
CBPF-NF-009/96

Electron-Pair Condensation in Parity-Preserving QED3
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Abstract

In this letter, we present a parity-preserving QED3 with spontaneous breaking of a local
U(1)-symmetry. The breaking is accomplished by a potential of the '6-type. It is shown that a
net attractive interaction appears in the M�ller scattering (between two electrons with opposite
spin polarisations) as mediated by the gauge �eld and a Higgs scalar. This might favour a
pair-condensation mechanism.
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Over the past years, the study of 3-dimensional �eld theories [1] has been well-supported
in view of the possibilities they open up for the setting of a gauge-�eld-theoretical foundation
in the description of Condensed Matter phenomena, such as High-Tc Superconductivity [2] and
Quantum Hall E�ect [3]. Abelian models such as QED3 and �3QED3 [4, 5] are some of the
theoretical approaches proposed to describe more deeply some features of high-Tc materials.

The theory of superconductivity by Bardeen, Cooper and Schrie�er (BCS model) [6] succeeds
in providing a microscopical description for superconducting materials: indeed, many predictions
of the BCS model have been con�rmed experimentally. An elegant mathematical formulation
was given to it by Bogoliubov [7]. The characteristic feature of the BCS theory is that it
produces an energy gap between the ground state and the excited states of a superconductor.
The gap is due to the fact that the attractive phonon-mediated interaction between electrons
produces correlated pairs of such particles (Cooper pairs) [8], with opposite momenta and spin;
a �nite amount of energy is required to break this correlation.

In a well-known paper by Nambu and Jona-Lasinio [9], it was proposed that the nucleon
mass arises from a dynamical mechanism, similar to the appearance of the energy gap in the
BCS model. They observed that elementary excitations in a superconductor could be described
by means of a coherent mixture of electrons and holes. The framework they set up for dynamical
mass generation was motivated by the observation of an analogy between the properties of Dirac
particles and the quasi-particle excitations that appear in a superconductor.

The main purpose of this letter is to show that electrons scattered in D=1+2 can experi-
ence a mutual attractive interaction, depending on their spin states. This attractive scattering
potential comes from processes in which the electrons are correlated in momentum space with
opposite spin polarisations (s-wave state). The intermediate bosons are a massive vector meson
and a Higgs scalar, both resulting from the breaking of a local U(1)-symmetry. The breaking-
down is accomplished by a sixth-power potential. We analyse the conditions on the parameters
in order to avoid metastable vacuum states. The method used here to compute the scatter-
ing potentials is based on the ideas reported in a series of papers by Sucher et al. [10]. The
behaviour of the scattering interactions mediated by the massive vector meson and the Higgs
scalar are presented for electrons scattered with opposite spin states. The issue of con�nement
in QED3 [11] is also alluded to.

The action for the parity-preserving QED3
1 with spontaneous symmetry breaking of a local

U(1)-symmetry is given by :

SQED=
Z
d3x

�
�1

4
FmnFmn + i + =D + + i � =D � � y( + + �  � �)'

�' +

+ Dm'�Dm'� V ('�')g ; (1)

with the potential V ('�') taken as

V ('�') = �2'�'+
�

2
('�')2 +

�

3
('�')3 ; (2)

where the mass dimensions of the parameters, �, �, � and y are respectively 1, 1, 0 and 0.
The covariant derivatives are de�ned as follows :

=D � � (=@ + iqg =A) � and Dm' � (@m + iQgAm)' ; (3)

1The metric adopted throughout this work is �mn = (+;�;�); m, n=(0,1,2). Note that slashed objects mean
contraction with -matrices. The latter are taken as m=(�x; i�y;�i�z).
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where g is a coupling constant with dimension of (mass)
1

2 and, q and Q are the U(1)-charges of
the fermions and scalar, respectively. In the action (1), Fmn is the usual �eld strength for Am,
 + and  � are two kinds of fermions (the � subscripts refer to their spin sign [12]) and ' is a
complex scalar. The U(1)-symmetry gauged by Am is interpreted as the electromagnetic one,
so that Am is meant to describe the photon.

