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Abstract

Expansions in series of Coulomb and hypergeometric functions for the solutions

of the Generalized Spheroidal Wave Equations (GSWEs) are analyzed and written

together in pairs. Each pair consists of a solution in series of hypergeometric func-

tions and another in series of Coulomb wave functions and has the same recurrence

relations for the series coe�cients, but the solutions inside it present di�erent radii

of convergence. Expansions without phase parameter are derived by truncating the

series with phase parameter. For the Whittaker-Hill Equation (WHE) solutions

are found by treating that equation as a particular case of GSWEs, while for the

con
uent GSWE solutions, with and without phase parameter, are given as pairs of

series of Coulomb wave functions. Amongst the applications there are the equations

for the time dependence of Dirac test �elds in some non
at Friedmann-Robertson-

Walker (FRW) spacetimes, the radial Schr�odinger equation for an electron in the

�eld of two Coulombian centers and the Schr�odinger equation for the Razavy-type

quasi-exactly solvable (QES) potentials. For these problems it is possible to �nd

wave functions in terms of in�nite series, regular and convergent over the entire

range of the independent variable, by matching expansions belonging to one or

more of the above pairs. The in�nite-series solutions for the Razavy-type poten-

tials, in addition to the polynomial ones, suggest that the whole energy spectra may

be determined without appealing to perturbation theory or semi-classical methods

of approximation.
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1. Generalities

This work deals with solutions to the GSWEs and their particular cases. We also discuss

some possible applications of results found here. Before outlining what we are doing, we

will present some ideas concerning the GSWEs which will be used throughout the article.

For de�niteness, we adopt the Leaver version,

x(x� x0)d
2U

dx2
+ (B1 +B2x)

dU

dx
+
h
B3 � 2!�(x� x0) + !2x(x� x0)

i
U = 0; (1)

for the GSWE [1], where x0, Bi, � and ! are constants. If � = 0 and x0 6= 0, then we

have the ordinary spheroidal wave equation. On the other hand, supposing that

B1 = �x0=2; B2 = 1; x = x0 cos
2(u) (2)

in Eq. (1), we �nd

d2U

du2
+
h
�4B3 � 4�!x0 + 4�!x0 cos(2u) + !2x20 sin

2(2u)
i
U = 0; (3)

which is the Whittaker-Hill equation [2]. Since the WHE has just three parameters, we

may absorb x0 into !. A third particular case, the con
uent GSWE, occurs when x0 = 0,

x2
d2U

dx2
+ (B1 +B2x)

dU

dx
+
h
B3 � 2!�x+ !2x2

i
U = 0; (4)

with the singular points x = 0 and x =1 being both irregular [1].

As usual, we shall consider only solutions given as series of special functions with

three-term recurrence relations for the series coe�cients. If there are no free constants in

the GSWE, the series convergence demands the presence of a phase parameter � which

must be determined from a characteristic equation ensuing from the recurrence relations.

Series expansions with phase parameter are double-sided with the summation index n

running from �1 to 1. However, the GSWEs may also admit solutions in �nite series.

For the WHE these solutions are known as Ince's polynomials [3], whereas for the general

case they can be called Heun's polynomials, since the GSWE is a con
uent Heun equation

and the con
uent GSWE is a double con
uent Heun equation [4]. Furthermore, from a

known solution S(x) with a phase parameter �,

S(x) := U(B1; B2; B3; �; x0; !; �;x); (5)

(where \:=" means \equal by de�nition") it may be possible to get new solutions by

means of one or more of the following transformation rules [4, 5] { T1; T2; T3{

T1S(x) = x1+B1=x0U(C1; C2; C3; �1; x0; !; �;x); (6a)

T2S(x) = (x� x0)1�B2�B1=x0U(B1;D2;D3; �2; x0; !; �;x); (6b)
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where

C1 := �B1 � 2x0; C2 := 2 +B2 +
2B1

x0
; C3 := B3 +

�
1 +

B1

x0

��
B2 +

B1

x0

�
; (7a)

D2 := 2�B2 � 2B1

x0
; D3 := B3 +

B1

x0

�
B1

x0
+B2 � 1

�
: (7b)

These rules are valid only for x0 6= 0 and they can be demonstrated by setting

U = x1+B1=x0f1; U = (x� x0)1�B2�B1=x0f2

into Eq. (1). They must be applied to general solutions of the GSWE in which no values

were speci�ed for the parameters; it would make no sense to try to apply them to a

solution of the WHE, for instance. A further rule, now valid also for x0 = 0, is

T3S(x) = U(B1; B2; B3; �3; x0;�!;��;x); 8x0; (8)

in which it is assumed that we have to change the sign of (�; !) only where these quan-

tities appear explicitly, preserving the expressions for the other constants. In e�ect, the

solutions regarded here will have the forms U = ei!xg and U = e�i!xh and thereupon we

get

x(x� x0)d
2g

dx2
+ [B1 +B2x+ 2i!x(x� x0)] dg

dx
+ [B3 + i!B1 + i!B2x� 2!�(x� x0)] g = 0;

x(x� x0)d
2h

dx2
+ [B1 +B2x� 2i!x(x� x0)]dh

dx
+ [B3 � i!B1 � i!B2x� 2!�(x� x0)]h = 0;

for g and h with the sole changes stated above. If we did not take into account this

remark, we would get wrong results for the solutions of Teukolsky equations, for example,

where the constants depend on � and ! (see, e. g., [1]). With this proviso, the rule T3
will not be used explicitly and it is put here just to remind that for each written solution

exists another one. Moreover, these rules in general also transform the phase parameter,

although that will not happen for the solutions discussed here.

With regard to the con
uent GSWE, for which T1 and T2 do not work, we have the

rules t1 and t2 [1, 4],

t1S(x) = ei!x+B1=(2x)x�i��B2=2U(B
0

1; B
0

2; B
0

3;!
0

; �
0

;#); (9a)

t2S(x) = eB1=xx2�B2U(B1; B2; B3;!; �;x); (9b)

where

B
0

1 = !B1; B
0

2 = 2 + 2i�; B
0

3 = B3 �
�
B2

2
+ i�

��
B2

2
� i� � 1

�
;

!
0

= 1; i�
0

=
B2

2
� 1; # =

iB1

2x
; (10a)
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and

B1 = �B1; B2 = 4�B2; B3 = B3 + 2�B2: (10b)

An additional procedure, which will be used to get solutions without phase parameters

out of the ones with phase parameters, consists in truncating the series with phase pa-

rameter, that is, restricting the summation index n to non negative values. In this process

� will become determined regardless of the characteristic equation and, consequently, the

truncation is allowed only if there is some arbitrary constant in the di�erential equation.

In general we get more than one expression for �. Besides this, once we have obtained one

solution without phase parameter, new ones can be generated from the transformation

rules.

All the facts exposed above are well known in the theory of Heun's di�erential equa-

tions of which the GSWEs are particular cases, as mentioned before. We shall use them

to get explicit solutions to the GSWEs in series of Gauss hypergeometric and Coulomb

wave functions. We will not write down just one solution of type (5) but also the solu-

tions arising from it via the transformations rules. This procedure requires some more

space but it is necessary if we want to use the solutions to solve particular equations. On

the other hand, we will pay special attention to the solution truncation for, in general,

this process leads to more than one (three in our case) possible forms to the recurrence

relations for the series coe�cients.

First, in Section 2, we deal with the solutions with phase parameters. The expansions

in hypergeometric functions are taken from [6] with minor modi�cations; the series in

Coulomb wave functions are the Leaver solutions [1] and those which come from them by

rule T2. The solutions are written as two pairs, each pair exhibiting the same series coef-

�cient and containing an expansion in hypergeometric functions and another in Coulomb

functions. For the WHE one pair is even with respect to the variable u and the other

is odd. The idea of working simultaneously with these two types of expansions appears

in Otchik [7], who proposed to match them in order to solve the radial Teukolsky equa-

tions (see also [8-11]). Therefore, this Section can be seen as a transposition of Otchic's

approach to other problems described by non-con
uent GSWEs. Actually, we will �nd

that our results may be used to get solutions to the time dependence of massive-Dirac

test �elds in radiation-dominated Friedmann-Robertson-Walker spacetimes.

In Section 3.1, the solutions found in Section 2 will be truncated. This provides

three values for � in each pair of solutions. We select two of them and remain with four

pairs without phase parameter. As an application we examine the solutions of the radial

Schr�odinger equation for an electron in the �eld of two Coulombian centers (the two-

center problem) and conclude that it is possible to construct solutions regular over the

entire range of the radial coordinate by matching expansions in hypergeometric functions

with expansions in Coulomb wave functions. This procedure o�ers the advantages of not

presenting a phase parameter to be interpreted, and of operating with one-sided series.

A new solution to the angular equation is found too. In Section 3.2 we regard the case in



CBPF-NF-009/02 4

which B2 = 1 and B1=x0 = �1=2 (here named Whittaker-Hill-type) and �nd that for the

WHE, properly, the expansions in hypergeometric functions coincide with the four Arscott

expansions in trigonometric functions [2] but, now, for each of them we have a partner in

series of Coulomb functions. This fact enable us to match solutions of a given pair to get

the complete energy spectrum for the Schr�odinger equation with quasi-exactly solvable

(QES) Razavy-type potentials without the need of perturbation theory or semi-classical

methods of approximations.

In Section 4 the Leaver solutions in series of Coulomb functions to the con
uent GSWE

are duplicated by the rule t2. We �nd that such expansions may be used to get solutions for

the time dependence of massive-Dirac test �elds in dust-dominated FRW spacetimes. The

truncated expansions are applied to the Schr�odinger equation with asymmetric double-

Morse potentials. For QES potentials we obtain polynomial solutions. In Section 5,

there are concluding remarks and Appendix A shows us how to obtain the the recurrence

relations for the truncated solutions.

2. Solutions with Phase Parameter

We denote by U�
1 and U�

2 the two expansions in series of hypergeometric functions and

by eU�
1 and eU�

2 the two expansions in series of Coulomb wave functions. The superscript �

indicates that they depend on a phase parameter �. By demanding invariance of solutions

under the operations implied by rules T1 and T2, we get eU�
2 as a new expansion resulting

from the Leaver one, eU�
1 . On the other hand, by requiring that the series coe�cients

for U�
1 and U�

2 to be identical to those which appear in eU�
1 and eU�

2 , we are compelled

to rede�ne the phase parameters of the original expansions in hypergeometric functions.

This gives the two pairs of solutions ( U�
1 ,
eU�
1 ) and (U�

2 ,
eU�
2 ), each one with the same series

coe�cients. We �rst write down the general solutions, then we restrict them to Whittaker-

Hill-type equations and �nally discuss the Dirac equation for radiation-dominated FRW

backgrounds.

