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Abstract

We consider a neutral self-interacting massive scalar �eld de�ned in a d-dimensional Euclidean

space. Assuming that the system is in thermal equilibrium with a reservoir, we are discussing

the perturbative renormalization in the one-loop level of this �eld theory in the presence of rigid

boundary surfaces (two parallel hyperplanes), which break translation symmetry. In order to

identify the singular part of the one-loop two-point and four-point Schwinger functions, we use a

combination of dimensional and zeta function analytic regularization procedures. The in�nities

which occur in the regularized one-loop two-point and also four-point Schwinger functions fall into

two distinct classes: local divergences that are renormalized by the introduction of the usual bulk

counterterms, and surface divergences that demand countertems concentrated on the boundaries.

We present the detailed form of the surface divergences. We discuss di�erent strategies that

we can assume to solve the problem of the surface divergences. We also brie
y discuss how to

overcome in the case of Neumann-Neumann boundary conditions the diÆculties generated by

infrared divergences.
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1 Introduction

The Casimir e�ect is the manifestation of the zero-point energy of the quantized electromagnetic

�eld, by the presence of metallic plates [1]. A very simple calculation predicted that in a four-

dimensional spacetime, uncharged parallel, perfectly conducting plates should attract with a force

per unit area, F (L) / 1
L4
, where L is the distance between the plates. Complete reviews of this

e�ect can be found in Refs. [2] [3] [4] [5] [6]. As was stressed by Milloni et al [7], a brief old

argument showing that the zero point-energy associated with the quantized electromagnetic �eld

must have a physical meaning was given by Einstein and Stern [8]. These authors noted that a

zero-point energy seems necessary in order to the Planck's expression for the average energy of an

oscillator in equilibrium with radiation at temperature ��1 does not have a �rst-order quantum

correction to ��1 in the classical limit � >> !.

Although formally divergent, the diference between the vacuum energy of di�erent physical

con�gurations can be �nite. In the case of a free scalar �eld, interacting only with boundary

surfaces, the Casimir approach can be summarized in the following steps: �rst a complete set of

the mode solutions of the Klein-Gordon equation satisfying appropriate boundary conditions with

the respective eigenfrequencies are found. Next, the divergent zero-point energy is regularized

by the introduction of an ultraviolet cut-o�. Finally, the polar part of the regularized energy

is removed using a renormalization procedure. This procedure was discussed �rst a long time

ago by Fierz [9], then followed by Boyer [10] and also by Svaiter and Svaiter [11] [12]. In these

two last references, an attempt to clarify the relation between the cut-o� method and analytic

regularization procedures in Casimir e�ect has been developed. Being more speci�c, in these

papers an analytic regularization procedure was interpreted as a cut-o� method, and using a mixed

cut-o� in the regularized zero-point energy, it was possible to unify these two methods in a two-

dimensional and also three-dimensional spacetime. Further, a general proof that in regularizing a
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ill-de�ned quantity, if the introduction of an exponential cut-o� yields an analytic function with a

pole at the origin, the analytic regularization using the zeta function (or a generalization for the

zeta function) is equivalent to the aplication of a cut-o� with the subtraction of the singular part

at the origin [13] [14]. More recently, Fulling developed an interesting discussion describing the

problems in the renormalization program which is carried out to �nd the renormalized vacuum

stress-tensor in di�erent �eld theories [15].

It is important to stress that these results are at one-loop level and are dealing only with free

�elds. It is clear that the formalism must be generalized to take into account the situation of

self-interacting �elds. Although higher-loop corrections to the Casimir e�ect seems beyond the

experimental reach, at least theoretically such corrections are of interest. Nevertheless, except

for very few papers, in the study of radiative corrections to the Casimir e�ect, only has been

discussed global issues. An exception is the discussion developed by Robaschik et al [16]. With this

scenario in mind, it is natural to ask the important question: how to implement using the standard

weak-coupling perturbative expansion in quantum �eld theory, the perturbative renormalization

algorithm, assuming the presence of rigid boundaries (hard-walls). Being more speci�c, how to

implement, the one-loop perturbative renormalization of a self-interacting scalar theory assuming

boundary conditions which do break translational symmetry. Our intent studying these issues

is linked also with the following question: does the infrared problem have a solution in such

theories where translational invariance is broken? Note that a resummation of infrared divergences,

generating a thermal mass is a standard procedure in scalar theories at �nite temperature.

Let us brie
y discuss the infrared divergences in �eld theory. Although the singular ultraviolet

behavior of a theory is independent of the sector (vacuum, thermal, etc.), the infrared divergences

strongly depend on the sector in which a given theory is being examinated [17]. Using dimensional

regularization [18] [19] it is very hard to see the physical signi�cance of the infrared divergences.

It is clear that infrared divergences should be absence in the cross section of a physically observed
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process. In (QED)4 is refered to the Bloch-Nordsieck theorem [20]. In QCD the same mechanism

is expected to work. Nevertheless the situation is quite di�erent since in (QED)4 one encounters

only soft divergences and in (QCD)4 appears colinear divergences. In (QCD)4 soft cancelations

was demonstrated at the one-loop level in some processes where also colinear divergences cancel

out. There is a powerful theorem, the Kinoshita-Poggio-Quinn (KPT) theorem [21] that ensures

the absence of infrared divergences in o�-shell Green's functions in massless renormalizable �eld

theories. Temperature e�ects also can solve the infrared problem in some models in quantum

�eld theory [22]. For a recent treatment in non-abelian gauge theories at high temperature, and

the infrared problem, see for example Ref. [23]. As we discussed, also in massless scalar �'4

theory, if we assume thermal equilibrium with a reservoir, the infrared problem can be solved

after a ressumation procedure. The standard argument is to use the Dyson-Schwinger equation

to write a non-perturbative version of the self-energy gap equation, or use the composite operator

formalism [24] [25] [26].

