius rt. These branes are separated a distance � = 2jX(rt)j which corresponds
to the di�erence between the two asymptotic values of X(r). The radius of the throat is
given by

r4t = �r40 = (4�T )�2
�
q2s � q2e � q2m

�
: (16)

Note that increasing the magnetic charge makes the throat slimmer and � larger.
BPS solutions correspond to the case r0 = 0. That is, when the scalar charge satis�es

qBPSs = �
p
q2e + q2m: (17)

When (17) holds, the solutions satisfying Bogomol'nyi equations

~E = T cos � ~rX (18)

~B = T sin � ~rX (19)

are

X = �
p
q2e + q2m
4�Tr

~E =
qe

4�r2
�r

~B =
qm
4�r2

�r (20)

with

cos � =
qep

q2e + q2m
: (21)

Note that r0 = 0 implies that the boost parameter a = 1 + q2m=q
2
e > 1. In particular,

for qm = 0 the boost is a light-cone one. In fact, qm = 0 corresponds to � = 0 and
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then (9) reduces to the electric BPS solution discussed in [3]- [4]. The choice � = �=2
(qe = 0) corresponds to the magnetic BPS solution discussed in [4]. For arbitrary � our
BPS solution coincides with that analysed in [10].

Let us now compute the static energy for the non-BPS con�gurations described earlier
and relate it to the bending of branes. We consider the case in which there is only one
D3-brane and �rst compute the energy stored in the world volume of the brane for the
con�guration (9)-(11) with r40 � 0,

Ewv =

Z
d3xT00

=
2

gs

Z
r2dr

 
q2e + q2m

(4�r)2
p
r4 + r40

+ T 2

 
r2p
r4 + r40

� 1

!!

=
�2(1=4)

96�5=2gs

�
2(q2e + q2m) + q2s

� 1

r0
: (22)

Since the BPS limit is reached when r0 = 0, we see that Ewv diverges precisely at the
point which should correspond to the lower bound for the energy. In order to avoid this
problem, one can normalize the energy with respect to the Bogomol'nyi value. To this
end we de�ne

E = Ewv � Esub = Ewv � �2(1=4)

32�5=2gs
jqsj
p
q2e + q2m

1

r0

=
�2(1=4)

6
p
�gs

T 2

 
2 � 3jqsj

jqsj+
p
q2e + q2m

!
r30: (23)

Clearly, E = 0 in the BPS case (r0 = 0). In general, 0 � E < 1 and then the BPS
con�guration gives the lower bound for the energy. We show in Fig. 3 the energy as given
by (23) as a function of the scalar charge. At �xed electric charge, one can see that, as
the magnetic charge grows, the Bogomol'nyi bound is attained for larger scalar charge.

The subtraction performed in (23) can be interpreted as follows. Using eq.(9), Ewv,
as given by eq.(22), can be written as

Ewv =
T

6�gs

1

jqsj
�
2(q2e + q2m) + q2s

� jX(0)j: (24)

Concerning the subtracted term, it takes the form

Esub =
T

2�gs

p
q2e + q2m jX(0)j: (25)

The connection between the dyon electric �eld and fundamental strings leads to the
quantization of the electric 
ux [3] so that qe = 2�gsn. For the magnetic charge, we write
qm = 2�m. Then, Esub can be rewritten in the form

Esub = T

s
n2 +

1

g2s
m2jX(0)j: (26)
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The renormalized energy E as de�ned in (23) can then be written as

E = Ewv � T(n;m)

Z jX(0)j

0

dX (27)

= Ewv + T(n;m)

Z 1

jX(0)j
dX � T(n;m)

Z 1

0

dX (28)

where

T(n;m) = T

s
n2 +

1

g2s
m2: (29)

Formula (28) makes clear the rationale of the subtraction: the second term in the r.h.s.
of (28) represents the energy of a semi-in�nite string (with tension T(n;m)) extending from
the cusp of the spike to in�nity. The third term subtracts the in�nite energy of a string
extending from 0 (from a 
at brane) to in�nity. We are then computing the energy of
a brane pulled by a string with respect to the energy of a non-interacting con�guration
brane+string (which turns to be a BPS solution).