2.1. General Case

The expansions in series of Coulomb wave functions will be written explicitly as series

of the regular (or Kummer) and irregular (or Tricomi) con
uent hypergeometric func-

tions M(a; b; z) and U(a; b; z), respectively, rather than in terms of regular and irregular

Coulomb wave functions Fn+� and Gn+� . As a matter of fact we will use fM (a; b; z),

fM(a; b; z) :=
�(b� a)
�(b)

M(a; b; z) =
�(b� a)
�(b)

 
1 +

a

b
z +

a(a+ 1)

2!b(b+ 1)
z2 + � � �

!
(11a)

instead of M(a; b; z). If, for brevity, we de�ne F(a; b; z) as

F (an;bn; z) := U (an;bn; z) or (�1)nfM (an;bn; z) ; (11b)
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the �rst pair of solutions assumes the form8><>:
U�
1 = ei!x

P1
n=�1 bnF

�
B2

2
� n� � � 1; n+ � + B2

2
;B2 +

B1

x0
; x0�x

x0

�
;

eU�
1 = ei!xx�+1�

B2

2

P1
n=�1 bn(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);

(12a)

with the following recurrence relations for the coe�cients bn

�nbn+1 + �nbn + 
nbn�1 = 0; (12b)

where8>>>>>>>>>><>>>>>>>>>>:

�n = i!x0
(n+�+2�B2

2
)
�
n+�+1�B2

2
�B1

x0

�
(n+�+1�i�)

2(n+�+1)(n+�+ 3

2
)

;

�n = �B3 � �!x0 � (n+ � + 1� B2

2
)(n+ � + B2

2
)�

�!x0(B2
2
�1)
�
B2

2
+
B1

x0

�
(n+�)(n+�+1)

;


n = �i!x0
(n+�+B2

2
�1)
�
n+�+

B2

2
+
B1

x0

�
(n+�+i�)

2(n+�� 1

2
)(n+�)

:

(12c)

The phase parameter � may be determined from a characteristic equation given as a sum

of two in�nite continued fractions, namely,

�0 =
��1
0
��1�

��2
�1
��2�

��3
�2
��3� � � �+

�0
1
�1�

�1
2
�2�

�2
3
�3� � � � : (12d)

Using the rule T2 we obtain the second pair of solutions,8><>:
U�
2 = f

P1
n=�1 b

0

nF
�
�n� � � B2

2 � B1

x0
; n+ � + 1� B2

2 � B1

x0
; 2�B2 � B1

x0
; x0�x

x0

�
;

eU�
2 = fx

�+
B2

2
+
B1

x0

P1
n=�1 b

0

n(�2i!x)n F(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);
(13a)

where

f := ei!x(x� x0)1�B2�B1

x0 ; (13b)

and 8>>>><>>>>:
�
0

n = i!x0

�
n+�+1+

B2

2
+
B1

x0

�
(n+�+B2

2
)(n+�+1�i�)

2(n+�+1)(n+�+ 3

2
)

; �
0

n = �n;



0

n = �i!x0
�
n+��B2

2
�B1

x0

�
(n+�+1�B2

2
)(n+�+i�)

2(n+�� 1

2
)(n+�)

;

(13c)

in the recurrence relations

�
0

nb
0

n+1 + �
0

nb
0

n + 

0

nb
0

n�1 = 0:

The characteristic equation is again given by (12d) because we have �
0

n = �n and

�
0

n

0

n+1 = �n
n+1. Moreover, by applying the rule T1 to (U�
2 ;
eU�
2 ) we return to (U�

1 ;
eU�
1 ),
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and thus both sets of solutions are closed under applications of T1 and T2. We also remark

that the above forms for the expansions in Gauss hypergeometric functions were obtained

by accomplishing the replacements

� ! � + 1 � B2

2
; �0! � +

B2

2
+
B1

x0
;

into the original solutions of Ref. [6]. These substitutions permitted us to see that both

solutions depend on the same phase parameter � which, in its turn, is the very one that

appears in the expansions eU�
1 and eU�

2 .

The series in terms of Coulomb wave functions are convergent for jxj > jx0j [1] while
the ones in terms of hypergeometric functions do not converge at jxj = 1. In e�ect,

following the steps sketched in [6] or [10] we �nd

lim
n!1

bn+1Fn+1

bnFn
= lim

n!�1
bnFn

bn+1Fn+1
=
i!x0
2jnj

"
2x

x0
� 1 +

s
4

x20
x(x� x0)

#

where Fn := F
�
B2

2 � n� � � 1; n+ � + B2

2 ; B2 +
B1

x0
; y
�
. Therefore, the ratio test implies

that the expansion U�
1 converges in any �nite region of the complex plane. The same

stands for U�
2 . Note that in the case of polynomial solutions the ratio test becomes

meaningless.

It is worth mentioning that the n � 0 part of the expansions in regular con
uent hy-

pergeometric functions is convergent for all values of x [1]. Further, there are some prop-

erties of con
uent hypergeometric functions regarding only these functions that will be

useful here. First, while M(a; b; 0) = 1, in general U(a; b; z) has a logarithmical behavior

when z ! 0 [16] and this will make the expansions in irregular con
uent hypergeometric

functions inadequate to get polynomial solutions. Second, as jzj ! 1 we have [12]

M(a; b; z) =

8><>:
�(b)
�(a)e

zza�b[1 +O(jzj�1)] (Rz > 0);

�(b)
�(b�a)(�z)�a[1 +O(jzj�1)] (Rz < 0);

(14)

and we must take these properties into account when we examine the asymptotic behavior

of solutions. Moreover, if a is a negative integer, fM(a; b; z) is a polynomial, suggesting

that the expansions in series of regular hypergeometric functions are suitable to obtain

polynomial solutions (i. e., in �nite series) as it will happen in Sections 3.2.1 and 4.2.2.

2.2. Limits for Whittaker-Hill-Type Equations

For B2 = 1, B1 = �x0=2, we de�ne cn by means of b
0

n = 2(n + � + 1=2)cn and �nd that

the recurrence relations for bn and cn become identical. Therefore, we may set cn = bn
and then the solutions acquire the forms8><>:

U�
1 = ei!x

P1
n=�1 bnF

�
�n� � � 1

2 ; n+ � + 1
2 ;

1
2;

x0�x
x0

�
;

eU�
1 = ei!xx�+

1

2

P1
n=�1 bn(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);

(15)
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8>>>>><>>>>>:

U�
2 = ei!x(x� x0) 12 P1

n=�1
�
n+ � + 1

2

�
bnF

�
�n� �; n+ � + 1; 3

2
; x0�x

x0

�
;

eU�
2 = ei!x(x� x0) 12x�P1

n=�1
�
n+ � + 1

2

�
bn(�2i!x)n�

F(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);

(16)

with the following simpli�ed coe�cients in the recurrence relations8>>>>><>>>>>:

�n =
i!x0
2

(n+ � + 1� i�) ;

�n = �B3 � �!x0 �
�
n+ � + 1

2

�2
;


n = � i!x0
2
(n+ � + i�):

(17)

For a WHE we have x = x0 cos2 u, (x0�x)=x0 = sin2(u) and the hypergeometric functions

in U�
1 and U�

2 can be written as trigonometric functions by means of [12]

F (�a; a; 1=2; sin2 u) = cos(2au); F (a; 1� a; 3=2; sin2 u) = sin[(2a� 1)u]

(2a� 1) sin(u)
: (18)

Thus, except for a multiplicative constant, the solutions of the WHE are given by8>>>>><>>>>>:
U�
1 = e

i

2
!x0 cos(2u)

P1
n=�1 bn cos[(2n+ 2� + 1)u];

eU�
1 = e

i

2
!x0 cos(2u)(cos u)2�+1

P1
n=�1 bn(�2i!x0 cos2 u)n�
F(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x0 cos2 u);

(19)

8>>>>><>>>>>:
U�
2 = e

i

2
!x0 cos(2u)

P1
n=�1 bn sin[(2n + 2� + 1)u];

eU�
2 = e

i

2
!x0 cos(2u)(cos u)2� sinu

P1
n=�1

�
n+ � + 1

2

�
bn(�2i!x0 cos2 u)n�

F(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x0 cos2 u);

(20)

where the �rst pair is constituted by even solutions and the second one by odd solutions.

2.2.1. Dirac Equation in Radiation-Dominated FRW Spacetimes

As an illustration we consider the Dirac equation (�h = c = 1) for test �elds with mass

� in non
at FRW spacetimes, since the equations for the time dependence have no free

parameters. The line element in its conformally static form is

ds2 = [A(� )]2
"
d� 2 � d�2 � sin2(

p
��)

�
(d�2 + sin2 �d'2)

#
; (21)

where � = �1 is the spatial curvature. If the Dirac spinor 	 is rede�ned as


(�; �; �; �) := A
3

2 sin(
p
��)
p
sin � 	(�; �; �; �); (22)
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its time dependence is given by [13]8<: idP (�)
d�

= �P (� )� �A(� )Q(� );
idQ(�)

d�
= ��Q(� )� �A(� )P (� );

(23)

where P and Q are two spinor components and � is a separation constant. For � = 1, � is

any half-integer di�erent from �1=2 [14] and for � = �1 is any nonvanishing real number.