We would like to call the attention of the reader that there are some disagreement in the liter-

ature implementing the one-loop perturbative renormalization in �nite size systems with break of

translational invariance. For example, Albuquerque et al [27] founded in the one-loop approxima-

tion that the mass counterterm depends on the size of the compact dimension in the �'4 theory.

Also Malbouisson et al [28] assumed a self-interacting scalar �eld con�ned between two in�nite

parallel plates. Using the techniques developed by Ananos et al [26] these authors didn't �nd

any surface countertem in the �'4 theory at �nite temperature. Furthermore, these authors were

able to de�ne a thermal and size dependent mass and coupling constant in these systems where

translational invariance is broken.

The purpose of this paper is to present a detailed calculation of the renormalization at the

one-loop level of the �'4 theory at �nite temperature, assuming also that one of the spatial

coordinates lies in a �nite interval. Since this assumption is not suÆcient to explicity breaking
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of the translational symmetry, we are also introducing boundary surfaces where the �eld satis�es

appropriate boundary conditions. In this situation, we are breaking the translational invariance

of the theory. This paper is the natural extension of the papers of Fosco and Svaiter [29] and also

Caicedo and Svaiter [30]. It may help us to understand the renormalization procedure in systems

at �nite temperature where there is a break of translational symmetry. We are discussing the

Dirichlet-Dirichlet (DD) and also Neumann-Neumann (NN) boundary conditions. For the case of

Dirichlet-Dirichlet boundary conditions the model is free of infrared divergences. In the case of

Neumann-Neumann boundary conditions infrared divergences associated with the zero modes will

appear in the case of bare massless �elds. We are showing that there is no meaning for a thermal

mass or size dependent mass in such situations. Consequently, using a resummation procedure

it is not possible to solve the infrared problem in the case of in the case of Neumann-Neumann

boundary conditions.

The organization of the paper is the following: in the section II we sketch the general formalism,

deriving the one-loop two-point and also the four-point function of the theory. In section III we use

two di�erent analytic regularization procedures, i.e, dimensional regularization and zeta function

analytic regularization to identify the polar contributions that appear in the expression of the one-

loop two and also four-point Schwinger functions. In the conclusions we are discussing alternative

solution for the problem of the surfaces counterterms and also how to circuvented the problem for

the infrared divergences is developed in section IV. In this paper we use �h = c = kB = 1.
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2 General Formalism and the Finite Temperature Gener-

ating Functional of Schwinger Functions

The static properties of �nite temperature �eld theory can be derived from the partition function

[31]. To obtain the partition function the starting point is the Feynman, Matheus and Salam

approach [32]. Thus, let us consider the generating functional of complete Green's functions for a

self-interacting scalar �eld theory de�ned in a 
at d-dimensional Euclidean space Z(h), given by

Z(h) =
Z
[d'] exp

�
�S['] +

Z
ddx h(x)'(x)

�
; (1)

where [d'] is a translational invariant measure i.e., a formal product
Q

x2Rd d'(x) of Lebesgue

measures at every point in Rd and S['] is the classical action associated with the scalar �eld. The

quantity Z(h) can be regarded as the functional integral representation for the imaginary time

evolution operator h'2jU(t2; t1)j'1i with the boundary conditions '(t1; ~x) = '1(~x) and '(t2; ~x) =

'2(~x). The quantity Z(h) gives the transition amplitude from the initial state j'1 > to a �nal

state j'2 > in the presence of some scalar source of compact support. As usual, the generating

functional of the connected correlation functions shall be given by W (h) = lnZ(h). In a free

scalar theory the partition function Z(h) and also W (h) can be calculated exactly. Regarding the

Lagrangian density, we assume it to be

L('; @') = 1

2
(@')2 +

1

2
m2

0'
2 +

1

4!
�0'

4; (2)

where m0 is the bare mass and �0 is the bare coupling constant of the model. We are assuming

m2
0 � 0 and also �0 > 0. The Euclidean n-point correlation functions, i.e., the n-point Schwinger

functions are given by the expectation value with respect to the weight exp(�S(')) de�ned as

G(n)(x1; x2; :; xn) =
1

Z(h)

ÆnZ(h)

Æh(x1)::Æh(xn)
jh=0: (3)

It is important to keep in mind that doing an appropriate analytic continuation in the time variable,

the integrand of the functional integral changes from an ascillatory to a positive one, characterizing
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a genuine stochastic process. The n-point connected correlation functions G(n)
c (x1; x2; :; xn) are

given by

G(n)
c (x1; x2; :; xn) =

1

Z(h)

ÆnW (h)

Æh(x1)::Æh(xn)
jh=0: (4)

Finally, the generating functional of connected one-particle irreducible correlation functions (the

e�ective action) is introduced by performing a Legendre transformation on W (h),

�('0) = �W (h) +
Z

ddx'0(x)h(x); (5)

and let us de�ne the proper vertices �(n)(x1; ::; xn) as:

�(n)(x1; ::; xn) =
Æn�('0)

Æ'0(x1); ::Æ'0(xn)
j'0=0; (6)

where the normalized vacuum expectation value of the �eld '0(x) is given by

'0(x) =
ÆW

Æh(x)
: (7)

It is clear that for the case of a single scalar �eld, for a zero normalized vacuum expectation value

of the �eld '0(x), the e�ective action may be represented as a functional power series around the

value '0 = 0, with the form

�('0) =
1X
n=0

1

n!