We represent in �gure 4 a sequence of growing spikes as the scalar charge increases up
to the point it attains its BPS value qBPSs .

One can also compute the static energy stored in the worldvolume for the throat
solution (r2t = �r20 > 0). One gets

Ewv =
�2(1=4)

48
p
2�5=2gs

�
2(q2e + q2m) + q2s

� 1
rt
+
4

3

T 2

gs
r3t (30)

which also diverges in the BPS (rt ! 0) limit. The adequate subtraction now required in
order to get a �nite result is

Esub =
�2(1=4)

16
p
2�5=2gs

jqsj
p
q2e + q2m

1

rt
: (31)

We then have for the throat

E = Ewv � Esub =
4

3

T 2

gs

 
1 +

�2(1=4)

4
p
2�

jqsj � 2
p
q2e + q2m

jqsj+
p
q2e + q2m

!
r3t : (32)

The subtracted energy Esub de�ned by eq.(31) can be written as

Esub =
T

2�gs

p
q2e + q2m2jX(rt)j = T(n;m)�: (33)

where T(n;m) is de�ned by eq.(29). Then, the �nite energy E in (32) corresponds to the
di�erence between the throat solution and a non-interacting con�guration brane-string-
antibrane.

We shall now brie
y describe non-BPS solutions of the DBI action when two scalar
�elds are present. Starting from action (1) with X8 = X and X9 = Y , the corresponding
equations of motion read



CBPF-NF-010/00 7

~r �
�
1

R

�
~rX + (~rX ^ ~rY ) ^ ~rY � 1

T 2
~E � (~rX ^ ~rY )( ~E ^ ~rY )

+
1

T 2
( ~B � ~rX) ~B +

1

T 2
~E ^ ( ~E ^ ~rX)

��
= 0

~r �
�
1

R

�
~rY + (~rY ^ ~rX) ^ ~rX � 1

T 2
~E � (~rY ^ ~rX)( ~E ^ ~rX)

+
1

T 2
( ~B � ~rY ) ~B +

1

T 2
~E ^ ( ~E ^ ~rY )

��
= 0

~r �
�
1

R

�
~E + ~rX ^ ( ~E ^ ~rX) + ~rY ^ ( ~E ^ ~rY )

+ ~E � (~rY ^ ~rX)(~rY ^ ~rX)� 1

T 2
( ~E � ~B) ~B

��
= 0

~r^
�
1

R

�
~B + ( ~B � ~rX)~rX + ( ~B � ~rY )~rY � 1

T 2
( ~E � ~B) ~E

��
= 0

(34)

where R is now given by

R2 = 1 + (~rX)2 + (~rY )2 +
�
~rX ^ ~rY

�2
+

1

T 2

�
~B2 � ~E2

+( ~B � ~rX)2 � ( ~E ^ ~rX)2 + ( ~B � ~rY )2 � ( ~E ^ ~rY )2

�( ~E � (rX ^ ~rY ))2
�
� 1

T 4
( ~E � ~B)2: (35)

The solution takes the form

~rX = (q8s=Tqe)
~E

~rY = (q9s=Tqm) ~B

~E =
qe

4�
p
r40 + r4

�r

~B =
qm
4�r2

�r (36)

where q8s and q9s are the charges of the two scalars, de�ned as in (14),

qas � T

Z
S1

dSi@
iXa (37)

and r0 is now given by

r40 = q2e + q2m �
�
q8s
�2 � �q8s�2 : (38)

This non-BPS solution can be interpreted as a spike that extends in the direction
q8s�e

