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Abstract

We discuss the critical behavior of the q-state Potts model on any diamond-like hierar-
chical lattice with ferromagnetic interactions according to an arbitrary aperiodic two-letter
substitutional sequence. We show that the geometric (deterministic) 
uctuations become
relevant for !> 1�D=(2 ��u), where ! is the wandering exponent of the substitutional
sequence, D is the fractal dimension of the lattice, and �u is the critical exponent associ-
ated with the speci�c heat of the uniform model. Also, we point out that the criteria for
analysing the relevance of deterministic and random 
uctuations are generically di�erent.
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The introduction of quenched disorder is known to change the critical behavior of
ferromagnetic systems whenever (but not only) the corresponding uniform model is char-
acterized by a positive exponent �u associated with the divergence of the speci�c heat
[1, 2]. A similar e�ect may be anticipated if the exchange interactions are chosen accord-
ing to an aperiodic, although deterministic, type of rule. Recently, Luck[3] proposed a
heuristic criterion which indicates indeed that the geometric 
uctuations produced by the
aperiodic rule may be responsible for changing the nature of the critical behavior.

The discovery of quasi-crystals [4] motivated the investigation of di�erent types of spin
models with aperiodic interactions. Recent calculations for the ground state of a quantum
Ising chain do support the heuristic criterion of Luck [3, 5]. In previous papers [6], one of
us has taken advantage of the simplicity of diamond-type hierarchical lattices (DHL) [7, 8]
to analyze the critical behavior of the Ising model with a distribution of ferromagnetic
exchange interactions according to a certain class of two-letter substitutional sequences.
In the present paper, we extend these results to the q-state Potts model with aperiodic
ferromagnetic interactions on a general diamond-type hierarchical lattice, and derive an
exact criterion to show the relevance of the geometric 
uctuations above a critical number
of states qd. We also establish some contacts with calculations for the disordered Potts
model.

The q-state Potts ferromagnet is given by the Hamiltonian

H = �qX
(i;j)

Jij��i;�j ; (1)

where �i = 1; 2; � � � ; q for all sites of a lattice, Jij > 0, and the sum (i; j) refers to nearest-
neighbor sites. To give a simple example, let us consider the simple diamond lattice (that
is, a DHL with m = 2 branches in parallel, each of them with b = 2 bonds in series), and
choose the ferromagnetic interactions Jij according to the two-letter generalized Fibonacci
sequence given by the substitutions (A;B)! (AB;AA), as indicated in Fig. 1 (to mimic
a layered structure, the interactions are aperiodic along the branches of the lattice). At
each stage of this construction, the numbers N 0

A and N 0

B, of letters A and B, can be
obtained from those of the preceding level, NA and NB, from the recursion relations 

N 0

A

N 0

B

!
=M

 
NA

NB

!
; (2)

with the substitution matrix

M =

 
1 2
1 0

!
; (3)

whose eigenvalues are �1 = b = 2 and �2 = �1.
The total number of couplings (letters), N (n), at a large order n of this construction,


uctuates asymptotically as �N (n) � (N (n))!, where in general

! =
ln j�2j
ln�1

(4)

is the wandering exponent [3] of the geometric 
uctuations. It should be remarked that,
in the above (Eq. (3)) ferromagnetic (JA; JB > 0) Ising case (q = 2), whose ! vanishes,
the critical behavior remains unchanged [6] with respect to the uniform system.
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Introducing the transmissivity variable [9],

t =
1� exp (�q�J)

1 + (q � 1) exp (�q�J); (5)

and using the break-collapse techniques [10], it is straightforward to write the exact re-
cursion relations

t0A =
2tAtB + (q � 2) t2At

2
B

1 + (q � 1) t2At
2
B

; (6)

and

t0B =
2t2A + (q � 2) t4A
1 + (q � 1) t4A

; (7)

where tA and tB are associated with JA > 0 and JB > 0, respectively. Now it is easy to
show that the only physical �xed points are along the diagonal tA = tB of the parameter
space. There are two trivial stable �xed points (tA = tB = 0, and tA = tB = 1), and the
non-trivial uniform �xed point, 0 < tA = tB = t�u(q) < 1, where t�u(q) comes from the
equation (q � 1) (t�u)

3+(t�u)
2+ t�u�1 = 0 (the function t�u(q) decreases monotonically from

1 to 0 as q varies from 0 to 1). The linearization in the neighborhood of this uniform
�xed point yields the matrix relation

