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ABSTRACT

We discuss the critical behavior of the ¢-state Potts model on any diamond-like hierar-
chical lattice with ferromagnetic interactions according to an arbitrary aperiodic two-letter
substitutional sequence. We show that the geometric (deterministic) fluctuations become
relevant for w> 1 — D/(2 — ), where w is the wandering exponent of the substitutional
sequence, D is the fractal dimension of the lattice, and «, is the critical exponent associ-
ated with the specific heat of the uniform model. Also, we point out that the criteria for
analysing the relevance of deterministic and random fluctuations are generically different.
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The introduction of quenched disorder is known to change the critical behavior of
ferromagnetic systems whenever (but not only) the corresponding uniform model is char-
acterized by a positive exponent «, associated with the divergence of the specific heat
[1, 2]. A similar effect may be anticipated if the exchange interactions are chosen accord-
ing to an aperiodic, although deterministic, type of rule. Recently, Luck[3] proposed a
heuristic criterion which indicates indeed that the geometric fluctuations produced by the
aperiodic rule may be responsible for changing the nature of the critical behavior.

The discovery of quasi-crystals [4] motivated the investigation of different types of spin
models with aperiodic interactions. Recent calculations for the ground state of a quantum
[sing chain do support the heuristic criterion of Luck [3, 5]. In previous papers [6], one of
us has taken advantage of the simplicity of diamond-type hierarchical lattices (DHL) [7, §]
to analyze the critical behavior of the Ising model with a distribution of ferromagnetic
exchange interactions according to a certain class of two-letter substitutional sequences.
In the present paper, we extend these results to the ¢-state Potts model with aperiodic
ferromagnetic interactions on a general diamond-type hierarchical lattice, and derive an
exact criterion to show the relevance of the geometric fluctuations above a critical number
of states q;. We also establish some contacts with calculations for the disordered Potts

model.
The g-state Potts ferromagnet is given by the Hamiltonian
H = _qzjij5cri,crja (1)
(:9)
where 0; = 1,2, -, ¢ for all sites of a lattice, J;; > 0, and the sum (¢, j) refers to nearest-

neighbor sites. To give a simple example, let us consider the simple diamond lattice (that
is, a DHL with m = 2 branches in parallel, each of them with b = 2 bonds in series), and
choose the ferromagnetic interactions .J;; according to the two-letter generalized Fibonacci
sequence given by the substitutions (A, B) — (AB, AA), as indicated in Fig. 1 (to mimic
a layered structure, the interactions are aperiodic along the branches of the lattice). At
each stage of this construction, the numbers N, and Nj, of letters A and B, can be
obtained from those of the preceding level, N4 and Npg, from the recursion relations

(5 )=m(5); 2

M- 5 ) 3)

whose eigenvalues are Ay = b= 2 and Ay = —1.
The total number of couplings (letters), N, at a large order n of this construction,

with the substitution matrix

fluctuates asymptotically as AN ~ (N()¥ \where in general

1H|)\2|
- 1
YT T (4)

is the wandering exponent [3] of the geometric fluctuations. It should be remarked that,
in the above (Eq. (3)) ferromagnetic (J4, Jg > 0) Ising case (¢ = 2), whose w vanishes,
the critical behavior remains unchanged [6] with respect to the uniform system.
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Introducing the transmissivity variable [9],

f__ L—exp(=gB))
1+ (¢—1exp(—gBJ)

and using the break-collapse techniques [10], it is straightforward to write the exact re-
cursion relations

(5)

- 2 4tp + (¢ — 2) 45
4 L4+ (q—=1)t4t%

(6)

and , A
" _QtA—I_(q_Q)tA 7
B — 4 ()

1+ (qg—1)t5

where t4 and tp are associated with J4 > 0 and Jg > 0, respectively. Now it is easy to
show that the only physical fixed points are along the diagonal t4 = tg of the parameter
space. There are two trivial stable fixed points (t4 =15 =0, and t4 = tp = 1), and the
non-trivial uniform fixed point, 0 < t4 = tg = t(¢) < 1, where t*(¢) comes from the

equation (¢ — 1) (£2)°+(t)? +1* —1 = 0 (the function *(¢) decreases monotonically from
1 to 0 as ¢ varies from 0 to co). The linearization in the neighborhood of this uniform
fixed point yields the matrix relation