Z
ddx1::d

dxn �
(n)(x1; :::; xn)'0(x1):::'0(xn): (8)

If the bare coupling constant vanishes, i.e., �0 = 0, the generating functional of all n-point

Schwinger functions Z(h) can be calculated exactly, since we have to evaluate only Gaussian

integrals. After some manipulations we have that the Gaussian generating functional Z0(h) is

given by

Z0(h) = exp
�
1

2

Z
ddx

Z
ddy h(x)G

(2)
0 (x� y;m0)h(y)

�
; (9)

where the two-point Schwinger function (the inverse kernel) satis�es

(��x +m2
0)G

(2)
0 (x� y;m0) = Æd(x� y): (10)



CBPF-NF-009/04 7

In this situation the free Euclidean �eld is a gaussian random variable de�ned by its two-point

correlation function

G
(2)
0 (x� y;m0) =

D
xj(��+m2

0)
�1jy

E
; (11)

and the two-point Schwinger function has a well known Fourier representation given by

G
(2)
0 (x� y;m0) =

1

(2�)d

Z
ddp

eip(x�y)

(p2 +m2
0)
: (12)

In the next chapter we will show that the two-point function G(2)
0 (x� y;m0) can be expressed

in terms of the modi�ed Bessel function of the third kind, or the Macdonald's function K�(x). At

the moment we are not interested to evaluate the two-point Schwinger function, but only analyse

the behavior of G
(2)
0 (x � y;m0) in an � neighborhood. Let us assume that mjx � yj << 1. In

this case for d � 3 we can use that G(2)
0 (x � y;m2

0) � G
(2)
0 (x � y;m2

0 = 0) = jx � yj�(d�2).

For d = 2, the mass parameter can not be eliminated from the denominator and we have the

following short distance behavior: G(2)
0 (x�y;m2

0) / ln(mjx�yj). It is well known that a massless

two-dimensional scalar �eld theory is not a consistent theory, since the model has severe infrared

divergences. There are di�erent proposes that try to circumvent the problem. We only enumerate

some of them. First one may violate the positivity of the state vector space. Another choice is

to restrict the test function of the theory, and �nally we can introduce a cut-o� in the de�nition

of the positive and negative Wightman functions. It is clear that this is equivalent to introduce

a box to regulate the theory in the infrared. Latter we will discusss other strategies to solve the

problem of the infrared divergences in scalar theoies.

Going back to the generating functional of all Schwinger functions, for �0 6= 0 it is not pos-

sible to �nd a closed exact expression for the partition function, and a perturbative expansion is

mandatory. Let us assume the weak-coupling perturbative expansion of the theory. It is impor-

tant to point out that the partition function can be de�ned in arbitrary geometries and classical

boundary conditions must be implemented in the two-point Schwinger function, restricting the
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space of functions that appear in the functional integrals. If we want to include thermal e�ects,

and assuming thermal equilibrium, from the Feynman, Matheus and Salam formula we have:

D
'bje�iH(tf�ti)j'a

E
=
Z '(tf )='b

'(ti)='a
exp

�
i

Z tf

ti

dt

Z
dd�1xL('; @')

�
; (13)

where we have to assume that tf � ti = �i� and set also 'a = 'b and the sum over all 'a must

be performed in order to produce the trace. The partition function Tr
h
e�� H

i
is given by

Tr
h
e�� H

i
=
Z
periodic

[d'] exp

 
i

Z ti�i�

ti
dt

Z
dd�1xL('; @')

!
; (14)

where the integration over the �elds satisfying '(ti � i�; ~x) = '(t; ~x). Since the time integration

must go from some ti to ti � i�, let ti = 0 and set the contour sum along the negative imaginary

axis from 0 to �i�. Thus t = �i� where 0 � � � �, and we have

Z(h)jh=0 =
Z
periodic

[d'] exp

 Z �

0
d�

Z
dd�1xL('; @')

!
: (15)

To generate the n-point Schwinger functions we need to coupled the �eld with an external source.

We will assume that the system is con�ned between two paralel hyperplates, that we call the

Casimir con�guration, localized at z = 0 and z = L, and we are using cartesian coordinates

x� = (~r; z), where ~r is a (d � 1) dimensional vector perpendicular to the ~z vector. Note that

since we assume thermal equilibrium with a reservoir, we have periodicity in the �rst coordinate

and 0 � r1 � �. See for example Ref. [33], or for a complete review of quantum �eld theory

at thermal equilibrium, see for example Ref. [34]. The choice of Dirichlet-Dirichlet boundary

conditions means that the scalar �eld satis�es

'(~r; z)jz=0 = '(~r; z)jz=L; (16)

and Neumann-Neumann boundary conditions means that

@

@z
'(~r; z)jz=0 = @

@z
'(~r; z)jz=L: (17)
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In the next section we discuss the perturbative renormalization at the one-loop level of the �eld

theory in the presence of rigid boundaries. The great interest of this question is that when systems

contain macroscopic structures, how it is possible to implement the renormalization program. We

examinate how does the weak-coupling perturbative expansion and the renormalization program

can be implemented. In order to identify the singular part of the one-loop two-point Schwinger

function, we use a combination of dimensional and zeta function analytic regularization procedures.