The QED3-action
2 (1) is invariant under the discrete symmetry, P , whose action is �xed

below :

xm
P�! xPm = (x0;�x1; x2) ; (4.a)

 �
P�!  P� = �i1 � ; (4.b)

Am
P�! AP

m = (A0;�A1; A2) : (4.c)

Since we are looking for a model that preserves the parity and time-reversal inD=1+2, it should
be notice that the transformation (4.c) has been imposed in such a way that the interactions
respect both invariances.

The sixth-power potential, V , is the responsible for breaking the electromagnetic U(1)-
symmetry. It is the most general renormalisable potential in 3D.

Analysing the potential (2), and imposing that it is bounded from below and yields only
stable vacua (metastability is ruled out), the following conditions on the parameters �, �, �
must be set :

� > 0 ; � < 0 and �2 � 3

16

�2

�
: (5)

We denote h'i=v and the vacuum expectation value for the '�'-product, v2, is chosen as

h'�'i = v2 = � �

2�
+

"�
�

2�

�2
� �2

�

# 1

2

; (6)

the condition for minimum being read as

m2 + �v2 + �v4 = 0 : (7)

The complex scalar, ', is parametrised by

' = ei
�
v (v +H) ; (8)

where � is the would-be Goldstone boson and H is the Higgs scalar, both with vanishing vacuum
expectation values.

By replacing the parametrisation (8) for the complex scalar, ', into the action (1), the
following free action comes out:

Ŝfree
QED=

Z
d3x

�
�1

4
FmnFmn +

1

2
M2

AA
mAm +  +(i=@ �m) + +  �(i=@ +m) � +

+ @mH@mH �M2
HH

2 + @m�@m� + 2vQgAm@m�
o

; (9)

where the parameters M2
A, m and M2

H are given by

M2
A = 2v2Q2g2 ; m = yv2 and M2

H = 2v2(� + 2�v2) : (10)

2For more details about QED3 and �3QED3, as well as their applications and some peculiarities of parity and
time-reversal in D=1+2, see refs.[1, 4, 5].
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The conditions (5) and (7) imply the following lower-bound (see eq.(10)) for the Higgs mass :

M2
H �

3

4

�2

�
: (11)

Therefore, a massless Higgs is out of the model we consider here. A massless Higgs would be
present in the spectrum if �2> 3

16
�2

�
. But, in such a situation, the minima realising the spon-

taneous symmetry breaking would not be absolute ones, corresponding therefore to metastable
ground states, that we avoid here. One-particle states would decay with a short decay-rate if
compared to an absolute minimum ground state.

In order to preserve the manifest renormalisability of the model, the 't Hooft gauge [13] is
adopted :

Ŝgf
R�

=
Z
d3x

(
� 1

2�

�
@mAm �

p
2�MA�

�2)
; (12)

where � is a dimensionless gauge parameter.
By replacing the parametrisation (8) into the action (1), and adding up the 't Hooft gauge

(12), it can be directly found the following complete parity-preserving action :

SSSB
QED=

Z
d3x

�
�1

4
FmnFmn +

1

2
M2

AA
mAm +  +(i=@ �m) + +  �(i=@ +m) � +

+ @mH@mH �M2
HH

2 + @m�@m� � �M2
A�

2 � 1

2�
(@mAm)

2 +

� qg + =A + � qg � =A � � y( + + �  � �)(2vH +H2) +

+
�
Q2g2AmAm + 2

Qg

v
Am@m� +

1

v2
@m�@m�

�
(2vH +H2) +

+ c3H
3 + c4H

4 + c5H
5 + c6H

6
o

; (13)

where the constants, c3, c4, c5 and c6 are de�ned by

c3 = 2v(� +
10

3
�v2) ; c4 =

�

2
+ 5�v2 ; c5 = 2�v and c6 =

�

3
: (14)

The M�ller scattering to be contemplated will include the scatterings mediated by the gauge
�eld and the Higgs (Am and H). The scattered electrons exhibit opposite spin polarisations
(e�(+) and e