On the other hand, taking S = Q� P and T = P +Q, the preceding equations yield8><>:
h
d
d�

+ i�A(� )
i
S(� ) = i�T (� );h

d
d�
� i�A(� )

i
T (� ) = i�S(� );

(24)

which implies

d2S

d� 2
+

"
�2 + i�

dA(� )

d�
+ �2A2(� )

#
S = 0; (25)

T =
1

i�

"
d

d�
+ i�A(� )

#
S: (26)

For radiation-dominated models the scale factor is given by A(� ) = a0 sin(
p
�� )=
p
� and

so Eq. (25) assumes the form

d2S

d� 2
+
h
�2 + i�a0 cos(

p
�� ) + ��2a20 sin

2(
p
�� )

i
S = 0: (27)

This is a WHE with 2u =
p
�� and the transformation x = cos2(

p
��=2) brings it to

Leaver's form for the GSWE,

x(x� 1)
d2S

dx2
+
�
x� 1

2

�
dS

dx
+
h
��

�
�2 + i�a0

�
+ 4�2a20x(x� 1) � 2i�a0�(x� 1)

i
S = 0:

Thus, the parameters appearing in Eq. (1) can be written as

x0 = 1; B1 = �1=2; B2 = 1; B3 = ��(�2+ i�a0); ! = �2�a0; i� = ��=2:

If � = 1, we have 0 � x � 1 and the solutions must be written in series of trigonometric

functions which are regular and convergent in this interval. The full wave functions 	

will diverge at the spacetime singular point � = 0, but this is due to the factor A�
3

2 in

Eq. (22). For � = �1, we have 1 � x <1 and the solutions may be formed by matching

both solutions in each pair (with F = U), since at the singular point x = 1 only the series

in hyperbolic functions converge while for x!1 only the expansions in Coulomb wave

functions converge. The divergence of 	 at x = 1 results again from the factor A�
3

2 (� )

and not from divergence in the solutions to the WHE. Note moreover that both signs for

(�; !) are allowed and thus we may obtain four solutions as required if we want to have a

complete basis for the solutions of Dirac equation (the spatial equations a�ord only one

solution for a given set of quantum numbers).
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There is also a nonsingular spacetime with � = �1 where we have B2 = 1 and B1 =

�x0=2 but not a WHE. Hence we could use the solutions given by Eqs. (15-17). This

spacetime can also be interpreted as a radiation-dominated FRW model with a negative

e�ective pressure. Its scale factor is A(� ) = a0 cosh � [15] and therefore

d2S

d� 2
+
h
�2 + i�a0 sinh � + �2a20 cosh

2 �
i
S = 0: (28)

This is not a WHE because the sinh and the cosh have interchanged positions and the

equation is not symmetric under � $ �� . Writing t = a0 sinh � for the coordinate time

dt = A(� )d� and performing the change of variable x = t+ ia0 we get the GSWE

x(x� 2ia0)
d2S

dx2
+ (x� ia0)dS

dx
+
h
�2 � �a0 + i�(x� 2ia0) + �2x(x� 2ia0)

i
S = 0;(29a)

and hence

x0 = 2ia0; B1 = �ia0; B2 = 1; B3 = �2 � �a0; ! = ��; � = �i=2: (29b)

We have again to match solutions, since for sinh2 � � 1 (, jxj � jx0j) only the expansions
in series of hypergeometric functions converge, whereas for � ! 1 only the expansions

in Coulomb wave functions do.

3. Solutions Without Phase Parameter

Supposing that there is some free parameter in the GSWE, we will truncate the solutions

with phase parameter, that is, we shall take n � 0. First, we present the solutions for

the general case and their possible applications to the angular and radial equations of the

two-center problem. Then we restrict the the results for the case B2 = 1, B1 = �x0=2
and show how these solutions can be applied to �nd the wave function for the Schr�odinger

equation with QES Razavy-type potentials.

3.1. General Case

The solutions obtained from the truncation of the expansions given in Section 2.1 are

displayed in four pairs denoted by (Ui;fUi); i = 1; 2; 3; 4. Starting from one pair, the

others can be derived by means of the rules T1 and T2 according to the scheme

(U1; eU1)
T1 ! (U2; eU2)

T2 ! (U3; eU3)
T1 ! (U4; eU4)

T2 ! (U1; eU1) (30a)

which corresponds to

�1 =
B2

2
� 1

T1 ! �2 =
B1

x0
+
B2

2
T2 ! �3 = 1� B2

2
T1 ! �4 = �B1

x0
� B2

2
T2 ! �1: (30b)
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Note that there are solutions with opposite signs for �; therefore, if in one pair a denomi-

nator of the recurrence relations is zero (integer or half-integer value for �), in another pair

the denominator is well de�ned. The recurrence relations and the characteristic equations

(for solutions in in�nite series) have one of the three forms given below. The �rst case

(��1 = 0) is the general one and the others (��1 6= 0) may occur only for special values

for the parameters.

�0b1 + �0b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

9=;) �0 =
�0
1
�1�

�1
2
�2�

�2
3
�3� � � � : (31)

�0b1 + �0b0 = 0;

�1b2 + �1b1 + [��1 + 
1] b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 2);

9>>>>=>>>>;) �0 =
�0 [��1 + 
1]

�1�
�1
2
�2�

�2
3
�3� � � � : (32)

�0b1 + [�0 + ��1] b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

9=;) �0 + ��1 =
�0
1
�1�

�1
2
�2�

�2
3
�3� � � � : (33)

In each pair the hypergeometric functions can be rewritten as Jacobi's polynomials P (�;�)
n (z)

by using the formula [16]

F (�n; n+ 1 + �+ �; 1 + �; y) =
n!

(1 + �)n
P (�;�)
n (1� 2y); (34a)

where (1 + �)n denotes the Pocchammer symbol de�ned as

(a)n = a(a+ 1)(a+ 2) � � � (a+ n � 1); (a)0 = 1: (34b)

Therefore, the truncated expansions in hypergeometric functions are solutions of the

Fackerell-Crossman type [17]. In fact, the solutions U�
1 and U�

2 were obtained in [6]

as generalizations of a Fackerell-Crossman solution which now is recovered together with

other solutions. We �rst write the four pairs of solutions, relegating their derivations to

Appendix A, and then discuss some applications. Note that for the truncated solutions

we have n � �1 in �n, n � 0 in �n and n � 1 in 
n.

First pair: � = B2

2
� 1 in (U�

1
; fU�

1
)

8><>:
U1 = ei!x

P1
n=0 b

(1)
n F

�
�n; n+B2 � 1;B2 +

B1

x0
; x0�x

x0

�
;

eU1 = ei!x
P1

n=0 b
(1)
n (�2i!x)nF

�
n+ B2

2 + i�; 2n+B2;�2i!x
�
;

(35a)
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8>>>>>>>>>>>><>>>>>>>>>>>>:

�(1)
n = i!x0

(n+1)

�
n�B1

x0

�
(n+B2

2
�i�)

2(n+B2

2
)(n+B2

2
+ 1

2
)

;

�(1)
n = �B3 � �!x0 � n(n+B2 � 1) �

�!x0(B22 �1)
�
B2

2
+
B1

x0

�
(n+

B2

2
�1)(n+B2

2
)

;


(1)n = �i!x0
(n+B2�2)

�
n+B2+

B1

x0
�1
�
(n+B2

2
�1+i�)

2(n+B2

2
� 3

2
)(n+B2

2
�1)

:

(35b)

Recurrence relations: if B2 = 1, Eq. (32); if B2 = 2, Eq. (33); otherwise, Eq. (31).

Second pair: � = B2

2
+ B1

x0
in (U�

1
; fU�

1
) or (U1; fU1)

T1
�! (U2; fU2)

8>>>>>><>>>>>>:

U2 = ei!xx
1+

B1

x0

P1
n=0 b

(2)
n F

�
�n; n+ 1 +B2 +

2B1

x0
;B2 +

B1

x0
; x0�x

x0

�
;

eU2 = ei!xx
1+

B1

x0

P1
n=0 b

(2)
n (�2i!x)n�

F
�
n + 1 + i� + B2

2 + B0

x0
; 2n + 2 +B2 +

2B1

x0
;�2i!x

�
;

(36a)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�(2)
n = i!x0

(n+1)

�
n+2+

B1

x0

��
n+1+

B2

2
+
B1

x0
�i�
�

2

�
n+1+

B2

2
+
B1

x0

��
n+ 3

2
+
B2

2
+
B1

x0

� ;

�(2)
n = �B3 � �!x0 �

�
n+ 1 + B1

x0

� �
n+B2 +

B1

x0

�
�

�!x0(B2
2
�1)
�
B2

2
+
B1

x0

�
�
n+

B2

2
+
B1

x0

��
n+1+

B2

2
+
B1

x0

� ;

(2)n = �i!x0

�
n+B2+

B1

x0
�1
��

n+B2+
2B1

x0

��
n+

B2

2
+
B1

x0
+i�

�
2

�
n� 1

2
+
B2

2
+
B1

x0

��
n+

B2

2
+
B1

x0

� :

(36b)

Recurrence relations: if B2

2 + B1

x0
= 0, Eq. (33); if B2

2 + B1

x0
= �1

2, Eq. (32); otherwise, Eq.

(31).

Third pair: � = 1� B2

2
in (U �

2
; fU�

2
) or (U2; fU2)

T2
�! (U3; fU3)

8>>>>>><>>>>>>:

U3 = ei!x(x� x0)1�B2�B1

x0 x
1+

B1

x0

P1
n=0 b

(3)
n F

�
�n; n+ 3�B2; 2�B2 � B1

x0
; x0�x

x0

�
;

eU3 = ei!x(x� x0)1�B2�B1

x0 x
1+

B1

x0

P1
n=0 b

(3)
n (�2i!x)n�
F
�
n + 2� B2

2 + i�; 2n+ 4�B2;�2i!x
�
;

(37a)
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8>>>>>>>>>>>><>>>>>>>>>>>>:

�(3)
n = i!x0

(n+1)

�
n+2+

B1

x0

�
(n+2�B2

2
�i�)

2(n+2�B2

2
)(n+ 5

2
�B2

2
)

;

�(3)
n = �B3 � �!x0 � (n+ 1)(n + 2�B2)�

�!x0(B22 �1)
�
B2

2
+
B1

x0

�
(n+1�B2

2
)(n+2�B2

2
)
;


(3)n = �i!x0
(n+2�B2)

�
n+1�B2�B1

x0

�
(n+1�B2

2
+i�)

2(n+ 1

2
�B2

2
)(n+1�B2

2
)

:

(37b)

Recurrence relations: if B2 = 2, Eq. (33); if B2 = 3, Eqs. (32); otherwise, Eq. (31).

Fourth pair: � = �B2

2
�

B1

x0
in (U�

2
; fU�

2
) or (U3; fU3)

T1
�! (U4;gU4)

8>>>>>>><>>>>>>>:

U4 = ei!x(x� x0)1�B2�B1

x0

P1
n=0 b

(4)
n F

�
�n; n+ 1�B2 � 2B1

x0
; 2�B2 � B1

x0
; x0�x

x0

�
;

eU4 = ei!x(x� x0)1�B2�B1

x0

P1
n=0 b

(4)
n (�2i!x)n�

F
�
n+ 1 + i� � B2

2 � B0

x0
; 2n+ 2 �B2 � 2B1

x0
;�2i!x

�
;

(38a)

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�(4)
n = i!x0

(n+1)

�
n�B1

x0

��
n+1�B2

2
�B1

x0
�i�
�

2

�
n+1�B2

2
�B1

x0

��
n+ 3

2
�B2

2
�B1

x0

� ;
�(4)
n = �B3 � �!x0 �

�
n � B1

x0

� �
n�B2 + 1 � B1

x0

�
�

�!x0(B22 �1)
�
B2

2
+
B1

x0

�
�
n�B2

2
�B1

x0

��
n+1�B2

2
�B1

x0

� ;

(4)n = �i!x0

�
n+1�B2�B1

x0

��
n�B2� 2B1

x0

��
n�B2

2
�B1

x0
+i�

�
2

�
n� 1

2
�B2

2
�B1

x0

��
n�B2

2
�B1

x0

� :

(38b)

Recurrence relations: if B2

2 + B1

x0
= 0, Eq. (33); if B2

2 + B1

x0
= 1

2 , Eq. (32); otherwise, Eq.