We also present the detailed form of the surface divergences. Note that due to our choice (two-

parallel hyperplates), the region outside the boundaries is the union of two-simple connected

domains. The renormalization of the �eld theory in such exterior regions must be carried out

along the same lines as for the interior region. For simplicity we are considering only the interior

region.

3 The regularized one-loop two and four-point Schwinger

functions

The aim of this section is to rederive a well known result, adding �nite temperature e�ects in the

problem. In order to implement the renormalization program in a scalar �eld theory where we

assume Dirichlet-Dirichlet or Neumann-Neumann boundary conditions on rigid surfaces introduce

surface divergences. To write the full renormalized action for the theory with rigid boundaries we

need two regulators: the �rst one is the usual � that is introduced in the dimensional regularization

procedure and the second one, that we call �, represents the distance to a boundary. According

to this we will show that the full renormalized action must be given by:

S(') =
Z L

0
dz

Z
dd�1r

 
A(�)

2
(@�')

2 +
B(�)

2
'2 +

C(�)

4!
'4

!

+
Z
dd�1r

�
c1(�)'

2(~r; 0) + c2(�)'
2(~r; L)

�
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+
Z
dd�1r

�
c3(�)'

4(~r; 0) + c4(�)'
4(~r; L)

�
; (18)

where A(�), B(�) and C(�) are the usual coeÆcients for the bulk counterterms and the coeÆcients

ci(�) i = 1; ::4, which depend on the boundary conditions for the �eld, are the coeÆcients for

the surface counterterms. As usual all of these coeÆcients must be calculated order by order in

perturbation theory. Note that the system that we are interested in is invariant under translation

along the directions parallel to the plates. This implies that what is conserved is not the full

momentum. For such conditions, to implement the perturbative renormalization a more convenient

representation for the n-point Schwinger functions is a mixed (~p; z) representation. Careless one-

loop perturbation theory generates ultraviolet counterterms that depends on the distance between

the plates or also absence of surface counterterms [27] [28].

Brie
y speaking, in the Matsubara formalism all the Feynman rules are the same as in the

zero temperature case, except that the momentum-space integrals over the zeroth component is

replaced by a sum over discrete frequencies. For the case of bosons �elds we have to perform the

replacement Z
ddp

(2�)d
f(p)! 1

�

X
n

Z
dd�1p

(2�)d�1
f(
2n�

�
; ~p); (19)

and note that we are using the following notation: (
R
dd�1r =

R �
0 dr1

R
dd�2r).

We begin the study of the interacting theory by building the one-loop correction
�
G

(2)
1 (�0; x; x

0)
�

to the bare two-point Schwinger function G
(2)
0 (x; x0), for both the DD and NN boundary condi-

tions. Using the Feynman rules we have that G
(2)
1 (�0; ~r1; z1; ~r2; z2) can be writtem as

G
(2)
1 (�0; ~r1; z1; ~r2; z2) =

�0

2

Z
dd�1r

Z L

0
dz G

(2)
0 (~r1 � ~r; z1; z)G

(2)
0 (~0; z)G

(2)
0 (~r � ~r2; z; z2): (20)

Here we point out that even though the functions G
(2)
0 (~r1 � ~r2; z1; z2) and G

(2)
0 (~r2 � ~r3; z2; z3) are

singular at coincident points (~r1 = ~r2, z1 = z2) and (~r2 = ~r3, z2 = z3), the singularities are

integrable for points outside the plates. It is worth mentioning that the most simple way to take
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into account the boundary is the following: both boundary conditions can be implemented through

the explicit form of the free two-point Schwinger function G
(2)
0 (x � y;m0). A straightforward

substitution yields the order �0 correction to the bare two-point Schwinger function in the one-

loop approximation for the case of Dirichlet-Dirichlet boundary conditions. Using the Feynman

rules, G
(4)
2 (�0; x1; x2; x3; x4), i.e., the O(�

2
0) correction to the bare one-loop four-point Schwinger

function, is given by

G
(4)
2 (�0; ~r1; z1; ~r2; z2; ~r3; z3; ~r4; z4) =

�20
2

Z
dd�1r

Z
dd�1r0

Z L

0
dz

Z L

0
dz0 G

(2)
0 (~r1 � ~r; z1; z)

G
(2)
0 (~r2 � ~r; z2; z)

�
G

(2)
0 (~r � ~r0; z; z0)

�2

G
(2)
0 (~r0 � ~r3; z

0; z3)G
(2)
0 (~r0 � ~r4; z

0; z4): (21)

Note that we supress the m0 term in each expression. Again, all G0's are singular at coincident

points, but the singularities are integrable for points outside the plates, except for G
(2)
0 (~r�~r0; z; z0).

Having in mind the discussion above, in this section we are interested to study the following

expressions:

�0

2

Z
dd�1r

Z L

0
dz

�
G

(2)
0 (~0; z)

�
; (22)

and

�20
2

Z
dd�1r

Z
dd�1r0

Z L

0
dz

Z L

0
dz0

�
G

(2)
0 (~r � ~r0; z; z0)

�2
: (23)

Consequently, let us study 1
2
G

(2)
0 (~0; z) � I(z;m0; L; �; d) and de�ne the following quantities:

1
b
= 2

�
, L = a and �nally the dimensionless coupling constant g = �4�d�0. Therefore, we have that

the argument in the integral de�ned in Eq.(22), I(z;m0; a; b; d) can be written as

I(z;m0; a; b; d) =
g

2(2�)d�2ab

1X
n=�1

1X
n0=1

sin2(
n0�z

a
)
Z
dd�2p

1�
~p 2 + (n

0�
a
)2 + (n�

b
)2 ++m2

0

� : (24)

There are two points that we would like to stress. First is the fact that to perform analytic

regularizations, we have to introduce a parameter � with dimension of mass in order to have

dimensionless quantities raised to a complex power. Second is the fact that the generalization
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for the case of Neumann boundary conditions is straightforward, although in this case infrared

divergences associated with the n = 0 mode will appear in the case of massless scalar �eld. To

circumvent this situation we must have a �nite Euclidean volume to regularize the model in the

infrared or trying to implement a resummation to generate a thermal mass. We will return to this

point latter.