 
�t0A
�t0B

!
= C(q)MT

 
�tA
�tB

!
; (8)

where the prefactor C(q) depends on q but does not depend on the particular two-letter
sequence, and MT is the transpose of the substitution matrix. The eigenvalues of this
transformation are �1(q) = C(q)�1 = 2C(q) and �2(q) = C(q)�2 = �C(q). The ex-
pression for the largest eigenvalue, �1 (q), also corresponds to the thermal eigenvalue of
the linearization about the non-trivial �xed point of the corresponding uniform model
(that is, with JA = JB > 0). Therefore, it is straightforward to write an expression for
C(q). For �1 = 2C(q) > 1 (as in the uniform model), and j�2(q)j = C(q) < 1, the �xed
point in the (tA; tB) parameter space is of a hyperbolic character as illustrated in Fig.
2a (which indicates the existence of a critical line in the phase diagram in terms of the
temperature and the ratio r = JB=JA). In this case, the critical behavior is characterized
by the same critical exponents of the uniform model. For C(q) > 1, however, the uniform
�xed point is totally unstable (as illustrated in Fig. 2b), which indicates a change in the
character of the transition. From the condition C(q) = 1, we obtain the critical value
q = qd = 4 + 2

p
2 (where the subscript d stands for deterministic). For q > qd, that

corresponds to C(q) > 1, the uniform �xed point is fully unstable. The geometric 
uc-
tuations are irrelevant for q < qd, as in the case of the Ising model (q = 2), but become
relevant for q > qd. It should be remarked that, as shown by Derrida and Gardner [11],
the same value qr = 4 + 2

p
2 (where r stands for random) corresponds to the crossover

between uniform and disordered �xed points in the case of the disordered ferromagnetic
Potts model on the simple diamond hierarchical lattice we are discussing (see Eq. (3)).

Now we consider a Potts model on a general DHL, with m branches in parallel, each
one of them with b bonds in series (and hence a chemical length b), and with ferromagnetic
interactions according to the two-letter substitution (A;B)! (An1Bb�n1 ; An2Bb�n2), with
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0 � n1 < b, 0 < n2 � b, and where the order of the letters A and B does not matter. This
family of hierarchical structures includes the lattices that represent the Migdal-Kadano�
renormalization-group approximations for this model on a d-dimensional hypercubic Bra-
vais lattice (d coincides with their fractal dimension). The substitution matrix is given
by

M =

 
n1 n2

b� n1 b� n2

!
; (9)

with eigenvalues �1 = b and �2 = n1 � n2. Hence, from Eq. (4):

! =
ln jn1 � n2j

ln b
: (10)

Using techniques of graph theory, as in the work of Essam and Tsallis [12], it is not
di�cult to write the recursion relations

t0A =
N (tA; tB;n1)

D (tA; tB;n1)
; and t0B =

N (tA; tB;n2)

D (tA; tB;n2)
; (11)

where

N (tA; tB;n) =
mX
l=1

F (q;Gl+1)

(q � 1)
tnlA t

(b�n)l
B Cm

l ; (12)

and

D (tA; tB;n) = 1 +
mX
l=2

F (q;Gl) t
nl
A t

(b�n)l
B Cm

l ; (13)

where Gl is the graph formed by l parallel edges, Cm
l is a combinatorial number and

F (q;Gl) is the 
ow polynomial [12] associated with Gl. For example, F (q;G2) = (q� 1),
F (q;G3) = (q � 1)(q � 2), F (q;G4) = (q � 1)(q2 � 3q + 3), and we can use the deletion-
contraction rule to write the recursion relation

F (q;Gl) = (q � 1)l�1 � F (q;Gl�1): (14)

From these equations, we can easily derive Eqs. (6) and (7) for the simple diamond
hierarchical lattice. For a general DHL, the �xed points in the two-parameter space
include those of the uniform case (for which tA = tB). Again, besides the trivial �xed
points, there is a non-trivial uniform �xed point, 0 < tA = tB = t�u(q) < 1. As in the
previous example, the linearization of the recursion relations in the neighborhood of this
uniform �xed point, t�u(q), still leads to the same form of matrix relation given by eq.
(8), with C(q) = �1(q)=b, where �1(q) is the thermal eigenvalue of the uniform model
(JA = JB > 0). In fact, the prefactor C(q) can be calculated from the renormalized
transmissivity t0(t1; t2; � � � tmb) of the DHL under consideration,

C(q) = m
@t0

@ti

�����
t�u(q)

; (15)

where the ith bond (i = 1; 2; � � � ;mb) has a transmissivity ti, and where t1 = t2 = � � � =
tmb = t�u(q). Due to the invariance of t0(t1; � � � ; tmb) under any permutation of the ti's,
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all the mb derivatives @t0=@tijt�u are equal among themselves. Derrida et al. [2] have
shown that, if this symmetry condition holds for the quenched disordered Potts model
on a hierarchical lattice, then we can use the Harris criterion, that is, disorder is relevant
(irrelevant) when the critical exponent �u of the uniform case is positive (negative). In
the absence of this symmetry condition, the disorder is relevant for �u above a negative
critical value. In the symmetric case, disorder starts to become relevant at a critical
number qr of states, corresponding to the vanishing of �u, such that