(31).

Note that, in each pair, to get the expressions for (�n; �n; 
n) the shortest way is

to insert the value for � into the nontruncated expressions. To obtain (Ui; eUi) and the

recurrence relations it is easier to use the transformations rules, since this leads the hy-

pergeometric functions to be already in a polynomial form as above.

3.1.1. The Angular and Radial Equations for the Two-Center Problem

Now we comment upon how the earlier solutions can be applied to the angular and radial

equations of the two-center problem. Our starting point and conventions are taken from

Leaver [1]. The wave function  of the time-independent Schr�odinger equation has the

form

 = eim'R(�)S(�); � := (r1 + r2)=(2a); � := (r1 � r2)=(2a); (39a)



CBPF-NF-009/02 13

m being any integer, r1 and r2 the distances from the electron to the two centers, and 2a

the intercenter distance. By performing the changes of variables8><>:
S(x) = x

m

2 (2� x)m2 f�(x); x = � + 1; (0 � x � 2);

R(x) = x
m

2 (x� 2)
m

2 f+(x); x = �+ 1; (x � 2);
(39b)

where S(x) = S(�); R(x) = R(�), Leaver obtained GSWEs for f� with

x0 = 2; !2 = 2a2E; !�� = �a(N1 �N2); B1 = �2(m+ 1);

B2 = 2(m+ 1); B�
3 = !2 + 2a(N1 �N2) +m(m+ 1) �Alm:

(39c)

Alm is a separation constant, whereas N1 and N2 are related to the values of the two

charges. We are assuming that N1�N2 6= 0. To have regular wave functions when m � 0

we employ the solutions (U1; eU1) to the GSWE and thus8><>:
S1 = ei!xx

m

2 (2 � x)m2 P1
n=0 b

�
nF

�
�n; n+ 2m+ 1;m+ 1; 1 � x

2

�
;

eS1 = ei!xx
m

2 (2 � x)m2 P1
n=0 b

�
n (2i!x)

nfM (n+m+ 1 + i��; 2n + 2m+ 2;�2i!x) ;
(40a)

and8><>:
R1 = ei!xx

m

2 (x� 2)
m

2

P1
n=0 b

+
nF

�
�n; n+ 2m+ 1;m+ 1; 1 � x

2

�
;

eR1 = ei!xx
m

2 (x� 2)
m

2

P1
n=0 b

+
n (�2i!x)nU (n+m+ 1 + i�+; 2n+ 2m + 2;�2i!x) ;

(40b)

where the recurrence relations for b�n are given by Eq. (31) with8>>>>>><>>>>>>:

��n = i!
(n+1)(n+m+1�i��)

(n+m+3=2)
;

��n = �n = Aml � !2 �m(m+ 1)� n(n+ 2m+ 1);


�n = �i! (n+2m)(n+m+i��)
(n+m�1=2) :

(40c)

If we rewrite S1(x) in terms of associated Legendre polynomials, we recognize S1(x) as

a Barber-Hass�e solution [18] but now we also have a representation in series of regular

Coulomb wave functions (constructed originally for a radial equation). The solutioneR1(x) for the radial equation is regular and convergent anywhere except at x = 2, point

in which the solution R1(x) is regular and convergent. Therefore, we can match them in

order to get solutions for the radial wave function. This seems to be a possible alternative

to the treatment of Ref. [19] which proposes matching expansions in Coulomb wave

functions (with phase parameter) and Ja��e's expansions (without phase parameter), each

of them having di�erent characteristic equations. Furthermore, we can again express

R1 as series of associated Legendre polynomials. Then it becomes obvious that we are

matching solutions of Barber-Hass�e type (originally conceived for the angular equation)

with solutions in series of Coulomb wave functions.
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If m � 0, regular and convergent solutions may be formed from the pair (U3; eU3) and

the sole di�erence consists in the change of m by �m in Eqs. (40a-c). Therefore, it

is su�cient to put jmj where we had m in those solutions, but not in Eq. (39a). We

could also use the pairs (U2; eU2) and (U4; eU4) and this would not modify the results. For

example, the angular solutions constructed from (U2; eU2) have the form

S2(x) = ei!xx�
m

2 (2� x)m2
1X

n=m

bnF
�
�n; n+ 1;m+ 1; 1 � x

2

�
;

eS2(x) = ei!xx�
m

2 (2� x)m2
1X

n=m

bn(2i!x)
nfM �

n+ 1 + i��; 2n+ 2;�2i!x
�

where in the recurrence relations for bn, Eq.(31),8>>>>>><>>>>>>:

�n = i!
(n+1�m)(n+1�i��)

(n+3=2)
;

�n = �n = Aml � !2 �m(m+ 1) � (n�m)(n+m+ 1);


n = �i!
(n+m)(n+i��)

(n�1=2) :

These solutions di�er from the previous ones inasmuch as the sum begins at n = m by

reason of �m�1 = 0. However, if we perform the substitution n! n+m, use the relation

F (a; b; c; z) = (1� z)c�a�bF (c� a; c� b; c; z) and rename the coe�cients, we notice that

these solutions are identical to (S1; eS1).
We have found two possible representations for the angular dependence of the two-

center problem. A similar fact occurs with the angular Teukolsky equations. In e�ect,

the angular wave functions has the form

S(x) = x
1

2
jm�sj(2 � x) 12 jm+sjf(x); 0 � x = 1 + cos � � 2;

where f(x) obeys a GSWE with B1 = �2jm� sj � 2; B2 = jm+ sj+ jm� sj+2; x0 = 2.

The pair of solutions (U1; eU1) gives8>>>>><>>>>>:

f1 = ei!x
P1

n=0 b
(1)
n F

�
�n; n+ jm+ sj+ jm� sj+ 1; jm+ sj+ 1; 2�x

2

�
;

ef1 = ei!x
P1

n=0 b
(1)
n (2i!x)n�

fM �
n+ jm+sj

2 + jm�sj
2 + 1 + i�; 2n+ jm+ sj+ jm� sj+ 2;�2i!x

�
:

(41a)

The �rst solution is one of the Fackerell-Crossman solutions of the angular Teukolsky

equations and the second is a new representation in series of Coulomb wave functions. The

second Fackerell-Crossman solution and its partner can be derived from the above ones

by the transformation rule T3. Once more we may obtain identical solutions starting form

(U2; eU2) but then, similarly to the two-center problem, the sum will begin at n = jm� sj.
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3.2. Limits for Whittaker-Hill-Type Equations

For this particular case, similarly to the case with phase parameter, all the recurrence

relations become simpler since there are no denominators in them. For the WHE the

expansions in series of hypergeometric functions reduce again to series of trigonometric

functions which are not but the Arscott solutions [2]. Note that now each pair presents a

di�erent form for the recurrence relations. The term ���1 in Eq. (48c), instead of +��1,
comes from the rede�nition of the series coe�cients. The four pairs are written below.

First pair

8><>:
U1 = ei!x

P1
n=0 b

(1)
n F

�
�n; n; 1

2
; x0�x

x0

�
;

eU1 = ei!x
P1

n=0 b
(1)
n (�2i!x)nF

�
n+ 1

2
+ i�; 2n+ 1;�2i!x

�
;

(42a)

where

�(1)
n =

i!x0
2

�
n+

1

2
� i�

�
; �(1)

n = �n2 �B3 � �!x0; 
(1)n = �i!x0
2

�
n � 1

2
+ i�

�
;(42b)

in the recurrence relations

�0b1 + �0b0 = 0;

�1b2 + �1b1 + [��1 + 
1] b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 2);

9>>>>=>>>>;) �0 =
�0 [��1 + 
1]

�1�
�1
2
�2�

�2
3
�3� � � � : (42c)

For the WHE we have two even solutions:8><>:
U1 = e

i!

2
cos(2u)P1

n=0 b
(1)
n cos(2nu);

eU1 = e
i!

2
cos(2u)P1

n=0 b
(1)
n (�2i!x0 cos2 u)nF

�
n+ 1

2 + i�; 2n+ 1;�2i!x0 cos2 u
�
:

(43)

Second pair

8><>:
U2 = ei!xx

1

2

P1
n=0 b

(2)
n F

�
�n; n+ 1; 12;

x0�x
x0

�
;

eU2 = ei!xx
1

2

P1
n=0 b

(2)
n (�2i!x)nF (n+ i� + 1; 2n + 2;�2i!x) ;

(44a)

where

2�(2)
n

i!x0
= (n+ 1 � i�) ; �(2)

n = �
�
n+

1

2

�2
�B3 � �!x0; 2
(2)n

i!x0
= � (n+ i�) ; (44b)

in the recurrence relation

�0b1 + [�0 + ��1]b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

9>=>;) �0 + ��1 =
�0

�1�
�1
2
�2�

�2
3
�3� � � � : (44c)
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Again the solutions to the WHE are even:8><>:
U2 = e

i!

2
cos(2u)P1

n=0 b
(2)
n cos[(2n+ 1)u];

eU2 = e
i!

2
cos(2u) cosu

P1
n=0 b

(2)
n (�2i!x0 cos2 u)nF (n+ 1 + i�; 2n+ 2;�2i!x0 cos2 u) :

(45)

Third pair

8><>:
U3 = ei!x(x� x0) 12x 1

2

P1
n=0(n + 1)b(3)n F

�
�n; n+ 2; 3

2
; x0�x

x0

�
;

eU3 = ei!x(x� x0) 12x 1

2

P1
n=0(n + 1)b(3)n (�2i!x)nF

�
n+ 3

2
+ i�; 2n+ 3;�2i!x

�
;
(46a)

2�(3)
n

i!x0
=
�
n +

3

2
� i�

�
; �(3)

n = �(n+ 1)2 �B3 � �!x0; 2

(3)
n

i!x0
= �

�
n+

1

2
+ i�

�
: (46b)

�0b1 + �0b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

9>=>;) �0 =
�0
1
�1�

�1
2
�2�

�2
3
�3� � � � : (46c)

Now the solutions to the WHE are odd:8>>>>><>>>>>:
U3 = e

i!

2
cos(2u)P1

n=0 b
(3)
n sin[(2n+ 2)u];

eU3 = e
i!