Using trigonometric identities, it is convenient to write the amputated one-loop two-point

Schwinger in two parts. The �rst is the contributions that do not depend on the distance to the

boundary and the second part is the contributions that depend on the distance to the boundary.

Therefore we have that the quantity I(z;m0; a; b; d) can be split in two parts T1(m0; a; b; d) and

T2(z;m0; a; b; d), i.e.:

I(z;m0; a; b; d) = T1(m0; a; b; d) + T2(z;m0; a; b; d): (25)

The �rst quantity T1(m0; a; b; d) that does not depend on the distance to the boundaries can be

expressed in the following way:

T1(m0; a; b; d) = I0(m0; a; b; d) + I1(m0; a; b; d) + I2(m0; a; b; d); (26)

where each of the terms are given respectivelly by:

I0(m0; a; b; d) = � g

16(2�)d�2ab

Z
dd�2p

1

(~p 2 +m2
0)
; (27)

I1(m0; a; b; d) =
g

8 (2�)d�2 ab

1X
n=1

Z
dd�2p

1�
~p 2 +m2

0 + (n�
a
)2
� ; (28)

and �nally

I2(m0; a; b; d) =
g

4(2�)d�2ab

1X
n;n0=1

Z
dd�2p

1�
~p 2 + (n�

a
)2 + (n

0�
b
)2 +m2

0

� : (29)

The contributions that depends on the distance to the boundaries given by T2(z;m0; a; b; d) can

be split in the following way:

T2(z;m0; a; b; d) = I3(z;m0; b; d) + I4(z;m0; a; b; d) + I5(z;m0; b; d) + I6(z;m0; a; b; d): (30)
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Each of the terms that contributes to T2(z;m0; a; b; d) are given by:

I3(z;m0; b; d) =
g

2b
h(d)

Z
1

m0

dv(v2 �m2
0)

d�4
2 exp(�2vz); (31)

I4(z;m0; a; b; d) =
g

2b
h(d)

Z
1

m0

dv (v2 �m2
0)

d�4
2 (coth av � 1) cosh 2vz; (32)

I5(z;m0; b; d) =
g

b
h(d)

1X
n=1

Z
1

m0

dv

�
v2 �m2

0 � (
n�

b
)2
� d�4

2

exp(�2vz); (33)

and �nally

I6(z;m0; a; b; d) =
g

b
h(d)

1X
n=1

Z
1

�
dv

�
v2 �m2

0 � (
n�

b
)2
� d�4

2

(coth av � 1) cosh 2vz: (34)

In the expression above we have that the quantity � is given by

� =
�
m2

0 + (
n�

b
)2
� 1

2

; (35)

and h(d) that appears in Eqs.(31), (32), (33) and (34) is an entire function given by

h(d) =
1

4(4�)
d�2
2

1

�(d�2
2
)
: (36)

Let us investigate each contribution in details. Using dimensional regularization we obtain for

I0(m0; d) the following expression:

I0(m0; a; b; d) = � g

16 ab(2
p
�)d�2

�(2� d

2
)(m2

0)
d
2
�2: (37)

An analytic expression for the Gamma function �(z), de�ning in the whole complex plane can

be found and in the neighborhood of a pole z = �n, (n = 0; 1; 2::) the Gamma function has the

representation

�(z) =
(�1)n
n!

1

(z + n)
+ 
(z + n); (38)

with regular part 
(z + n). Using that 4 � d = � an the duplication formula for the Gamma

function �(z) we have

I0(m0; a; b; d)jd=4 = � g

16� ab

1

m�
0

�
1

�
+ 
(�)

�
: (39)
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At this moment we have di�erent renormalization schemes to choose. We can choose the min-

imal subtraction (MS) scheme. In the minimal subtraction scheme we eliminate only the pole

term 1
�
in the dimensionaly regularized expression for the Schwinger functions. Another choice is

the modi�ed minimal subtraction (MS) scheme. In the modi�ed minimal subtraction scheme we

eliminate not only the pole term 1
�
but also the regular part around the pole. Note that in the

minimal subtraction scheme the counterterms acquire the simplest expression while the renormal-

ized Schwinger functions have more complicated expressions. Let us analyse the second expression

given by I1(m0; a; b; d). Using dimensional regularization it is possible to show that I1(m0; a; b; d)

is given by

I1(m0; a; b; d) =
g

8(2
p
�)d�2ab

�(2� d

2
)
1X
n=1

1�
m2

0 + (n�
a
)2
�2� d

2

: (40)

We note that to extract a �nite result from I1(m0; a; b; d) we still have to use the analytic extension

of the Epstein-Hurwitz zeta function. A direct calculation gives

I1(m0; a; b; d) = � g

8ab
md�4

0

p
�

(2
p
�)d�1

�(2� d

2
) +

g md�3
0

8b

1

(2�)d�1

 
�

 
3� d

2

!
+ 4

1X
n=1

(am0n)
3�d
2 K 3�d

2

(2m0na)

!
: (41)

