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ABSTRACT

For a ferromagnet without ahisotroPy, which may be a spin 1/2
lattice or an amorphous substance, the distribution of magnetiza-
tion depends on the shape of the sample. The phenomenclogical eng
tions of micromégnetics which contain the exchange energy and the
magnetic energy are generalized to allow for a change in the magni
tude of the magnetization. This permits the treatment of line sin-
gularities in the. field free configurations with circular concen-
tric magnetization lines. For an ellipsoid with a rotation axis the
free energy of such an afrangement is compared with.that of the ho
mogeneously magnétized sample, which is the stable form for a suf-

. ficiently small sample (roughly with a radius $ 20 lattice constants).

Key-words: Magnetic order; Anisotropy; Domains.
PACS: 75.30.Kz, 75.30.Gw, 75.60.Ch.
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1 INTRODUCTION

In the usual ferromagnets the anisotropy energy determines the
domain structure, in particular the width of the B;och walls. In
the absence of an anisotropy energy this width beéomes infinitely
large. The magnetic structure then depends on the shape of the spe
cimen. In this work aspects of this guestion are investigated.

A spin i/2 ferromagnet with isotropic exchange cannot have any
anisotropy. Similarly a spin 1 ferromagnet, where the spins are in
sites of cubic symmetry, will not show anisotropy. Magnetic dipole-
dipole couplings introduce anisotropies in the 1 X energy range.
Known spin 1/2 ferromagnets are mostly Cu chlorides and bromides,
e.q. (C§13NH3)2CuC14 with T .= 8.9K or (CZHSNH3)2CuBr4vdth.Tc=10.7iL
These are layer structures. The substande CuSeO4 has a Tc=26:K and
the ferromagnet Cu25e04 has a Tc=59IK. In an amorphous ferromagnet
the anisotropy of the varicus sites tends to cancel each other. Fer
romagnetic metalfglasses exist!, such as FeaOB20 with Tc=600 K.

'This work uses phenomenclogical equations which are often re-
ferred to as micromagnetics?™ ", The.treatment, however, is genera-
lized to the casé where the modulus of the local magnetization can
differ from the saturation value.

The absence of anisotropy_is also a property of ferrofluids®, which,
however, are more complex since the density of magnetic particles
can vary in space.

The paper will consider two simple magnetic structures in samples
with rotational symmetry and compare the relative stability of these

structures., Only equilibrium states will be studied.
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2 THE MODEL

. We use a phenomenological description of the system with a con
tinuously vérying magnetization ﬁ(-ﬁ) . The free energy density, which

is a function of ﬁ(§), has the contributions

F=F1+F2+F3 (1)

F, is the leading term of the exchange energy due to inhamogeneities

of wavelengths that are long compared to the lattice constant®,

F, = cagv g%:%’}‘:—: . (2)
It is derived from a Heisenberg exéhange energy J I §i‘§j' where
the sum extends over the nearest neighbor'bonds. The spin .density
is related to the magnetization by ﬁ/(g uB), where g is the magne-
to-mechanical ratio and Ug the Bohr magneton. Then_for a simple cu
bic lattice C=J 2z a®/(guy)?, where 2=6 is the coordination number
and a the lattice constant.

The modulus of the magnetization M==|ﬁ(§)| can differ from M,
the equilibrium value in an'infinitely long cylinder in the. ab-
sence of a magnetic field. The corresponding increase in the free
energy density is written in the form

1 | |
F, = — (M—Mo)2 . (3)

2)({J
Here xgl =(82F/32M)& = (3H/3M) ; is the reciprocal high field sus
ceptibility at temperature T.

- In an ellipsoid the equilibrium magnetization is directed a-
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long the longest axis. The magnetic field inside ‘the sample is
H =~ NM » where N is the demagnetization.factor. This leads to an ad

ditional contribution to the free energy density"

F, =

2N m, (4)

Actually there is a problem with this expression in connection
with the phenomenological property (3). Electrodynamics defines the
- magnetic energy as I;ﬁ.dﬁ. The question is which value of Bo to
use, when the phenomegological description of the substance presup
poses a magnetization,

For the purpose of the problem at hand, we shall simply con-
sider the magnetic energy to vanish in the field free magnetic con
- figuration. When the ellipsoidal sample is homogeneously magnetized,
on the other hand, the magnetization wiil very clesely be MO, for
ﬁhich case the micromagnetic expression (4) holds.

