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Abstract

The variational principle for the special and general relativistic hydrodynamics are discussed

in view of its application to obtain approximate solutions to these problems. We show that

e�ective Lagrangians can be obtained for suitable ansatz for the dynamical variables such

as density pro�le of the system. As an example, the relativistic version of spherical droplet

motion (Rayleigh-Plesset equation) is derived from a simple Lagrangian. For the general

relativistic case the most general Lagrangian for spherically symmetric systems is given.

Key-words: Relativistic hydrodynamics; Variational formalism; Approximate solutions;

(General relativity).
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I. INTRODUCTION

First applications of relativistic hydrodynamics to the process of multiparticle produc-

tion in high-energy hadronic collisions can be found in the works of Fermi and Landau in

the early 1950's [1,2]. Recently, extensive studies of the relativistic motion of uids have

been done with respect to the analysis of relativistic heavy-ion collision processes [3{5]. In

fact, a hydrodynamic description of high-energy hadronic and nuclear collisions has been

successful in reproducing global features of these processes, such as multiplicity and trans-

verse energy distributions. From the theoretical point of view, however, the foundation of

the hydrodynamical picture for these processes is not a trivial matter. This is because the

use of hydrodynamic equations of motion assumes implicitly the local thermal equilibrium

via an equation of state of the matter. This means that the relaxation time scale and the

mean free path should be much smaller compared to, respectively, the hydrodynamical time

scale and spatial size of the system. In this sense, one may wonder whether these conditions

could easily be met for hadronic and nuclear collisions (for the collision of heavier nuclei

they are expected to be approximately ful�lled for some speci�c scenario).

On the other hand, from the kinematical point of view, apart from the use of the equation

of state, the equations of hydrodynamics are nothing but the conservation laws of mass,

energy, and momentum. In this sense, for any process where the dynamics of ow is an

important factor, a hydrodynamic framework should be a natural �rst step, at least at the

level of phenomenology. The e�ects of �nite relaxation time and mean-free path might be

implemented at a later stage by using an e�ective equation of state, incorporating viscosity

and heat conductivity, or some simpli�ed transport equations, see Ref. [6] and references

therein.

Another important arena of extensive application of relativistic hydrodynamics is found

in cosmology and high-energy astrophysics, such as the gravitational collapse of a stellar core

to form a neutron star or a black hole, relativistic blast waves for the models of gamma ray

bursts, etc. [7{10]. In these cases, the assumption of the local thermodynamical equilibrium
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is considered to be well justi�ed. However, in the astrophysical applications we have not

only to face the large scale systems but also to deal with the long range gravitational �eld

simultaneously. For these reasons, the computer simulations of hydrodynamical scenarios

for astrophysical problems usually become extremely expensive.

The relativistic hydrodynamics is a local description of the conservation laws, written in

terms of the energy-momentum tensor as

@�T
�� = 0: (1)

This is a set of coupled partial di�erential equations which, in general, are di�cult to solve

exactly. Except for a few analytical solutions known for special cases, we have usually to

resort to numerical solutions even for a simplest geometry, like one-dimensional or spherically

symmetric cases. In the most of the cases, the numerical approach together with a realistic

equation of state becomes prohibitively expensive, especially when coupled to some transport

equations such as those for neutrinos in the case of stellar collapse or supernova explosions

[11].

In addition to the di�culties of solving the hydrodynamical equations, frequently we

encounter with the situation where even the equation of state of the matter is not known

precisely. Rather, we apply the hydrodynamical models to infer the properties of the matter

involved in the process. In such cases we do not need the very precise local features of the

hydrodynamical motion (for example, sound ripples, small local perturbations, etc.) but

rather the global ow motion which characterizes the dynamics of the system assuming a

given equation of state.

For the reasons cited above, in spite of the presence of highly sophisticated techniques

for hydrodynamic numerical calculations, some problems require rather simpler approaches

which allow to analyze the dynamics of the system more e�ectively. In such cases, extremely

local properties should be smeared out e�ectively, in order to extract global features of the

ow more directly. As an example, we know that some global features of the high-energy

hadronic and nuclear collisions can already be described by a simple �reball model [12].
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Presently we aim at a dynamical scheme which improves the simplest �reball model in the

direction of a more complete hydrodynamical description.

We here introduce the method of e�ective action based on the variational principle to

hydrodynamic equations of motion. As is well-known, the variational approach has practical

advantages besides its formal side. Once the variational principle is established, we can use

the method to obtain the optimal parameters of a given family of trial solutions. The

e�ective Lagrangian and variational approach [13,14], introduced to incorporate the e�ect

of local turbulent motion in an e�ective way into a supernova explosion mechanism, is such

an example. It was shown that such an approach is also useful to discuss the dynamics of

a sonoluminescencing bubble in a uid [15,16]. There, the e�ective Lagrangian method was

shown to be very useful in generalizing the so-called Rayleigh-Plesset equation to include

in a simple way the e�ects of gas dynamics inside the bubble. There exist some analogous

problems to the dynamics of a sonoluminescence bubble in the domain of relativistic energies,

such as QGP or astrophysical �reballs. Thus, the relativistic generalization of the classical

Rayleigh-Plesset equation will be useful.