2
cos(2u) sin(2u)

P1
n=0(n+ 1)b(3)n (�2i!x0 cos2 u)n�
F
�
n+ 3

2 + i�; 2n+ 3;�2i!x0 cos2 u
�
:

(47)

Fourth pair

8>><>>:
U4 = ei!x(x� x0) 12 P1

n=0

�
n + 1

2

�
b(4)n F

�
�n; n+ 1; 3

2
; y
�
;

eU4 = ei!x(x� x0) 12 P1
n=0

�
n + 1

2

�
b(4)n (2i!x0y)nF (n+ 1 + i�; 2n+ 2;�2i!x) ;

(48a)

with

�(4)
n = �(2)

n ; �(4)
n = �(2)

n ; 
(4)n = 
(2)n ; see Eq. (44b); (48b)

in the recurrence relations (note the minus sign before ��1)

�0b1 + [�0 � ��1]b0 = 0;

�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

9>=>;) �0 � ��1 = �0

�1�
�1
2
�2�

�2
3
�3� � � � : (48c)

Again the solutions to the WHE are odd:8>>>>><>>>>>:
U4 = e

i!

2
cos(2u)P1

n=0 b
(4)
n sin[(2n+ 1)u];

eU4 = e
i!

2
cos(2u) sinu

P1
n=0

�
n+ 1

2

�
b(4)n �

(�2i!x0 cos2 u)nF (n+ 1 + i�; 2n+ 2;�2i!x0 cos2 u) :

(49)
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3.2.1. Schr�odinger Equation with Razavy-Type Potentials

Finkel et al [20] have noted that the Schr�odinger equation for the Razavy potential [21]

is a WHE. This potential belongs to the so-called quasi-exactly solvable potentials [21-

24] for which one part of the energy spectra and the corresponding eigenfunctions can

be found exactly. The other portion is supposed to be determined by approximation

methods such as perturbation theory or semiclassical methods of approximation [26].

The results below suggest that, for Whittaker-Hill (or Razavy-type) potentials, the whole

spectra may be computed by the same methods applicable to the two-center problem or

Teukolsky equations.

Then let us regard the time-independent Schr�odinger equation

d2 

d�2
+ [E � V (�)] = 0; � := ax; E := 2mE

�h2a2
; (50)

being a a constant and x the spatial coordinate. For the potential considered by Zaslavskii

and Ulyanov [27, 28],

V (�) =
B2

4
sinh2 � �B

�
s+

1

2

�
cosh �; (51)

where B is a positive constant and s is any non-negative integer or half-integer, the

Schr�odinger equation is clearly a WHE with � = 2iu. If we take x = cos2 u = cosh2(�=2),

Eq. (50) reads

x(x� 1)
d2 

dx2
+
�
x� 1

2

�
d 

dx
+
�
E +B

�
s+

1

2

�
+ 2B

�
s+

1

2

�
(x� 1)�B2x(x� 1)

�
 = 0;

and thus we can choose

x0 = 1; i! = �B; i� = �s� 1

2
; B3 = E +B

�
s+

1

2

�
(52)

in the foregoing solutions to the WHE. The the signs for � and ! were chosen so as to

satisfy the boundary condition

lim
�!�1

 = 0: (53)

For the present potential, polynomial solutions can be obtained either from the series in

hyperbolic functions or in regular con
uent hypergeometric functions. The solutions in

in�nite series are obtained by uniting expansions in series of hyperbolic functions with

expansions in series of irregular con
uent functions, similarly to the case of the radial

equation of the two-center problem. Furthermore, we will �nd that a polynomial solution

for s =integer (s =half-integer) corresponds to a pair of matchable expansions (in in�nite

series) for s 6=integer (s 6=half-integer) and, in particular, for s =half-integer (s =integer).
The eigenvalues for in�nite-series solutions may be computed as usual, using for example

the continued-fraction method [29, 19]. For polynomial solutions the eigenvalues follow
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from the determinant of a tridiagonal matrix. Indeed, a series with three-term recurrence

relations of the type

�0b1 + �0b0 = 0; �nbn+1 + �nbn + 
nbn�1 = 0 (n � 1)

becomes a �nite series with 0 � n � N � 1 whenever 
n = 0 for n = N [3]. Then the

recurrence relations can be written as0BBBBBBBBBBB@

�0 �0 0 � � � 0


1 �1 �1 0
...

0 
2 �2 �2
...


N�2 �N�2 �N�2
0 
N�1 �N�1

1CCCCCCCCCCCA

0BBBBBBBBBB@

b0
...

bN�2
bN�1

1CCCCCCCCCCA
= 0 (54)

and from this equation we can determine the eigenvalues (E) and the coe�cients bn. For

the recurrence relations (32) we must substitute 
1 by 
1 + ��1 in the above matrix and,

for (33), we have the replacement �0! �0 + ��1.
Inserting the parameters (52) into Eqs. (43), (45), (47) and (49), we �nd the solutions

given below.8><>:
 1 = e�

B

2
cosh �P1

n=0 b
(1)
n cosh(n�);

e 1 = e�
B

2
cosh �P1

n=0 b
(1)
n

�
2B cosh2 �

2

�n F �n� s; 2n+ 1; 2B cosh2 �
2

�
;

(55a)

where in the recurrence relations (42c) we have

�(1)
n = �B

2
(n+ 1 + s) ; �(1)

n = �n2 � E; 
(1)n =
B

2
(n� s� 1) : (55b)

If s is an integer we get two expressions for polynomial solutions (F = (�1)nfM) with

0 � n � s seeing that 
s+1 = 0. If s is not an integer (and particularly s =half-integer) we

may match the two solutions (F = U) with di�erent regions of convergence to get bounded

solutions convergent over the entire range 1 � x � 1. There are similar conclusions for

the other solutions too. Thus, the second pair is8><>:
 2 = e�

B

2
cosh �P1

n=0 b
(2)
n cosh

h�
n+ 1

2

�
�
i
;

e 2 = e�
B

2
cosh � cosh �

2

P1
n=0 b

(2)
n

�
2B cosh2 �

2

�nF �n� s+ 1
2
; 2n+ 2; 2B cosh2 �

2

�
;
(56a)

where in the recurrence relations (44c) we have

�(2)
n = �B

2

�
n+

3

2
+ s

�
; �(2)

n = �
�
n+

1

2

�2
� E; 
(2)n =

B

2

�
n� s� 1

2

�
: (56b)
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Then, if s =half-integer, we have two expressions for polynomial solutions (0 � n � s� 1
2
)

and, if s 6=half-integer, we have a pair of matchable solutions. In the third pair,8>>>>><>>>>>:

 3 = e�
B

2
cosh�P1

n=0 b
(3)
n sinh [(n+ 1) �] ;

e 3 = e�
B

2
cosh� sinh �

P1
n=0(n+ 1)b(3)n ��
2B cosh2 �

2

�n F �n� s+ 1; 2n + 3; 2B cosh2 �
2

�
;

(57a)

we have

�(3)
n = �B

2
(n + 2 + s) ; �(3)

n = � (n + 1)2 � E; 
(3)n =
B

2
(n� s) ; (57b)

in the recurrence relations (46c). If s =integer, we get two expressions for polynomial

solutions (0 � n � s � 1) but if s 6=integer we can match the solutions in this pair. The

last pair reads8>>>>>><>>>>>>:

 4 = e�
B

2
cosh �P1

n=0 b
(4)
n sinh

h�
n+ 1

2

�
�
i
;

e 4 = e�
B

2
cosh � sinh �

2

P1
n=0

�
n+ 1

2

�
b(4)n ��

2B cosh2 �
2

�n F �n � s+ 1
2 ; 2n+ 2; 2B cosh2 �

2

�
;

(58a)

where in the recurrence relations (48c) we have

�(4)
n = �(2)

n ; �(4)
n = �(2)

n ; 
(4)n = 
(2)n ; see Eq. (56b): (58b)

If s =half-integer, both solutions (F = (�1)nfM) are polynomial (0 � n � s � 1
2) but if

s 6=half-integer the series are in�nite and we can match them (F = U).

Other Whittaker-Hill potentials can be treated in a similar way. So, the potential

investigated by Konwent et al [26],

V (�) =
(2s+ 1)2

4

�
B

2s + 1
cosh � � 1

�2
; B > 0; (s = 0; 1=2; 1; � � �);

can be rewritten as

V (�) =
B2

4
sinh2 � �B

�
s+

1

2

�
cosh � +

B2

4
+
�
s+

1

2

�2
: (59)

The di�erence of this potential in relation to (51) consists uniquely in a shift in the energy

levels, that is, we have just to substitute E by E�B2=4�(s+1=2)2 in the previous results.

On the other hand, the Razavy potential [21] can be rewritten as

V (�) =
B2

4
sinh2(2�) � (p+ 1)B cosh(2�); B > 0; p = 1; 2; 3; � � � (60a)

and the Schr�odinger equation is a GSWE (WHE with u = i�) characterized by

x = cosh2 �; x0 = 1; B1 = �1=2; B2 = 1;

B3 = [E +B(2s+ 2)]=4; i! = �B=2; i� = �(s+ 1); (60b)
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where s was de�ned by p = 2s + 1 and then s = 0; 1=2; 1; 3=2; � � �. Inserting these

expressions into the solutions to the WHE, we obtain again pairs of in�nite-series solutions,

in addition to the polynomials solutions obtained by Razavy.

4. Solutions for the Con
uent GSWE

A con
uent GSWE was obtained by Leaver as a limit to the the radial Teukolsky equa-

tions for an extreme value for the rotation parameter. More recently an equation, called

generalized WHE, has appeared which describes the radial behavior of a charged massive

scalar �eld on Kerr-Newman spacetimes, in a extreme case as well (Ref. [30], section IV).

We can show that the latter is also a con
uent GSWE.

For con
uent GSWEs the expansions in hypergeometric functions are not valid, but

the solution eU�
1 in series of Coulomb wave functions a�ords an appropriate limit. From

this limit we get other solutions by the transformations rules t1 and t2 and again we

arrive at two pairs of solutions with a phase parameter. In Section 4.1 we will present

such solutions and truncate them. In Section 4.2 we shall discuss some examples.