When the sample has a general shape, there is no local rela-

tion between H and ﬁ, s0 that no free energy density exists which

depends on the local magnetization only.

3 FIELD FREE MAGNETIC CONFIGURATION

For a rotationally symmetric sample there is an obvious way to
avoid a magnetic field altogether (if 20), namely with circular con
centric magnetization lines (Fig.1). In order to compare the rela-
‘tive stability of this arrangement with that of a homogeneous mag-
netization, the corresponding total free energies will be calculated.

With cylindrical coordinates r, ¢, z the free energy density
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(1) takes the form
_..'31.‘2 ﬁ 3sz'1 2
F(rlM(rfz) :T) = C [('rr) +rz + (‘S‘E)] + "2"x"; {M-Mo) {5)
ahd the free energy of the sample is
F = ZﬁIF(r,M(r,z),T).r dr dz (6)

where the integral extends over the volume of the sample. F is a
functional to be minimized with respect to M(r,2z). This variational

problem leads to the Euler equation’

3r | 3(aM/3x)] - ¥ 9z |3 oM au?T‘z)J‘TM‘" =

with prescribed boundary values M{r,z) at the surface and the sym-
metry axis of the sample. The resulting partial differential equa-
tion for M(r,i) is not separable and we use an approximation in
.which the z-dependence of M is at first neglected. This is equi-
valent to have the sample sliced in disks of width Az and radius

R(2) and the integral

R{z)
Fz = thf(r,n(r),T) r dr {8)

o

minimized for each z. Then, the Euler eguation {(7) reduces to the

ordinary inhomogeneous differential equation

o7
X2
=

e (9)
ar? . r? Xo

with fixed boundary values M(0) and M(R(z)). Equation (9} becomes,
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with the dimensionless variables
P =xr
(10)
B o= M/M,
where K = (ZCxo)_(I/z} ’ (11)
iié,%_p(up’n) = -1 (12)
where | =du/dp.
p{0} must be set equal to zero to avoid a divergent Fz. - The

value of up =u(P), where P=k R is the largest p, will be fixed ar-
bitrarily at first. Fz becomes a function of up, the minimum of
which will be determined in a second step.

The solution of (12) with the prescribed boundary conditions is®

I e K, ()
pip) = u + [K, (p) - Ii“’-’ JDI,(E)E dag
o.

P (p I,(P)
| P K (p) (13)
. I1‘°’J R (6) - 2—— 1.(0)] gac
plL I, 99 MRS |

where I1 and K1 are the modified Bessel functions®., The first temm,

which contains Up e is the solution éf the homogeneous eguation which

satisfies the boundary conditions. The second and third terms to-
gether are the solution of the inhomogeneous equation which vanishes
at the boundaries.

2
Expressed in dimensionless wvariables F=Ch&rn2 £f(p) with

E(p) = uP s u?/p? 4 (1-m)? . (14)
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Therefore, using (12},
p £(p) = g%-(p W)+ (1=up . (15)
For a rotationally symmetric.ellipsoid of radius « and

semiaxis B, both in units of ¢, the total free energy of the state

with rotational magnetization becomes ‘in this zeroth approximation

) B (a(1-52/82) /2
F ='2C, J az J'_-f(p}"p'_d"p' (16)
o o

where C’ =2ﬁCM:/w.
With (13) and the relation for the Wronskian 'i1 (p) Ki (o) ~ l.(‘ (0) I1 (0)
=1/p, ﬁ(P}.becomes
I1(P) 1

P .
Bee) = up - [ri@wcac. o
1,(p) P, (p) Jo

The condition.

ar(°)/aup -0 (18)
yields
1 P .
Wp = —J I1(C) g dz . (19}
PI1(P) 0

Thus from (17) u(P) =0, which means that (18) is equivalent to this

boundary condition. In view of (15) F(°) given by (16) reduces to

(using the change of varjiables Ez:&(i—c?/ﬁzltfz)
2C. v
plo) o 1 g{P) (20)

P
AP ———
al o /Cli—_Pi
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-¢P
where v =8 a? and g(P) =J(1-u) p dp. _ (21)
o _