@t0

@ti

�����
t�u(qr)

=
1p
bm

: (16)

For the aperiodic Potts model of this paper, the eigenvalues of the linearization of the
recursion relations in the neighborhood of t�u(q) are �1(q) = �1C(q) = bC(q) and �2(q) =
�2C(q) = (n1 � n2)C(q). Therefore, as �1 > 1, the uniform �xed point becomes fully
unstable for

j�2(q)j = jn1 � n2jC(q) > 1: (17)

From eq. (15), the number of states qd associated with the onset of relevance of the
geometrical 
uctuations is given by

@t0

@ti

�����
t�u(qd)

=
1

mjn1 � n2j : (18)

Comparing eqs. (16) and (18), we see that qr coincides with qd if

b = mjn1 � n2j2 : (19)

Now we investigate the implications of the condition (Eq. (17)) under which the non-
trivial uniform �xed point becomes fully unstable. Let us consider the recursion relation
associated with the uniform model (JA = JB > 0). From the linearization about the
non-trivial �xed point, we have

�1 = bC(q) = byt; (20)

with the thermal exponent [8, 11, 13]

yt =
D

2 � �u

; (21)

where D = ln (bm)= ln b is the fractal dimension of the DHL. Therefore,

C(q) = b
D

2��u
�1: (22)

From eq.(10) we also have
jn1 � n2j = b!: (23)

Inserting the expressions for C(q) and jn1 � n2j into eq. (17), we show that the geometric

uctuations become relevant for

! > 1 � D

2 � �u

(24)
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and irrelevant for ! < 1 �D=(2 � �u): Now, it should be remarked that condition (24)
reduces to the inequality �u > 0 only if ! = 1 �D=2, which occurs for the substitution
sequences that ful�l the equality (19).

As an example, let us consider again the q-state Potts model on the simple diamond
lattice (b = 2, m = 2) with aperiodic interactions according to the two-letter substitution
(A;B) ! (AB;AA) (that is, with n1 = 1 and n2 = 0). As ! = 0 and D = 2, the
geometric 
uctuations become relevant for �u > 0, which is identical to the criterion of
Derrida and Gardner [11] for the relevance of disorder in the ferromagnetic Potts model
on the simple diamond lattice. Also, �u > 0 is associated with q > qd = qr = 4 + 2

p
2.

To give another example, consider the q-state Potts model on a DHL with b = 3
bonds per branch and m = 3 branches (fractal dimensionD = 2), and with ferromagnetic
aperiodic interactions according to the two-letter substitution (A;B) ! (ABB;AAA)
(that is, n1 = 1 and n2 = 3, and hence b 6= mjn1 � n2j2). As ! = ln 2= ln 3, the
geometric 
uctuations become relevant for �u > �2 (ln 2) = ln (3=2), that corresponds to
q > qd = 0:226414:::. Therefore, the critical behavior of the Ising version of this model
(q = 2) is drastically a�ected by the geometric 
uctuations. However, quenched disorder is
still irrelevant up to much bigger values of q (in this example, the crossover to a disordered
�xed point only occurs for q > qr = 7:722361:::).

In conclusion, deterministic geometric 
uctuations and random disorder are both ca-
pable of introducing drastic changes in the critical behavior of a statistical model. We
have established an exact criterium to check the relevance of geometric 
uctuations in
the critical behavior of ferromagnetic Potts models on diamond-type hierarchical lattices.
Geometrical and random 
uctuations, however, are distinct phenomena. For example,
in the case of the q-state Potts ferromagnet, the threshold for the onset of changes in
the critical behavior may occur at di�erent values, qd 6= qr, in the deterministic and the
random cases. More precisely, all situations are possible (qd > qr; qd = qr or qd < qr):
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Figure Captions

Figure 1- Some stages of the construction of a DHL with chemical length b = 2 and
m = 2 branches (the simple diamond lattice) for the period-doubling sequence
(AB)! (AB;AA) (letters A and B indicate the exchange interactions, JA > 0 and
JB > 0).

Figure 2- Schematic representations of the 
ow diagrams for the ferromagnetic Potts
model in the (tA; tB) parameter space: (a) for q < qd, and (b) for q > qd. The
arrows indicate the sense of the 
ow for consecutive (alternating) iterations when
the smallest eigenvalue �2(q) of the map is positive (negative) i.e., when n1 > n2
(n1 < n2): Squares, full dots, and empty dots, represent fully stable, semi-stable and
unstable �xed points, respectively. The diagonal tA = tB is an invariant subspace
under the renormalization-group transformation.
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