(35) -ctom (%)

where the prefactor C'(¢q) depends on ¢ but does not depend on the particular two-letter
sequence, and M7 is the transpose of the substitution matrix. The eigenvalues of this
transformation are Ai(q) = C(g)A\ = 2C(q) and Az(q) = C(q)As = —C(q). The ex-
pression for the largest eigenvalue, A4 (¢), also corresponds to the thermal eigenvalue of
the linearization about the non-trivial fixed point of the corresponding uniform model
(that is, with J4 = Jg > 0). Therefore, it is straightforward to write an expression for
C(q). For Ay = 2C(gq) > 1 (as in the uniform model), and |As(q)| = C(¢) < 1, the fixed
point in the (4,%5) parameter space is of a hyperbolic character as illustrated in Fig.
2a (which indicates the existence of a critical line in the phase diagram in terms of the
temperature and the ratio r = Jg/J4). In this case, the critical behavior is characterized
by the same critical exponents of the uniform model. For C'(¢) > 1, however, the uniform
fixed point is totally unstable (as illustrated in Fig. 2b), which indicates a change in the
character of the transition. From the condition C'(¢) = 1, we obtain the critical value
¢ = qi = 4+ 2v/2 (where the subscript d stands for deterministic). For ¢ > ¢4, that
corresponds to C'(¢) > 1, the uniform fixed point is fully unstable. The geometric fluc-
tuations are irrelevant for ¢ < ¢q, as in the case of the Ising model (¢ = 2), but become
relevant for ¢ > ¢4. It should be remarked that, as shown by Derrida and Gardner [11],
the same value ¢, = 4 4 2v/2 (where r stands for random) corresponds to the crossover
between uniform and disordered fixed points in the case of the disordered ferromagnetic
Potts model on the simple diamond hierarchical lattice we are discussing (see Eq. (3)).
Now we consider a Potts model on a general DHL, with m branches in parallel, each
one of them with b bonds in series (and hence a chemical length b), and with ferromagnetic
interactions according to the two-letter substitution (A, B) — (A™ B*=™, A" B*="2) with
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0 <ny <b,0<ny <b, and where the order of the letters A and B does not matter. This
family of hierarchical structures includes the lattices that represent the Migdal-Kadanoff
renormalization-group approximations for this model on a d-dimensional hypercubic Bra-
vais lattice (d coincides with their fractal dimension). The substitution matrix is given

by
- (a0 %)
M_(b—nl b—n2)7 (9)

with eigenvalues A\; = b and Ay = ny — ny. Hence, from Eq. (4):

_Infng —nyl

Inb (10)

Using techniques of graph theory, as in the work of Essam and Tsallis [12], it is not
difficult to write the recursion relations

N (t4. 15 N (ti.tg:
po= Nlateing g ty = N (ta,tpina) (11)
D (tAvtB;nl) D(tAvtB;nQ)
where " o
N(tatpin) =3 LU00w) pymmigm (12)
=1 (q - 1)
and .
D(ta,tgin) =143 F(q Gt ™™'cm (13)

=2
where (7 is the graph formed by [ parallel edges, C7" is a combinatorial number and
F(q,G)) is the flow polynomial [12] associated with ). For example, F(q,Gy) = (¢ — 1),
F(q,G3) = (¢ —1)(q —2), F(¢q,G4) = (¢ — 1)(¢* — 3¢+ 3), and we can use the deletion-

contraction rule to write the recursion relation
F(Qv Gl) = (q - 1)1_1 - F(Qv Gl—l)‘ (14)

From these equations, we can easily derive Eqs. (6) and (7) for the simple diamond
hierarchical lattice. For a general DHL, the fixed points in the two-parameter space
include those of the uniform case (for which t4 = tg). Again, besides the trivial fixed
points, there is a non-trivial uniform fixed point, 0 < {4 = tg = t3(¢) < 1. As in the
previous example, the linearization of the recursion relations in the neighborhood of this
uniform fixed point, t7(q), still leads to the same form of matrix relation given by eq.
(8), with C'(¢) = A1(q)/b, where A1(q) is the thermal eigenvalue of the uniform model
(Ja = Jg > 0). In fact, the prefactor C'(¢q) can be calculated from the renormalized

transmissivity ¢'(f1,t2, - - - tmp) of the DHL under consideration,
ot’
Clay=m 2| (15)
AC)

where the tth bond (¢ = 1,2,---,mb) has a transmissivity ¢;, and where t; =, = --- =
tmp = 15(¢). Due to the invariance of #(t1,---,t,;) under any permutation of the ¢,’s,
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all the mb derivatives 0t'/0t;|,. are equal among themselves. Derrida et al. [2] have
shown that, if this symmetry condition holds for the quenched disordered Potts model
on a hierarchical lattice, then we can use the Harris criterion, that is, disorder is relevant