The �rst term in the above equation is a polar part and the second one is �nite. Assuming then

minimal subtraction scheme I1(m0; a; b; d) becomes �nite. The next term that we have to analyse

is I2(m0; a; b; d) de�ned by:

I2(m0; a; b; d) =
g

4ab

1

(2�)d�2

1X
n;n0=1

Z
dd�2p

1�
~p 2 + (n�

a
)2 + (n

0�
b
)2 +m2

0

� : (42)

The contribution given by the above equation is one part of the amputated one-loop two-point

Schwinger function which does not depend from the distance to the boundaries and in the renor-

malization procedure will require only a usual bulk counterterm. The form of the counterterm is

given by the principal part of the Laurent expansion of Eq.(42) around some d, which must be

given by the analytic extension of the Epstein zeta function in the complex d plane. The structure
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of the divergences of the Epstein zeta function is well know in the literature [35] [36] [37] [38].

Since the polar structure of the above equation can be found in the literature, we will concentrate

only on the position dependent divergent part given by T2(z;m0; a; b; d). We are now in position

to discuss the behavior of I3(z;m0; b; d); I4(z;m0; a; b; d); I5(z;m0; b; d) and �nally I6(z;m0; a; b; d).

Let us �rst analyse I3(z;m0; b; d). Using the following integral representation of the modi�ed

Bessel functions of third kind, or the Macdonald's functions K�(x) [39]:

Z
1

u
(x2 � u2)��1e��x dx =

1p
�
(
2u

�
)��

1

2�(�)K�� 1

2
(u�); (43)

which is valid for for u > 0, Re (�) > 0 and Re (�) > 0, I3(z;m0; a; b; d) can be written in terms

of these functions. A simple substitution gives

I3(z;m0; a; b; d) =
2

b

h(d)

(2
p
�)d�1

(
m0

z
)
d�3
2 K d�3

2

(2m0z): (44)

Using a asymptoptic formula for the Bessel function we have that I3(z;m0; a; b; d) is given by

I3(z;m0; a; b; d) =
2

b

h(d)

(2
p
�)d�1

�(d�3
2
)

zd�3
: (45)

We can see that we have a divergent behavior as z ! 0, that demands a surface counterterm. Let

us show that the other terms also contains surface divergences. Consequently, let us study the

I4(z;m0; a; b; d). To proceed in the calculations we have to extend the binomial series for positive

or negative integral exponents that is written in the form

(1 + x)k =
1X
n=0

Ck
n x

n: (46)

It is possible to show that the binomial expansion holds �rst for any real exponent �, jxj < 1 and

� � R, i.e.,

(1 + x)� =
1X
n=0

Cn
� x

n; (47)

where Cn
� are the generalization of the binomial coeÆcients. Since we are using dimensional

regularization, it is possible to extend the binomial expansion when both the exponent � as well

the variable x assume complex values. For this purpose we have to use the following theorem:
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For any complex exponent � and any complex z in jzj < 1, the binomial series

1X
n=0

Cn
�z

n = 1 + C1
�z + ::+ Cn

�z
n + :: (48)

converges and has the the sum of the principal value of the power (1 + z)�, where the principal

value of the power ba where a and b denotes any complex numbers, with b 6= 0 as the only condition

is given by the number uniquely de�ned by the formula ba = exp(a ln b), where ln b is given its

principal value. Going back to I4(z;m0; a; b; d) using the generalization of the binomial theorem,

let us de�ne C(1)(d; k) = 1
2
h(d)(�1)kCk

d�4
2

to obtain

I4(z;m0; a; b; d) =
g

ad�3b

1X
k=0

C(1)(d; k)(m0a)
2k
Z
1

m0a
ud�4�2k(cothu� 1) cosh(

2uz

a
): (49)

Let us use the following integral representation of the Gamma function,

Z
1

0
dt t��1e��t =

1

��
�(�); Re(�) > 0; Re(�) > 0; (50)

and also the following integral representation of the product of the Gamma function times the

Hurwitz zeta function

Z
1

0
dt t��1e��t(coth t� 1) = 21���(�)�(�;

�

2
+ 1) Re(�) > 0; Re(�) > 1; (51)

where �(s; u) is the Hurwitz zeta function de�ned by [39]

�(s; u) =
1X
n=0

1

(n+ u)s
; Re(s) > 1 u 6= 0;�1;�2::: (52)

It is not diÆcult to show that I4(z;m0; a; b; d) contains surface divergences at z = 0 and also

z = a. For more details, see for example Ref. [40]. The other expression that we have to study is

I5(z;m0; a; b; d). Using an integral representation of the Bessel function of third kind we have:

I5(z;m0; a; b; d) =
1

b

1

(2
p
�)d�1

1X
n=1

(
�

z
)
d�3
2 K d�3

2

(2�z): (53)
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Using an asymptotic representation of the Bessel function it is posssible to present also the singular

behavior near z = 0. Let us �nally investigate I6(z;m0; a; b; d). A simple calculation for the

massless case gives

I6(z;m0; a; b; d)jm=0 =
1

ad�3b

1X
k=0

C(2)(d; k)(
a

b
)2k

1X
n=1

n2k
Z
1

n�a
b

du ud�4�2k(coth u� 1) cosh(
2uz

a
);

(54)

where C(2)(d; k) = h(d)(�1)kCk
d�4
2

�2k is an entire function in the complex d plane. The integral

that appear in Eq.(54) cannot be evaluated explicity in terms of well known functions. Nevertheless

it is possible to write Eq.(54) in a convenient way where the structure of the divergences near the

plate when y ! b appear. For details see Ref. [40]. In the next section we will investigate the

singularities of the four-point Schwinger function.