�
(�)). This study is motivated by the fact that in 4-dimensional space-time, a Cooper

pair bound state (s-wave state) [8] is built up by a scattering between electrons correlated
in phase-space with opposite spin states. The interactions involved in such a process are the
electromagnetic and the phononic ones. The former is mediated by photons, with a repulsive be-
haviour, and the latter is mediated by the phonons, which is attractive. The opposite behaviour
of these interactions play a central rôle for the BCS superconductivity phenomena [6] (weak-
coupling superconductors), since, at temperatures below the critical one (Tc), the interaction
mediated by phonons (attractive) is stronger than the electromagnetic (repulsive) interaction.
For temperatures above Tc, the superconducting phase is destroyed, which means that, the net
interaction becomes repulsive.

For a 3-dimensional space-time, we are now trying to understand, with the help of the
model proposed here, what happens if we consider the scattering of electrons with opposite
polarisations. One of the questions to be answered is whether or not there is a net attractive
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interaction in e�(+)�e�(�)-scattering, as mediated by the gauge �eld and the Higgs. Another
interesting point to be analised concerns the inuence of spin polarisations (+ and �) on the
dynamical nature of these scattering processes.

To compute the scattering amplitudes, it will be necessary to derive the Feynman rules for
propagators and interaction vertices involving the fermions, the gauge �eld and the Higgs. From
the action (13), the following propagator and vertex Feynman rules come out :

1. fermions and Higgs propagators :

h + +i = i
=k +m

k2 �m2
; h � �i = i

=k �m

k2 �m2
and hHHi = i

2

1

k2 �M2
H

; (15)

2. gauge �eld propagator :

hAmAni = �i
"

1

(k2 �M2
A)

 
�mn � kmkn

M2
A

!
+

1

M2
A

 
kmkn

k2 � �M2
A

!#
; (16)

3. vertex Feynman rules :

V+H+ = 2iyv ; V�H� = �2iyv ; Vm+A+ = iqgm and Vm�A� = iqgm : (17)

It should be noticed that the convention addopted, V+H+, means the vertex Feynman rule for
the interaction term,  +H +. This convention is addopted similarly for the other interaction
vertices above.

The amplitudes for the e�(+)�e�(�) scattering by the gauge �eld and Higgs are listed below :

1. scattering amplitude by Am :

�iM+A� = u+(p1)
h
iqgm(+)

i
u+(p

0
1)

(
�i �mn
k2 �M2

A

)
u�(p2)

h
iqgn(�)

i
u�(p

0
2) ; (18)

2. scattering amplitude by H :

�iM+H� = u+(p1) [2iyv]u+(p
0
1)

(
i

2

1

k2 �M2
H

)
u�(p2) [�2iyv]u�(p02) ; (19)

where k2=(p1�p01)2 is the invariant squared momentum transfer. The Dirac spinors, u+ and u�,
are the positive-energy solutions to the Dirac equations for  + and  �, and they are normalised
to :

u+(p)u+(p) = 1 and u�(p)u�(p) = �1 : (20)

To compute the scattering potentials for the interaction between electrons with opposite
spin polarisations (e�(+)�e�(�)), we refer to the works of Sucher et al. [10], where the concept of
potential in quantum �eld theory and in scattering processes is discussed in great detail.

The calculation of scattering potentials will be performed in the center-of-mass frame, for
in this frame the electrons scattered are correlated in momentum space.