8+q9s�e
9, with �e8 (�e9) denoting the unit vector in theX8 (X9) directions. It is interesting

to note that there is a family of values for the scalar charges (q8s
BPS

; q9s
BPS

) which leads
to the BPS limit,
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�
q8s

BPS
�2

+
�
q9s

BPS
�2

= q2e + q2m: (39)

The particular solution q8s
BPS

= qe and q9s
BPS

= qm corresponds to the BPS con�guration
with a � = 1=4 fraction of unbroken supersymmetry analysed in [10], which solves

~E = T ~rX ; ~B = T ~rY: (40)

It is interesting to note that eqs.(40) exhibit an invariance under transformations which
correspond to a duality rotation for the electric and magnetic �elds and a related SO(2)
rotation for the scalar �elds. Indeed, the transformation

~E + i ~B �! exp(i�)( ~E + i ~B)

X + iY �! exp(i�)(X + iY ): (41)

Other solutions of eq.(39) are those that correpond to � = 1=2, which can be obtained
by an SO(2) rotation of (20) in the (X8;X9) plane.

III. DYNAMICS AND BOUNDARY CONDITIONS

We shall now analyse the response of the theory to small 
uctuation around the static
non-BPS dyon solutions that we have found above, in the spirit of ref. [3].

We take as a background the non-BPS spike solution (9) and study the propagation of
a s-wave perturbation �, polarized in a direction perpendicular to the brane and to �X9,
say �X8. Starting from action (1), one obtains the linearized 
uctuation equation around
the static solution

�
�
r4 +

q2e + q2m
(4�T )2

�
��(r; t) + 2r3�0(r; t) +

�
r4 + r40

�
�00(r; t) = 0: (42)

Writing �(r; t) = �(r) exp(i!t) and de�ning x = !r the corresponding stationary equation
is given by

1

x2
f(x)(x2f(x)�0(x))0 +

�2 + x4

x4
�(x) = 0 (43)

where

� =

p
q2e + q2m
4�T

!2 (44)

and

f(x) =

p
x4 + !4r40
x2

: (45)

In the BPS limit (r0 ! 0) f(x) ! 1 and we recover the case discussed originally in [3],
[8].
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To study eq.(43) we change from x to a new variable � which measures the length
along X

�(r) = !

Z r

p
�=!

d~r
q
1 +X 02(~r) (46)

Using the explicit form for the X solution as given in (9), � can be written in the form

�(x) =

Z x

p
�

dy

s
y4 + �2

y4 + r40!
4
: (47)

De�ning

~�(x) =
�
x4 + �2

�1
4 �(x) (48)

eq.(43) becomes a one-dimensional Schr�odinger equation�
� d2

d�2
+ V (�)

�
~�(�) = ~�(�) (49)

with potential

V (�) =
5�2x6

(x4 + �2)3
+

(4�T )2

q2e + q2m
r40�

2x2
3�2 � 2x4

(�2 + x4)3
: (50)

The �rst term in (50) is formally identical to the potential in the BPS limit [3] except that
the relation between � and x, given by (47) depends on r0 and hence only coincides with
the BPS answer for r0 = 0. Another important di�erence with the BPS case concerns the
one dimensional domain in which potential (50) is de�ned: being our solution a non-BPS
one, � extends from a �nite (negative) �(0) to +1, since the cusp for this solution has a
�nite height X(0). Now, from X9 = X(0) to in�nity (i.e., in the �-interval (�1; �(0)))
the disturbance just acts on the free scalar action of the semi-in�nite string attached to
the brane. Then, in this region, one has, instead of (49),

�d
2~�(�)

d�2
= ~�(�): (51)

We can then consider eq.(49) in the whole one dimensional domain by de�ning

Veff (�) =

�
0 if �1 < � < �(0)
V (�) if �(0) < � <1:

(52)