4.1 - The Leaver-Type Solutions

The �rst pair is given by8><>:
U�
1 = ei!xx���

B2

2

P1
n=�1 bn

�
B1

x

�n F �n + � + B2

2
; 2n+ 2� + 2; B1

x

�
;

eU�
1 = ei!xx�+1�

B2

2

P1
n=�1 bn(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);

(61a)

where in the recurrence relations8>>>>>>><>>>>>>>:

�n = i!B1
(n+�+2�B2

2
)(n+�+1�i�)

2(n+�+1)(n+�+3=2) ;

�n = B3 + (n+ � + 1 � B2

2 )(n+ � + B2

2 ) +
�!B1(B2=2�1)
(n+�)(n+�+1) ;


n = i!B1
(n+�+

B2

2
�1)(n+�+i�)

2(n+�)(n+��1=2) :

(61b)

These are the Leaver solutions: eU�
1 is the limit of the corresponding solution in Eq. (12a)

and U�
1 results from eU�

1 by the rule t1. A second pair, obtained by applying the rule t2
on this �rst pair, is8><>:

U�
2 = ei!x+

B1

x x���
B2

2

P1
n=�1 b

0

n

�
�B1

x

�n F �n+ � + 2� B2

2 ; 2n+ 2� + 2;�B1

x

�
;

eU�
2 = ei!x+

B1

x x�+1�
B2

2

P1
n=�1 b

0

n(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);
(62a)

where 8>><>>:
�
0

n = i!B1
(n+�+

B2

2
)(n+�+1�i�)

2(n+�+1)(n+�+3=2) ; �
0

n = ��n;



0

n = i!B1
(n+�+1�B2

2
)(n+�+i�)

2(n+�)(n+��1=2) :

(62b)
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In the solutions with tilde the series converge for any jxj > 0, and in the solutions without

tilde converge for jB1=xj > 0.

The truncation is similar to the case x0 6= 0. As a matter of fact, we could obtain the

�rst pair and its recurrence relations starting from the limit to eU1 (x0 6= 0) in Eq. (35a)

and the remaining ones by means of the transformation rules.

First Pair: � = B2=2� 1 in (U�

1
; fU�

1
)

8><>:
U1 = ei!xx1�B2

P1
n=0 b

(1)
n

�
B1

x

�nF �n+B2 � 1; 2n +B2;
B1

x

�
;

eU1 = ei!x
P1

n=0 b
(1)
n (�2i!x)nF(n+ B2

2
+ i�; 2n+B2;�2i!x);

(63a)

8>>>>>>>>>><>>>>>>>>>>:

�(1)
n = i!B1

(n+1)(n+B2

2
�i�)

2(n+B2

2
)(n+B2

2
+ 1

2
)
;

�(1)
n = B3 + n(n+B2 � 1) +

�!B1(B22 �1)
(n+B2

2
�1)(n+B2

2
)
;


(1)n = i!B1
(n+B2�2)(n+B2

2
�1+i�)

2(n+B2

2
�1)(n+B2

2
� 3

2
)
:

(63b)

Recurrence relations: Eq. (31) if B2 6= 1; 2; Eq. (32) if B2 = 1; Eq. (33) if B2 = 2.

Second Pair: � = 1� B2=2 in (U�

2
,fU�

2
) or (U1; fU1)

t2
�! (U2; fU2)

8><>:
U2 = ei!x+

B1

x x�1
P1

n=0 b
(2)
n

�
�B1

x

�nF �n+ 3 �B2; 2n + 4�B2;�B1

x

�
;

eU2 = ei!x+
B1

x x2�B2

P1
n=0 b

(2)
n (�2i!x)nF(n+ 2� B2

2 + i�; 2n+ 4 �B2;�2i!x);
(64a)

8>>>>>>>>>><>>>>>>>>>>:

�(2)
n = i!B1

(n+1)(n+2�B2

2
�i�)

2(n+2�B2

2
)(n+ 5

2
�B2

2
)
;

�(2)
n = �B3 � (n+ 1)(n+ 2 �B2)� �!B1(B22 �1)

(n+1�B2

2
)(n+2�B2

2
)
;


(2)n = i!B1
(n+2�B2)(n+1�B2

2
+i�)

2(n+1�B2

2
)(n+ 1

2
�B2

2
)
:

(64b)

Recurrence relations: Eq. (31) if B2 6= 2; 3; Eq. (32) if B2 = 3; Eq. (33) if B2 = 2.

Third Pair: (U2; fU2)
t1
�! (fU3; U3)

8><>:
U3 = e�i!xxi��

B2

2

P1
n=0 b

(3)
n

�
B1

x

�n F �n� i� + B2

2
; 2n+ 2 � 2i�; B1

x

�
;

eU3 = e�i!xx1�i��B2=2
P1

n=0 b
(3)
n (2i!x)nF(n+ 1 � 2i�; 2n+ 2� 2i�; 2i!x);

(65a)
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8>>>>>>>>><>>>>>>>>>:

�(3)
n = i!B1

(n+1)(n+2�i��B2

2
)

2(n+1�i�)(n�i�+ 3

2
)
;

�(3)
n = �B3 �

�
n+ 1� i� � B2

2

� �
n� i� + B2

2

�
� �!B1(B22 �1)

(n�i�)(n+1�i�) ;


(3)n = i!B1
(n�2i�)(n+B2

2
�i��1)

2(n�i�)(n�i�� 1

2
)
:

(65b)

Recurrence relations: Eq. (31) if i� 6= 0; 1=2; Eq. (32) if i� = 1=2; Eq. (33) if i� = 0.i� =

0.

These solutions may also be derived by taking � = i� in (U�
1 ;
eU�
1 ) and then using the

rule T3.

Fourth Pair: (U3; fU3)
t2
�! (U4; fU4)

8>><>>:
U4 = e�i!x+

B1

x xi��
B2

2

P1
n=0 b

(4)
n

�
�B1

x

�n F �n+ 2 � i� � B2

2 ; 2n+ 2 � 2i�;�B1

x

�
;

eU4 = e�i!x+
B1

x x1�i��B2=2
P1

n=0 b
(4)
n (2i!x)nF(n+ 1 � 2i�; 2n + 2� 2i�; 2i!x);

(66a)

8>>>>>>>>><>>>>>>>>>:

�(4)
n = �i!B1

(n+1)(n+B2

2
�i�)

2(n+1�i�)(n�i�+ 3

2
)
;

�(4)
n = �B3 �

�
n+ 1� i� � B2

2

� �
n� i� + B2

2

�
� �!B1(B22 �1)

(n�i�)(n+1�i�) ;


(4)n = �i!B1
(n�2i�)(n�B2

2
�i�+1)

2(n�i�)(n�i�� 1

2
)
:

(66b)

Recurrence relations: Eq. (31) if i� 6= 0; 1=2; Eq. (32) if i� = 1=2; Eq. (33) if i� = 0.

These solutions may be obtained, if we prefer, putting � = i� into (U�
2 ;
eU�
2 ) and then

using the rule T3.

4.2 - Examples

As examples we discuss the time dependence of a massive test fermion in non
at dust-

dominated FRWmodels of universe (there is no free parameter in the di�erential equation)

and the Schr�odinger equation for QES asymmetric double-Morse potentials (the energy

represents a free parameter).

4.2.1. Dirac Equation in Dust-Dominated FRW Spacetimes

For FRW universes �lled with dust the scale factor is given by A(t) = a0[1� cos(
p
�� )]=�.

So, Eq. (25) for S(x) reads

d2S

d� 2
+

"
�2 + i�a0

sin(
p
�� )p
�

+ �2a20
h
1� cos(

p
�� )
i2#

S = 0; (67)
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which can be reduced to a con
uent GSWE. In e�ect, the change of variable

x = e�i
p
�� = cos

p
�� � i sinp�� : (68a)

gives

x2
d2S

dx2
+ x

dS

dx
+
�
k � A1

x2
� A2

x
�A3x�A4x

2
�
S = 0; (68b)

where

k = ��
�
�2 +

3

2
�2a20

�
; A1 = A4 =

1

4
��2a20;

A2 = ���2a20 +
p
�

2
�a0; A3 = ���2a20 �

p
�

2
�a0: (68c)

The substitution

S(x) = ea=xxbU(x); a2 := A1; a� 2ab�A2 := 0; (69a)

furnishes

x2
d2U

dx2
+ [(2b+ 1)x� 2a]

dU

dx
+
h
�A4x

2 �A3x+ k + b2
i
U = 0; (69b)

that is, a con
uent GSWE with

B1 = �2a; B2 = 2b + 1; B3 = k + b2; !2 = �A4 e 2�! = A3;

or, choosing a =
p
A1 = �a0

p
�=2,

B1 = ��a0
p
�; B2 = 1 + 2�a0

p
�; B3 = ��

�
�2 +

1

2
�2a20

�
;

i! = ��a0
2

p
�; i� = �

�
1

2
+ �a0

p
�
�
: (69c)

Therefore, the solutions for S(x) may be obtained by means of

S�
i (x) = e�B1=(2x)x(B2�1)=2U�

i (x); (70)

where U�
i (x) denotes the expansions with phase parameter given in Section 4.1. Explicitly

we have8><>:
S�
1 = ei!x�

B1

2x x���
1

2

P1
n=�1 bn

�
B1

x

�n F �n+ � + B2

2 ; 2n+ 2� + 2; B1

x

�
;

eS�
1 = ei!x�

B1

2x x�+
1

2

P1
n=�1 bn(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x);

(71a)

8><>:
S�
2 = ei!x+

B1

2x x���
1

2

P1
n=�1 b

0

n

�
�B1

x

�nF �n+ � + 2� B2

2
; 2n+ 2� + 2;�B1

x

�
;

eS�
2 = ei!x+

B1

2x x�+
1

2

P1
n=�1 b

0

n(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x):
(71b)
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For � = 1 we have jxj = jei� j = 1 and accordingly there is no problem about series

convergence or regularity condition; in this case we must choose one solution of each

pair. Also for � = �1 we do not have problems with respect to convergence or regularity

condition as long as we match the solutions of each pair since now 0 � jxj = je� j <1.

We note here that the radial equation for the scalar �eld mentioned at the beginning

of this Section 4 (called generalized WHE) is

x2
d2R

dx2
+ 2x

dR

dx
+
�
(!2 � �2)M2x2 + 2(A! �M�2)Mx

+
�
A+

B
x

�2
+ (2! � �2)(2M2 � e2)� 2qeM! � �

#
R = 0; (72)

where the constants are de�ned in the article by Wu and Cai [30]. Since it has the same

form as Eq. (68b), we may reduce it to a con
uent GSWE, as we have stated elsewhere.

4.2.2. Schr�odinger Equation with Asymmetric Double-Morse Potentials

We shall consider the Schr�odinger equation (50) for QES asymmetric double-Morse poten-

tials. Contrary to the case of the (symmetric) Razavy-type potentials of Section 3.2.1, we

will �nd that it is not possible to match solutions belonging to the same pair of solutions

in order to get in�nite-series solutions convergent and bounded for the entire range of the

independent variable. Even for polynomial solutions there are some problems.