(irrelevant) when the critical exponent v, of the uniform case is positive (negative). In
the absence of this symmetry condition, the disorder is relevant for «, above a negative
critical value. In the symmetric case, disorder starts to become relevant at a critical
number ¢, of states, corresponding to the vanishing of «,, such that
!
o __ L (16)
Ot ACE) Vim

For the aperiodic Potts model of this paper, the eigenvalues of the linearization of the
recursion relations in the neighborhood of #%(¢) are A1(¢) = M C(q) = bC(q) and As(q) =
AC(q) = (n1 — n2)C(q). Therefore, as Ay > 1, the uniform fixed point becomes fully
unstable for

[A2(g)] = In1 = n2|Cg) > 1. (17)

From eq. (15), the number of states ¢4 associated with the onset of relevance of the
geometrical fluctuations is given by

ot 1

— = (18)
Ty~
Comparing eqs. (16) and (18), we see that ¢, coincides with ¢4 if
b=mn; —ny|*. (19)

Now we investigate the implications of the condition (Eq. (17)) under which the non-
trivial uniform fixed point becomes fully unstable. Let us consider the recursion relation
associated with the uniform model (J4 = Jp > 0). From the linearization about the
non-trivial fixed point, we have

Ay = bC(q) = b*, (20)

with the thermal exponent [8, 11, 13]

D
= 21
=9z ay’ (21)
where D = In (bm) /In b is the fractal dimension of the DHL. Therefore,
C(q) = b, (22)
From eq.(10) we also have
|n1 — n2| = b (23)

Inserting the expressions for C'(¢) and |nq — nay| into eq. (17), we show that the geometric
fluctuations become relevant for

D

2 —

w>1- (24)
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and irrelevant for w < 1 — D/(2 — «,). Now, it should be remarked that condition (24)
reduces to the inequality o, > 0 only if w = 1 — D /2, which occurs for the substitution
sequences that fulfil the equality (19).

As an example, let us consider again the ¢-state Potts model on the simple diamond
lattice (b = 2, m = 2) with aperiodic interactions according to the two-letter substitution
(A,B) — (AB,AA) (that is, with ny = 1 and ny = 0). As w = 0 and D = 2, the
geometric fluctuations become relevant for «, > 0, which is identical to the criterion of
Derrida and Gardner [11] for the relevance of disorder in the ferromagnetic Potts model
on the simple diamond lattice. Also, a, > 0 is associated with ¢ > ¢z = ¢, = 4 + 2/2.

To give another example, consider the g-state Potts model on a DHL with 6 = 3
bonds per branch and m = 3 branches (fractal dimension D = 2), and with ferromagnetic
aperiodic interactions according to the two-letter substitution (A, B) — (ABB, AAA)
(that is, ny = 1 and ny = 3, and hence b # m|n; — na|?). As w = In2/In3, the
geometric fluctuations become relevant for o, > —2(In2) /In (3/2), that corresponds to
g > qq = 0.226414.... Therefore, the critical behavior of the Ising version of this model
(¢ = 2) is drastically affected by the geometric fluctuations. However, quenched disorder is
still irrelevant up to much bigger values of ¢ (in this example, the crossover to a disordered
fixed point only occurs for ¢ > ¢, = 7.722361...).

In conclusion, deterministic geometric fluctuations and random disorder are both ca-
pable of introducing drastic changes in the critical behavior of a statistical model. We
have established an ezact criterium to check the relevance of geometric fluctuations in
the critical behavior of ferromagnetic Potts models on diamond-type hierarchical lattices.
Geometrical and random fluctuations, however, are distinct phenomena. For example,
in the case of the ¢-state Potts ferromagnet, the threshold for the onset of changes in
the critical behavior may occur at different values, ¢; # ¢,, in the deterministic and the
random cases. More precisely, all situations are possible (¢4 > ¢, ¢4 = ¢- or ¢4 < ¢;).
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Figure Captions

Figure 1- Some stages of the construction of a DHL with chemical length 6 = 2 and

m = 2 branches (the simple diamond lattice) for the period-doubling sequence
(AB) — (AB, AA) (letters A and B indicate the exchange interactions, J4 > 0 and
Jg > 0)

Figure 2- Schematic representations of the flow diagrams for the ferromagnetic Potts
model in the (4,tp) parameter space: (a) for ¢ < ¢4, and (b) for ¢ > ¢4. The
arrows indicate the sense of the flow for consecutive (alternating) iterations when
the smallest eigenvalue Ay(gq) of the map is positive (negative) i.e., when ny > ns
(n1 < nz). Squares, full dots, and empty dots, represent fully stable, semi-stable and
unstable fixed points, respectively. The diagonal t4 = tp is an invariant subspace
under the renormalization-group transformation.
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Figure 1
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