Potential (52), corresponding to a non-BPS disturbed con�guration, is more involved
than the BPS one, which was originally studied in the �! 0 limit using delta function and
square barrier approximations [3], [8]. We shall take this second way and approximate the
potential by a rectangular potential, adjusting its height and width so that the integral
of V and the integral of

p
V coincide. We then de�ne
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S =

Z p
V (�)d� ; U =

p
�

Z
V (�)d�: (53)

One can see, by an appropriate change of variables that neither S nor U depend on �. In
terms of these quantities, one �nds for the re
ection and transmission amplitudes

R =
exp (�ip�S2=U)

�1 + (2i
p
�S=U)cothS

T = i

�
2
p
�S

U
cosechS

�
R: (54)

Eq. (54) shows that one has complete re
ection with a phase-shift approaching � in
the low-energy limit (�! 0). Computing numerically S and U one can also see that the
non-BPS re
ection coe�cient jR(r0)j is slightly larger than the BPS one, jR(r0)j > jR(0)j.

We thus conclude from the analysis above that a transverse disturbance on the string
attached to the non-BPS brane, re
ects in agreement with the expected result for Dirichlet
boundary conditions: the re
ection amplitude R goes to �1 in the low-energy (� ! 0)
limit. In the opposite limit (� ! 1) the potential vanishes so that the system passes
from perfectly re
ecting to perfectly transparent at a scale that, for the dyon background
that we studied corresponds to 8� � 5 + r40(4�T )

2=(q2e + q2m). The emerging picture is
then in agreement with the D3-brane acting as a boundary for open strings.

IV. SUMMARY AND DISCUSSION

Summarising, we have constructed dyonic non-BPS solutions to the Dirac-Born-Infeld
action for a U(1) gauge �eld in the world volume coupled to one or two scalars and
analysed them in the context of brane dynamics. Although our solutions also include
those BPS ones already discussed in the literature, we have concentrated on the non-BPS
sector to test whether this characteristic a�ects the picture of strings attached to branes.
One important quantity in the analysis of the non-BPS solutions is the value of the scalar
charge qs which can be written in terms of the electric and magnetic charge as

q2s = q2e + q2m � (4�T )2r40: (55)

For r40 > 0 our solutions correspond to a brane with a spike while for r40 < 0 one has a
brane-antibrane solution with a throat. The subtracted (renormalized) energy of these
non-BPS dyon solutions can be arranged in a way that naturally leads to this picture
of a brane pulled by a string with a tension T(n;m) = T

p
n2 +m2=g2s (m and n being

the number of magnetic and electric 
ux units of the solution). As shown graphically in
Fig.4, as the scalar charge increases towards its BPS value qBPSs , the spike grows and then,
once qBPSs is exceeded, the solution becomes a pair of brane and antibrane joined by a
throat. Solutions with two scalars can be constructed following analogous steps and also
be interpreted in terms of spikes extending in the combined direction of the two scalars.

Finally, we have studied the e�ect of small disturbances transverse both to the string
and the non-BPS brane, showing through a scattering analysis that the results correspond
to the expected Dirichlet boundary conditions. In particular, the re
ection amplitude for
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the non-BPS background is slighty larger than the result for the BPS case and tends to
�1 in the low-energy limit.
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The scalar X as a function of r for �xed electric charge qe = 1 and di�erent values of the
magnetic charge qm. The value qBPSm = 1 is the one for which the BPS limit is attained
when qe = 1 and qs =

p
2.
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Figure 2

The scalar X as a function of r for �xed electric charge qe = 1 and di�erent values of the
magnetic charge qm. The value qBPSm = 1 is the one for which the BPS limit is attained
when qe = 1 and qs =

p
2.
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The energy of the non-BPS con�guration (a bent brane with an attached string) as a
function of a = q2s=q

2
e for di�erent values of the magnetic charge qm.
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The spike in the brane, pulled by the string, as a function of r for values of the scalar charge
(in appropriate units) going from qs = 0:5 (left) to the BPS value qBPSs =

p
q2e + q2m =

p
2

(right).
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