Let us consider the Turbiner generalized Morse potential [22, 23], whose form is

V (�) = k +A1e
�2� +A2e

�� +A3e
� +A4e

2�; (73a)

where we are supposing that A1 and A2 are positive and A2 6= �A3. In analogy with the

case of dust-dominated FRW spacetimes, we perform the substitutions

x = e�;  (�) = ea=xxbU(x); a2 = A1; a� 2ab�A2 = 0; (73b)

which reduce the Schr�odinger equation to

x2
d2U

dx2
+ [(2b+ 1)x� 2a]

dU

dx
+
h
�A4x

2 �A3x+ b2 + E � k
i
U = 0; (73c)

that is, to a con
uent GSWE having

B1 = �2a; B2 = 2b+ 1; B3 = E + b2 � k; !2 = �A4 e 2�! = A3: (73d)

Therefore the solutions must present the same form as in the previous example, namely,

 i = e�B1=(2x)x(B2�1)=2Ui(x); (74)

but now Ui(x) denotes the four pairs of solutions without phase parameter. Now let

V (�) =
B2

4

�
sinh � � C

B

�2
�B

�
s+

1

2

�
cosh �; s = 0;

1

2
; 1;

3

2
� � � : (75)
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be the asymmetric double-Morse potential considered by Zaslavskii and Ulyanov [27, 28],

where B > 0, C > 0. It can be written as the exponential potential (73a) with

k =
C2

4
� B2

8
; A1 = A4 =

B2

16
; A2 =

B

4
(C � 2s� 1) ; A3 = �B

4
(C + 2s+ 1) :

The choices a = �pA1 = �B=4 and ! = i
p
A4 = iB=4 yield the parameters

B1 =
B

2
; B2 = 1 + C � 2s; B3 = E + B2

8
+ s2 � sC; i! = �B

4
; i� = �C

2
� 1

2
� s (76)

for the con
uent GSWE. Then, using the �rst pair of wave functions, we obtain8><>:
 1 = e�

B

2
cosh ��(C

2
�s)�P1

n=0 b
(1)
n

�
B
2
e��

�n F �n+ C � 2s; 2n + C + 1 � 2s; B
2
e��

�
;

e 1 = e�
B

2
cosh �+(C

2
�s)�P1

n=0 b
(1)
n

�
B
2
e�
�nF �n� 2s; 2n + C + 1 � 2s; B

2
e�
�
;

(77)

with recurrence relations given by Eq. (31) if C 6= 2s or 2s + 1, Eq. (32) if C = 2s, Eq.

(33) if C = 2s + 1 and having the coe�cients8>>>>>>>><>>>>>>>>:

�(1)
n = B2

16
(n+1)(n+C+1)

(n+C

2
+ 1

2
�s)(n+C

2
+1�s) ;

�(1)
n = �E � s(s� C)� B2

8
� n(n+ C � 2s) +

B2[C2�(1+2s)2]
32(n+C

2
� 1

2
�s)(n+C

2
+ 1

2
�s) ;


(1)n = B2

16
(n+C�2s�1)(n�2s�1)

(n+C

2
� 1

2
�s)(n+C

2
�1�s) :

(78)

If s is a non-negative integer or half-integer, we have 
2s+1 = 0, and therefore e 1 with

F = (�1)nfM is a polynomial solution with n running from 0 to 2s. This solution holds

only when C 6=integer or C = integer � 2s; for C = integer < 2s, the regular con
uent

hypergeometric functions are not de�ned. The eigenvalues and the expansions coe�cients

can be determined from Eq. (54). On the other hand, if s is not a non-negative integer or

half-integer the solutions in (77), both, with regular or irregular con
uent hypergeometric

functions, can be combined to give convergent and bounded solutions in terms of in�nite

series.

For s =integer or half-integer, in�nite-series wave functions bounded for all values of

� cannot be obtained by matching solutions belonging to the same pair. Such solutions

would need to present the factor exp(�B
2
cosh �) but this does not happen. Thus, from

the second pair we obtain8>>>>><>>>>>:

 2 = e�
B

2
sinh�+(C

2
�s�1)�P1

n=0 b
(2)
n ��

B
2 e

��
�n fM �

n+ 2 + 2s �C; 2n + 3 + 2s �C;�B
2 e

��
�
;

e 2 = e�
B

2
sinh��(C

2
�s�1)�P1

n=0 b
(2)
n

�
B
2 e

�
�n

U
�
n + 1� C; 2n+ 3 + 2s � C; B2 e�

�
;

(79a)
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where, in the recurrence relations, we have8>>>>>>>><>>>>>>>>:

�(2)
n = B2(n+1)(n+2+2s)

16(n+s�C

2
+ 3

2
+s)(n�C

2
+2+s)

;

�(2)
n = E + s(s�C) + B2

8 + (n+ 1)(n+ 1 �C + 2s)� B2[C2�(1+2s)2]
32(n�C

2
+ 1

2
+s)(n�C

2
+ 3

2
+s)

;


(2)n = B2(n�C+2s+1)(n�C)
16(n�C

2
+ 1

2
+s)(n�C

2
+s)

:

(79b)

In these two solutions we have in�nite series (if C 6=integer) but the solutions are un-

bounded when � ! �1. If C =integer, the solution  2 is polynomial but unbounded

when � ! �1. Similarly, from the third pair, we get8>>>>><>>>>>:

 3 = e
B

2
sinh��(C

2
+s+1)�P1

n=0 b
(3)
n

�
B
2
e��

�n
U
�
n+ 1 + C; 2n+ 3 + 2s + C; B

2
e��

�
;

e 3 = e
B

2
sinh�+(C

2
+s+1)�P1

n=0 b
(3)
n ��

B
2 e

�
�n fM �

n+ 2 + 2s+ C; 2n+ 3 + 2s+ C;�B
2 e

�
�
;

(80a)

where, in the recurrence relations, we have

�(3)
n (C; s) = �(2)

n (�C; s); �(3)
n (C; s) = �(2)

n (�C; s); 
(3)n (C; s) = 
(2)n (�C; s): (80b)

Both solutions are again given by in�nite series, but now they are unbounded when

� !1. Note that, for C 6=integer, we could match solutions taking from the second and

third pairs, but it would be necessary to show that in both cases, each one with di�erent

characteristic equation, the eigenvalues converge to the same limit. It would be better

to seek new solutions for this problem. The same occurs with other potentials as, for

example, the asymmetric potential studied by Konwent et al

V (�) =
(2s+ 1)2

4

�
B

2s + 1
cosh � � 1

�2
+
BC

2
sinh �; C e B > 0; s = 0; 1=2; 1; 3=2; � � � ;

or the potential [24]

V (�) = �2e�2� + 2�(
 � 1)e�� � 2�(p+ 
)e� + �2e2�; p = 0; 1; 2 � � � ; (81a)

where we are supposing that � and � are positive and � 6= �. Thus, if in the latter case

we select a = �pA1 = �� and i! = �pA4 = ��, we obtain

B1 = 2�; B2 = 2
; B3 = E +
�

 � 1

2

�2
; i! = ��; i� = �
 � p: (81b)

Then, the �rst pair of solutions provides8>>>>>><>>>>>>:

 1 = f+1 (x)
P1

n=0 b
(1)
n

�
2�e��

�nF �n+ 2
 � 1; 2n + 2
; 2�e��
�
;

e 1 = f�1 (x)
P1

n=0 b
(1)
n (2�e�)nF

�
n � p; 2n + 2
; 2�e�

�
;

f�1 (x) := exp
h
��e� � �e�� � 1

2
(1 � 2
) �

i
:

(82a)
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8>>>>>>><>>>>>>>:

�(1)
n = ���(n+1)(n+2
+p)

(n+
)(n+
+ 1

2
)
;

�(1)
n = E +

�

 � 1

2

�2
+ n(n+ 2
 � 1) � 2��(
+p)(
�1)

(n+
�1)(n+
) ;


(1)n = ���(n+2
�2)(n�p�1)
(n+
�1)(n+
� 3

2
)
;

(82b)

with recurrence relations given by Eq. (31) if 2
 6= 1; 2, Eq. (32) if 2
 = 1, and Eq. (33)

if 
 = 1.

If p is a non-negative integer we have 
p+1 = 0, and therefore the solution e 1 with

F = (�1)nfM is a regular polynomial solution with n extending from 0 to p. However, if 2


is zero or a negative integer, the regular hypergeometric function is not well-de�ned. On

the other hand, if p is not a non-negative integer the solutions in (82a), both with regular

or irregular con
uent hypergeometric functions, can be matched to give convergent and

bounded solutions in terms of in�nite series, but only when 2
 is not zero or a negative

integer. Moreover, using the second and third pairs of solutions we may verify that (for

p =integer) in�nite-series wave functions bounded for � 2 (�1;1) cannot again be

obtained by matching solutions belonging to the same pair.

Finally, note that we have seen that the Schr�odinger equation for the potential (73a)

is analogous to the Dirac equation (67) with � = �1. There is also an analogue for � = 1,

given by a periodic QES potential whose form is [31]

V (�) = A cos(2�) +B cos � + C sin � +D sin(2�); (83a)

that can be rewritten as

V (�) = A1e
�2i� +A2e

�i� +A3e
i� +A4e

2i�;

A1 :=
1
2(A+ iD); A2 :=

1
2(B + iC); A3 := A�2; A4 := A�1:

(83b)

Indeed, the changes of variables

x = ei�;  (�) = ea=xxbU(x); a2 = �A1; a� 2ab+A2 = 0; (84a)

in the Schr�odinger equation imply that U is ruled by

x2
d2U

dx2
+ [(2b+ 1)x� 2a]

dU

dx
+
h
A4x

2 +A3x+ b2 � E
i
U = 0; (84b)

that is, by a con
uent GSWE in which

B1 = �2a; B2 = 2b+ 1; B3 = b2 � E; !2 = A4 e 2�! = �A3: (84c)

5. Final Remarks

The solutions to the GSWEs presented in this article were developed according to the

principles exposed in Section 1. In Section 2, expansions with phase parameter were
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written as two pairs of solutions, each one having the same series coe�cients and consisting

of a solution in series of hypergeometric functions, and a second one in series of Coulomb

wave functions. The �rst solution converges in any �nite region of the complex plane,

while the second one converges for jxj > jx0j. For the WHE, the series in hypergeometric

functions reduce to even or odd series of trigonometric (or hyperbolic) functions with a

counterpart in series of Coulomb wave functions. Equations for the time dependence of

the Dirac test fermions in non
at radiation-dominated FRW spacetimes were tranformed

into Whittaker-Hill-type equations in which all the constants are known.