By using the Feynman rules displayed above (eqs.(15), (16) and (17)), the following scattering
potentials for the e�(+)�e�(�)-scattering processes mediated by the gauge �eld and the Higgs are

found in the center-of-mass frame (c.m.):3

3In the c.m. frame, the squared momentum transfer is given by k2=�~q 2. The notations, U+A�(~r) and
U+H�(~r), with r�j~rj, refer to the scattering potentials (in con�guration space) for the process e

�

(+)�e
�

(�) mediated

by gauge �eld and Higgs. The product �(+)�(�) is a spinorial factor in the space of the electrons e�(+) and e�(�):

�(+)=
0
(+) , �(�)=�

0
(�) and ~�(�)�

0
(�)~(�).
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1. gauge �eld scattering potential :

U c:m:
+A�(~r)= q

2g2�(+)�(�)
m
(+)

(�)
m

Z
d2~q

(2�)2
1

~q 2 +M2
A

ei~q:~r

= �q2g20(+)0(�)m(+)(�)m K0(MAr)

= �q2g2
h
11� ~�(+):~�(�)

i
K0(MAr) : (21)

The minus sign in (21) is due to the fact that �(�)=�0(�). This is an e�ect of (1+2)-
dimensions.  + and  � have mass terms with opposite signs (opposite spins, according
to [1, 12]) and so, by looking at the Hamiltonian, one gets �-terms with opposite signs.

2. Higgs scattering potential :

U c:m:
+H�(~r)= 2y2v2�(+)�(�)

Z
d2~q

(2�)2
1

~q 2 +M2
H

ei~q:~r

= �2y2v2
h
0(+)

0
(�)

i
K0(MHr) ; (22)

where K0(Mr) is the zeroth-order modi�ed Bessel function of the second kind :

Z
d2~q

(2�)2
1

~q 2 +M2
ei~q:~r =

1

2�
K0(Mr) : (23)

This Bessel function presents the following asymptotic behaviour in terms of the Compton
wave-length ( 1

M
) :

K0(Mr) �!

8>><
>>:
� ln(Mr) ; Mr� 1

q
�

2Mr
e�Mr ; Mr � 1 :

(24)

Eq.(24) shows that the scattering potentials (21) and (22) are attractive and completely
con�ning. Therefore, the interactions mediated by the gauge �eld and the Higgs are attractive
in a scattering between electrons with opposite spin polarisations (e�(+)�e�(�)-scattering). For
scatterings with a scalar exchange, the spin polarisations do not a�ect the behaviour of potential:
it will be always attractive. This result is expected, since the Higgs particle does not feel the
electron polarisations.

An interesting point to remark is that, in spite the scattered particles have the same electric
charge, the spin polarisation is determinant for the behaviour of the scattering potential for
processes where a gauge �eld is exchanged. In the case where the scattered electrons have
opposite spin polarisations, the interaction is attractive. Nevertheless, for scatterings between
electrons with the same spin state, the interaction becomes repulsive.

The coherence length of a Cooper pair, as Cooper found out for the 2-electron bound state
[8], is much bigger than the electron Compton wave-length, namely, the former is of order 104�A
and the latter of 10�2�A. Therefore, for the sake of studying the possible existence of a Cooper
pair condensate in the parity-preserving QED3 discussed throughout this work, the electrons
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that are the candidates to built up a Cooper pair experience the following scattering potentials
in the c.m. frame :

U c:m:
+A�(~r) =�q2g2

h
11 � ~�(+):~�(�)

is �

2MAr
e�MAr ; (25)

U c:m:
+H�(~r) =�2y2v2

h
0(+)

0
(�)

is �

2MHr
e�MHr ; (26)

where the asymptotic approximations, MAr � 1 and MHr � 1, are compatible with the
dimensions through which Cooper pair exists.

It should be pointed out that, in order to be sure of the existence of a bound state in such
scatterings, it is more advisable to study the Bethe-Salpeter [14] equation in D=1+2 [15] for
the model proposed here. Such an analysis is more reliable in view of its intrinsically non-
perturbative nature. It is worthwhile to stress that our results simply suggest that, at the
semiclassical level, a net attractive interaction between electrons with opposite polarisations
might point out pair condensation if Bethe-Salpeter equations are taken into account [15].

If an attraction is felt at the level of tree amplitudes, we would not expect that loop cor-
rections, that bring about powers of �h, might work against pair condensation. In any case,
to our mind, it would be more reasonable to pursue an investigation of the Bethe-Salpeter
equations (rather than computing higher-loop corrections) in order to infer about electron-pair
condensation in the model discussed throughout this paper.
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