4 The four-point Schwinger function in the one-loop ap-

proximation

We now turn our attention back to the four-point Schwinger function in the one-loop approxi-

mation. For simplicity we are studying only the zero temperature case. In this chapter we are

following the discussion developed in Ref. [30]. Introducing new variables as u� � z� z0, and also

(~� = ~r� ~r0), the zero-temperature two-point Schwinger function in the tree-level G
(2)
0 (~�; z; z0) can

be split into

G
(2)
0 (~�; z; z0) = G

(2)
+ (~�; u+) +G

(2)
� (~�; u�); (55)

where we are de�ning An(a;m0; d; ~�) by

An(a;m0; d; ~�) =
1

(2�)d�1

Z
dd�1p

ei~p:~�

(~p 2 + (n�
a
)2 +m2

0)
; (56)
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and we have that G
(2)
� (~�; u�) can be expressed as

G
(2)
� (~�; u�) = �1

a

1X
n=1

cos(
n�u�

a
)An(a;m0; d; ~�): (57)

Before continuing, let us present a explicit formula of the free two-point Schwinger function

G
(2)
� (�; u�) in terms of Bessel functions. Let us de�ne an analytic function f(d) by

f(d) =
1p

�(2�)
d�1
2

�(d�2
2
)

�(d�3
2
)
: (58)

Strictly speaking, it is possible to show that we can write G(2)
� (�; u�) in terms of the Bessel function

of third kind. To this end we use the standard formula

1

(2�)d

Z
ddrF (r)ei

~k:~r =
1p

�(2�)
d
2

�(d�1
2
)

�(d�2
2
)

Z
1

0
F (r)r

d
2J d�3

2

(kr)dr; (59)

which takes us to:

G
(2)
� (�; u�) = � f(d)

�
d�3
2 a

1X
n=1

cos(
n�u�

a
)
Z
1

0
dp

p
d�1
2

(p2 + (n�
L
)2 +m2

0)
J d�3

2

(p�); (60)

where J�(x) is the Bessel function of the �rst kind of order �. The integral in Eq.(60) can be

calculated by using the result [39]

Z
1

0
dx

x�+1J�(ax)

(x2 + b2)
= b�K�(ab); (61)

implying that it is possible to write G
(2)
� (�; u�) as

G
(2)
� (�; u�) = � f(d)

�
d�3
2 a

1X
n=1

cos(
n�u�

a
)
�
(
n�

a
)2 +m2

0

� d�3
4

K d�3
2

�
�

r
m2

0 + (
n�

a
)2
�
: (62)

Using Eq.(55) and the above formula gives us the explicit expression for the two-point Schwinger

function in a generic d-dimensional Euclidean space con�ned between two 
at paralel hyperplanes

where we assume Dirichlet-Dirichlet boundary conditions. It is hard to use the above expressions

for G
(2)
� (�; u�) to investigate the analytic structure of the four-point function for both the bulk

and near the boundaries. Nevertheless it is clear that the divergences of the four-point function
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in the one-loop approximation appear at coincident points and therefore the singular behavior is

encoded in the polar part of M(�0; a;m; d) given by

M(�0; a;m0; d) = g2
Z
dd�1r

Z
dd�1r0

Z a

0
dz

Z a

0
dz0F (~r; ~r0; z; z0)

�
G

(2)
0 (~r � ~r0; z; z0)

�2
: (63)

It is easy to show that G
(4)
2 (�0; a;m0; d)amp is given by

G
(4)
2 (�0; a;m0; d)amp =

g2

2(2�)2d�2

Z
dd�1r

Z
dd�1r0

Z
dd�1k

Z
dd�1q

1X
n=1

ei~�:(~q�
~k)

(~q2 + (n�
a
)2 +m2

0)(~k2 + (n�
a
)2 +m2

0)
; (64)

where F (~r; ~r0; z; z0) is a regular function. As with the one-loop two-point function, it is not diÆcult

to realize that the above equation has two kinds of singularities, those coming from the bulk and

those arising from the behavior near the surface. As before, the behavior in the bulk is as that

found in thermal �eld theory and consequently we will only discuss the singularities that arise

from the boundaries. This can be done by studying the polar part of ~M(�0; a;m0; d) given by

~M(�; a;m0; d) =
g2

2

Z a

0
dz

Z a

0
dz0F(z; z0)

�
G

(2)
0 (~0; z; z0)

�2
; (65)

where F(z; z0) is a regular function. Now, we recall that the form of G
(2)
� (�; u�)j�=0 is given by,

G
(2)
� (�; u�)j�=0 = � 1

(2�)d�1a

1X
n=1

cos(
n�u�

a
)
Z
dd�1p

1�
~p2 +m2

0 + (n�
a
)2
� ; (66)

where it is not diÆcult to show that

G
(2)
� (�; u�)j�=0 = �

�
� 1

2a
A0(�; L;m0)j�=0 + f2(a;m0; d;

u�

2
)
�
: (67)

In the above de�nition we are making use of the auxiliary function f2(a; d;m0; z) de�ned by

f2(a;m0; d; z) =
1

2(2�)d�1

Z
dd�1p

1q
~p2 +m2

0

cosh((a� 2z)
q
~p2 +m2

0)

sinh(a
q
~p2 +m2

0)
: (68)