In Section 3 we supposed that there is some free parameter in the GSWE, and then the

expansions found in Section 2 were truncated, giving four pairs of solutions without phase

parameter. The truncation of the series in hypergeometric functions provided solutions of

the Fackerell-Crosmann type, that is, in series of Jacobi polynomials. Given one pair of

solutions, the others can be generated bymeans of the transformations rules T1 and T2. For

the angular two-center problem, solutions in series of regular Coulomb wave functions were

established, in addition to the Baber-Hass�e expansions in series of associated Legendre

polynomials. Analogously, for the angular Teukolsky equations, solutions in series of

regular Coulomb wave functions were obtained, in addition to the Fackerell-Crossman

expansions. For the radial two-center problem, solutions bounded over the entire range

of the radial variable were found by matching expansions in series of irregular Coulomb

wave functions with expansions in series of hypergeometric functions. This procedure

o�ers computational advantages in relation to that used by Liu [19], since the matchable

solutions are given in terms of one-sided series without phase parameter and both solutions

have the same eigenvalue equation.

Still in Section 3, the four Arscott solutions in series of trigonometric (or hyperbolic)

functions were recovered, and each of them corresponds to an expansion in series of

Coulomb wave functions. They were applied to formally solve the Schr�odinger equation

with Razavy-type potentials. Polynomial solutions in series of hyperbolic functions and

regular Coulomb wave functions were found. Solutions in in�nite series were composed

by connecting expansions in series of hyperbolic functions with expansions in series of

irregular Coulomb wave functions, similarly to the case of the radial two-center problem.

These solutions in in�nite series seem to be suitable to �nd the complete energy spectrum

without using the common approximation methods.

To consider the WHE as a special GSWE is not a novelty (see Part B of Ref. [4]).

However, one has the impression that so far this information had not been used to derive

explicit solutions to the WHE, as we have done in Sections 2.2 and 3.2. The prescription

for this is as follows: �nd a solution for the GSWE in its general form (1), use the

transformations rules given in Section 1, and then, particularize the solutions to the

WHE.

In Section 4, we used the transformation rule t2 to generalize the Leaver solutions

in series of Coulomb functions for con
uent GSWEs. We showed that these solutions

may be used to �nd the time dependence of massive Dirac test �elds in dust-dominated
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FRW spacetimes. The truncated solutions were applied to get polynomial solutions to

the Schr�odinger equation with QES asymmetric double-Morse potentials. In this case no

satisfactory in�nite-series solution were found, and the search of new solutions appropriate

for the case remains open. Note the new instances of con
uent GSWE that were found in

this section: the Schr�odinger equation for the potentials (73a) and (83a), the Eq. (67) for

the time dependence of a Dirac �eld in dust-dominated FRW backgrounds, and the Eq.

(72) for the radial dependence of a massive scalar �eld in Kerr-Newmann spacetimes.

In Appendix A we derived the recurrence relations for the truncated expansions with

x0 6= 0. We got three possibly di�erent recurrence relations, each of them being valid for

the solutions of the WHE.

Throughout the text we have taken several equations of the mathematical physics

as mere examples. This is particularly true with respect to the equations for the time

dependence of Dirac test fermions in FRW backgrounds inasmuch as we have not writ-

ten explicitly the solutions for S(� ) and T (� ). To solve these equations, in addition to

consider the regularity and convergence conditions, we need to �nd four independent sets

of solutions and check if they satisfy the requirements of \charge conjugation", since the

Dirac equation in FRW spacetimes is invariant under such an operation.

We have not examined the integral relationships which may exist between solutions

with the same recurrence relations either. In e�ect, Masuda and Susuki [11] found that

Otchik-type solutions in series of hypergeometric and Coulomb wave functions are related

by means of integral transformations. Thus, we can extend that study to the generalized

solutions investigated here and, in particular, to the truncated solutions. This extension

might also include solutions of Ja��e and Hilleraas type for which Leaver found integral

relations only for special values of the parameter � [1].

Another open issue concerns the generalization of the expansions in series of Coulomb

wave functions to a Heun di�erential equation in its general form, as well as the possi-

bility of getting pairs constituted by such expansions and expansions in hypergeometric

functions, as in the case of GSWEs. Actually, we know that there are QES potentials

which lead to general Heun equations [32] and, if that generalization is possible, maybe

we could �nd in�nite-series solutions appropriate for these problems too. A further ques-

tion refer to the connections between the Schr�odinger equation for other QES potentials

and the Heun equation or its special cases. We advance that, for the trigonometric and

hyperbolic potentials of Refs. [24, 31], the Schr�odinger equation may be tranformed into

GSWEs, and by this reason it has the pairs of solutions found in Section 3.1 as candidates

for polynomial and in�nite-series solutions. Nevertheless, it is necessary to consider other

classes of QES potentials as well.
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Appendix A: Truncation and Recurrence Relations

Let us see how we have obtained the �rst pair of solutions (U1, eU1). For n � 0 the solution

U�
1 reads

U�
1 = ei!x

1X
n=0

bnF
�
B2

2
� n� � � 1; n+ � +

B2

2
;B2 +

B1

x0
;
x� x0
x0

�
; (A.1)

which, when inserted into the Eq. (1), gives

��1b0F
�
B2

2
� �; B2

2
+ � � 1;B2 +

B1

x0
; y
�
+

(�0b1 + �0b0)F
�
B2

2
� � � 1; B2

2
+ �;B2 +

B1

x0
; y
�
+

(�1b2 + �1b1 + 
1b0)F
�
B2

2
� � � 2; B2

2
+ � + 1;B2 +

B1

x0
; y
�
+P1

n=2(�nbn+1 + �nbn + 
nbn�1)F
�
B2

2
� n� � � 1; n + � + B2

2
;B2 +

B1

x0
; y
�
= 0:

(A.2)

where y = (x0 � x)=x0. The parameter � must be chosen so that the coe�cients of each

independent term vanish. Whenever ��1 = 0 we have the recurrence relations (31) but

there are cases in which ��1 is not zero, as the right hand side of the following expression

suggests

��1
i!x0

=

�
� + 1 � B2

2

� �
� � B1

x0
� B2

2

�
(� � i�)

2�(� + 1=2)
:

8>>>>><>>>>>:
� = B2

2 � 1;��1 = 0 if B2 6= 1; 2;

� = B1

x0
+ B2

2 ; ��1 = 0 if B1

x0
+ B2

2 6= 0; 12 ;

� = i�; ��1 = 0 if i� 6= 0;�1
2
:

In e�ect we see that there are three possible choices for � and in each of them there are

two exceptions for which ��1 may not vanish. Hereafter we discard the possibility � = i�

because it does not lead to solutions in terms of Jacobi's polynomials. For the exceptions

we will �nd two dependent terms in Eq. (A.2). Considering the possibility � = B2=2� 1,

we obtain the solution U1 with the recurrence relations (31), when B2 6= 1; 2. If B2 = 1

(� = �1=2), Eq. (A.2) becomes

��1b0F
�
1;�1; 1 + B1

x0
; y
�
+ (�0b1 + �0b0)F

�
0; 0; 1 +

B1

x0
; y
�
+

(�1b2 + �1b1 + 
1b0)F
�
�1; 1; 1 + B1

x0
; y
�
+ � � � = 0:

As the �rst and the third terms are linearly dependent, we get the recurrence relations

(32). On the other hand, if B2 = 2 (� = 0) we have

��1b0F
�
1; 0; 2 +

B1

x0
; y
�
+ (�0b1 + �0b0)F

�
0; 1; 2 +

B1

x0
; y
�
+

(�1b2 + �1b1 + 
1b0)F
�
�1; 2; 2 + B1

x0
; y
�
+ � � � = 0:
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Since the �rst and the second terms are constant, the recurrence relations have the form

given in (33). Therefore, we have derived the solution U1. Now let us consider the solutioneU�
1 for n � 0,

eU �
1 = ei!x(x� x0)�+1�

B2

2

1X
n=0

ebn(�2i!x)nF(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x): (A.3)

If F(an;bn; z) = U(an;bn; z) we get

��1(�2i!x)�1b0U(� + i�; 2�;�2i!x) + (�0b1 + �0b0)U (� + 1 + i�; 2� + 2;�2i!x)+
(�1b2 + �1b1 + 
1b0)(�2i!x)U (� + 2 + i�; 2� + 4;�2i!x)+P1

n=2(�nbn+1 + �nbn + 
nbn�1)(�2i!x)nU(n+ � + 1 + i�; 2n+ 2� + 2;�2i!x) = 0:

(A.4)

In order to obtain the solution eU1, the counterparter for U1, we choose � = B2=2� 1 once

more. To �nd the recurrence relations for B2 = 1 and B2 = 2 we use [12]

U(a; 1� n; z) = znU(a+ n; 1 + n; z)

that implies

U
�
i� � 1

2
;�1;�2i!x

�
= (2i!x)2U

�
i� +

3

2
; 3;�2i!x

�
;

U(i�; 0;�2i!x) = �2i!xU(i� + 1; 2;�2i!x) :
Then, for B2 = 1 (� = �1=2) we have

��1(�2i!x)�1b0U
�
i� � 1

2
;�1;�2i!x

�
+ (�0b1 + �0b0)U

�
i� +

1

2
; 1;�2i!x

�
+

(�1b2 + �1b1 + 
1b0)(�2i!x)U
�
i� +

3

2
; 3;�2i!x

�
+ � � � = 0;

and the �rst and the third terms are linearly dependent giving the Eq. (32). For B2 = 2

(� = 0) we get

��1(�2i!x)�1b0U(i�; 0;�2i!x) + (�0b1 + �0b0)U (1 + i�; 2;�2i!x) +
(�1b2 + �1b1 + 
1b0)(�2i!x)U (2 + i�; 4;�2i!x) + � � � = 0;

and we see that the �rst and the second terms are linearly dependent; this leads to the

recurrence relations given by Eq. (33). To complete the derivation of the pair (U1; eU1) we

have still to suppose that F(an;bn; z) = (�1)nfM(an;bn; z) in Eq. (A.3). Instead of Eq.

(A.4) we have

��1(2i!x)�1b0fM (� + i�; 2�;�2i!x) + (�0b1 + �0b0)fM (� + 1 + i�; 2� + 2;�2i!x)+

(�1b2 + �1b1 + 
1b0)(2i!x)fM (� + 2 + i�; 2� + 4;�2i!x)+
P1

n=2(�nbn+1 + �nbn + 
nbn�1)(2i!x)nfM (n+ � + 1 + i�; 2n+ 2� + 2;�2i!x) = 0:
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The results will be the same as in the previous case, the only technical di�erence is that

to �nd the recurrence relations for B2 = 1 and B2 = 2 we must use [16]

lim
b!1�n

M(a; b; z)

�(b)
=

�(a + n)

�(a)�(n + 1)
znM(a+ n; 1 + n; z)

which yields

lim
b!�1

fM (i� � 1=2; b;�2i!x) = (2i!x)2fM (i� + 3=2; 3;�2i!x);
lim
b!0

fM(i�; b;�2i!x) = (2i!x)fM (1 + i�; 2;�2i!x):
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