We take now into consideration the contribution to the free e-

p(1)

nerqgy, , coming from the z-dependence of the magnetization. From

Eqgs. (6) and (7) and uéing the dimensionless'variableé (11) we have

au_(p)
£ L ¢ J ag J [ P ] o dp . (22)

Here we write uP(p) =u{p) to emphasize that the z-dependence of u
comes entirely from P(g). From (13} and (17), and using the rela-

tion for the Wronskian of the Bessel functiohs, we have

3uy () I,(p) duy, gp

' (23}
9L Il(P) dp dg
and using properties of the Bessel functions we can write (22) in
the form
Y . C Vn2 (s
1
F( ) = 1 J’dp P (GZ_PZ"IIZ

at o
I3(P)

(1 up (141/p2 )) [—-——-}- {1+1/P2)-1]

(24)

with n =a/B.

Fig. 2 shows the dimensionless magnetization u as a function
of the dimensionless distance p for various radii P.

Fig: 3 shows the dimensionless free energies F(O) and F(t) in
units of (2/3)C1v as a function of a, Asymptotically (for a >> 1)
F(q)a loga/a? and F(1)“ 1/&2 at constant n. The exact solution F

éertainly satisfies the inequalities: F(°)< F < F(°)+ F(1).
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4 HOMOGENEOUSLY MAGNETIZED SAMPLE

For an ellipsoid without external magnetic field, the formula

(4) gives a free energy density (1)

F = . {25)

The total free energy of the magnetized ellipsoid with radius a and

semiaxis 8  (in units of "'} becomes

- 2
Fp = C, aB°N (26)
where C2=(2n/3)MZ/:’=(2/3)x0C1. Therefore to compare the free ener
gieS-of the-parallel and the-.rotational magnetized states, it is

convenient to write

Fo= (2/3)C 0?8 N, . (27)

It has been shown® that for particles of any shape, which. are
sufficiently small so that the magneﬁization is homogeneous, the
magnetié energy of the particle is_equal to that of a suitable de-
fined ellipsoid. Since the ffee energy of the state with rﬁtatkral
magnetization can be eﬁaluéted:for any rotationally symmetric body
(with a=a({z) in (16)), this theorem can be used to compare the free

energies,
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5 A NUMERICAL EXAMPLE

A numerical comparison between Fr =F(°)'+F(1) and Fm invoives
the dimensionless numbers n=a/8, Xo and xa. From (11}
. _
{gug) 1°K

(Ka,z = - . (28)
ZXOJZa3 2y, T,

Xq is obtained from molecular field or experiment. N(n)y .is taken
from Refﬂlo.'In Fig. 4,Fm and F? are plotted using xo=0.1 and n=4
- which corresponds to a rather flat disk, with® N(n) =1.88. The
o larger than

6 x~', the state with rotational magnetization is stable.

transition at a =6 means that in a sample of radius x

Note that the energy per unit volume of the homogenecusly mag-
netized sample, Fm/v, is constant, while the energy per unit volu-
me of the rotationally magnetized sample vanishes like loga/a?. Thus,
the latter state will always be more stable for a large enough ra-
dius a; This critical radius is not very sensitive to the value of
Xo {depends only logarithmically on Xo ) and is pr0portidna1 to
Tl’z. For the above example, using Tc=100 K, we have x~'q =27 lat-

tice constants a. .
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FIGURE

Fig. 1

Fig. 2

Fig. 3

Fig. 4

-]10=

CAPTIONS

- Cross section of a rotationally symmetric ellipsoid with
closed magnetic lines.

- Dimensionless magnetization p as a function of the dimen-
sionless radial coordinate p for several values of the ra
dius P.

~ Free energy per unit volume (in units of-(2/3lciv,“v gee
text) of a symmetric ellipsoid of small axis B and large
radius a with rotational magnetization, as a function of
a, for n =a/B constant, —~—————: neglecting the z-depen-
dence of the magnetization M, -.-.-.-: correction due to
the z-dependence of M.

- Free energy per unit volume {(in units of (2/3)c,v, . see

text) of a symmetric ellipsoid of axes B and o, as a fung¢
tion of the radius a. n=a/B=4. —————: rotational magne-
tization, -.-.-.-.: homogeneous magnetization.
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Fig. 1
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