Before continue, note that the amputated one-loop two-point Schwinger function can be decom-

posed in a translational invariant part and another that break the translational invariance, given
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exactly by f2(a;m0; d; z). When we add to �nd the free propagator we end up with the following

expression

G
(2)
0 (�; z; z0)j�=0 = f2(a;m0; d;

u�

2
)� f2(a;m0; d;

u+

2
): (69)

For the sake of simplicity we will discuss only the massless case since the singularities of the massive

case have the same structure as the massless one. The function f2(a;m0; d;
u+
2
) is non singular

in the bulk, i.e., in the interior of the interval [0; a], while f2(a;m0; d;
u�
2
) has a singularity along

the line z = z0. Indeed, closer inspection shows that for 0 � z; z0 � a the only singularities are

those at u+ = 0, u+ = 2a and also u� = 0. The former two are genuinely boundary singularities

(the two conditions imply z; z0 ! 0 or z; z0 ! a) while the other coming from z = z0 in the whole

domain is just the standard bulk singularity. In fact, using the structure of the two point function

and showing just those terms from which singularities might arise, one �nds that the counterterms

for ~M are given by

�pole
Z a

0
dz

Z a

0
dz0[

C1

(z + z0)d�2
+

C2

(2a� z � z0)d�2
+

C3

(z � z0)d�2
+ :::]2; (70)

where Ci; i = 1; ::3 are regular functions that do not depend on z or z0. From this discussion

it is clear that in order to render the �eld theory �nite, we must introduce surface terms in the

action. This is a general statement. For any �elds that satisfy boundary condition that breaks the

translational invariance, in addition to the usual bulk counterterms, it is suÆcient to introduce

surface counterterms in the action to render the theory �nite in the ultraviolet [41] [42] [43]. Now

we are able to discuss if in the Casimir con�guration we are able to solve the infrared problems

for the case of Neumann boundary conditions. For the case of massless (�'4)d theory at �nite

temperature, the infrared problem can be solved after a resummation procedure [22] [23] [24] [25]

[44]. The key point for the solution of the infrared problem is to use the Dyson-Schwinger equation

to rewrite the self-energy gap equation. Simple inspection in Eq.(24) show us that it is not possible

to implement such scheme in a situation where there is a break of translational invariance.
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A di�erent possibility to solve the infrared problem is to separate the zero mode component of

the �eld, treating the non-zero modes perturbativelly and treating the zero mode exactly. This is a

standard procedure in high-temperature �eld theory, where using the dimensional reduction idea,

we relate the thermal Schwinger functions in a d-dimensional Euclidean space to zero temperature

Schwinger functions in a (d � 1) dimensional Euclidean space [45] [46] [47]. In this situation we

have a dimensionally reduced e�ective theory. The key point in this construction is the fact that

the leading infrared behavior of any �eld theory at high temperature in a d dimensional Euclidean

space is governed by the zero frequency Matsubara mode.

5 Discussions and conclusions

In this paper we were interested to analyse the important question of the perturbative expansion

and the renormalization program in quantum �eld theory with boundary conditions that breaks

translation symmetry, assuming also that the system is in equilibrium with a reservoir at tem-

perature ��1. To be more speci�c, the purpose of this paper is to study the renormalization

procedure up to one-loop level in the (�'4)d theory at �nite temperature assuming that the scalar

�eld satis�es Dirichlet-Dirichlet or also Neumann-Neumann boundary conditions on two parallel

hyperplates.

We �rst obtained the regularized one-loop diagrams associated with scalar �eld de�ned in the

Casimir con�guration in a d-dimensional Euclidean space. We �rst rederive a well-know result

that surface divergences appear in the one-loop two-point and four-point Schwinger functions as

consequence of the uncertaintly principle. There are at least three di�erent possible solutions

that can eliminate these divergences. The �rst is to take into account that real materials have

imperfect conductivity at high frequencies. As was stressed by many authors, the in�nities that

appear in renormalized values of local observables for the ideal conductor (or perfect mirror)
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represent a breakdown of the perfect-conductor approximation. A wavelength cuto� corresponding

to the �nite plasma frequency must be included. The second is is to substitute classical boundary

conditions by classical potentials. For previous papers using this idea see for example [48] [49]

[50]. A localized boundary with some cut-of can also be use to substitute the potential. As

we discussed, it is necessary to renormalize the potential [30]. The third would be given by a

quantum mechanical treatment of the boundary conditions . A fruitful approach to avoid surface

divergences, discussed by Kennedy et al [51] is to treat the boundary as a quantum mechanical

object. This approach was developed by Ford and Svaiter [52] to produce �nite values for the

renormalized < '2 > and other quantities that diverge as one approach the classical boundary.

Consequently, we have two main distincts directions in future investigations. The �rst is related

to the infrared divergences of our model. Being more speci�c, the infrared divergences of massless

thermal �eld theory arise from the zero frequency Matsubara modes. Thus we construct an

e�ective (d�1) dimensional theory by integrating out the nonstatic modes and the zero frequency

Matsubara modes which are responsible for infrared divergences can be treated separately. The

second direction is related to the surface divergences. In the Euclidean formalism for �eld theory,

one may imagine that, our simpli�ed model of rigid boundaries, is a good approximation only

for points in the bulk. However, one might imagine that for points close to the surfaces our

approximation is no longer acurate and a model taking into account at least thermal 
uctuations

of the boundaries must be developed [53]. In other words, a fundamental understanding of the

perturbative renormalization algorith in the standard weak-coupling perturbative expansion of an

Euclidean �eld in the presence of 
uctuating boundaries is desired. This interesting situation of

thermal 
uctuating boundaries is under the investigation by the authors.
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