In the present work, we generalize the e�ective Lagrangian method to the relativistic

hydrodynamics. By suitable parametrizations of the density pro�le of the system, approx-

imate but very simple solutions of relativistic hydrodynamical models can be derived in

this approach. In particular, we derive a relativistic generalization of the Rayleigh-Plesset

equation and discuss the e�ect of relativity for the homologous motion of gas and uid.

Frequently the ow of the matter accompanies the production of entropy. In particular,

when a shock wave is generated, the violent dynamical change of the density leads to a highly

turbulent regime, which cascades into a smaller scale complex uid motion and ultimately

thermalize. In order to incorporate such e�ects of non-adiabatic processes and simulate the

dynamics of shock wave as a thin domain of non-adiabatic ow, Neumann and Richtmyer [17]

introduced the method of the pseudo-viscosity which is still used extensively in many areas.

We show that this approach can well be incorporated in our formalism and consequently, the

relativistic generalization of the pseudo-viscosity method is easily obtained in our context.
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In the astrophysical applications of relativistic hydrodynamics, the inclusion of the gravi-

tational �eld is essential. It has been discussed by several authors that the general relativistic

hydrodynamical equations can also be derived from the action principle [18{21]. In this pa-

per, we derive a simple general relativistic e�ective Lagrangian for spherically symmetric

systems and deduce explicitly from it the equation of motion of Misner and Sharp [22] for

gravitationally collapsing object. We also show that the concept of general coordinate sys-

tem allows us to use a comoving Lagrangian frame in obtaining the e�ective Lagrangian of

the special relativistic hydrodynamics.

We organize this paper as follows. In Sec. II, we �rst review the variational formula-

tion of the relativistic hydrodynamics. Then, in Sec.III, we apply the variational scheme

to spherically symmetric cases and establish an e�ective Lagrangian for the variational pa-

rameters of the density pro�le function. In the case of a homogeneous gas bubble in an

in�nite uid, this equation is a relativistic generalization of the Rayleigh-Plesset equation

well-known for uid acoustic theories. In Sec. IV, we discuss nonadiabatic process and

generalize the pseudo-viscosity of Neumann and Richtmeyer in the context of our relativis-

tic variational principle. In Sec.V, we extend our approach to the general relativistic case,

where, the metric functions are chosen as the dynamical variables. In the case of spherically

symmetric system, we derive explicitly the e�ective Lagrangian for the comoving coordinate

system. We discuss the relation between the comoving frame and space-�xed coordinate

system. In Sec.VI, we summarize our present work.

II. VARIATIONAL APPROACH

Although not commonly found in general textbooks, the variational formulation of hydro-

dynamics has been studied by several authors [18{21,23{26]. For the sake of later discussion,

let us �rst review briey how the relativistic hydrodynamical equations of motion are derived

from a variational principle. In the following, we take the velocity of light is unity, c = 1.

Let the velocity �eld of the matter be
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~v = ~v(~r; t): (2)

In order to keep the manifestly covariant notation, we express the ow in terms of a four-

vector, u�(x), where

u0 = ; ~u = ~v: (3)

and

u�u
� = 1: (4)

The ow of matter induces a change in the speci�c volume occupied by the matter. In order

to facilitate the following discussion, we consider the case where there exists some conserved

quantity, say the baryon number. Let the local density of this conserved quantity in the

comoving frame be n. Then we have

@� (nu
�) = 0: (5)

We also de�ne the speci�c volume V as

V =
1

n
: (6)

Let us write the energy of the matter in this volume as

E = "V; (7)

where " is the energy density. The assumption of local equilibrium leads to the validity of

the thermodynamical relations, such as

�
@E

@V

�
S

= �P; (8)

where S is the entropy of the matter in the volume and P the pressure. In terms of the

energy density this implies

�
@"

@n

�
S

=
"+ P

n
: (9)
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Now take the action,

IM =

Z
d4x

�
�"(n) + �(x)@� (nu

�) +
1

2
�(x) (u�u� � 1)

�
: (10)

and state the variational principle as

�IM = 0;

for arbitrary variations in u�; n; �, and �. Then, as we will show in the following, Eu-

ler'ss equation for the relativistic uid motion can be derived formally from the variational

principle�. Note that the last two terms in Eq.(10) represent the constraints among variables

u� and n. As we see in the next section, for the practical usage of this variational approach,

it is convenient to choose the parametrization of u� and n in such a way that the constraints

are automatically satis�ed so that the Lagrangian multipliers � and � do not enter into the

calculation.

The variations in � and � lead immediately to the constraints, Eqs.(4) and (5). Applying

an integration by parts to the second term in Eq.(10), the action can also be written as

IM =

Z
d4x

�
�"(n)� nu�@��(x) +

1

2
�(x) (u�u� � 1)

�
: (11)

We remark that the derivation in this section is equally valid in general coordinate systems.

In this case, the partial derivative, @�; in Eq.(11) should be replaced by the appropriate co-

variant derivative, and correspondingly in the following equations. Furthermore, the volume

element d4x should be replaced by the invariant volume element
p�gd4x [27].

The variation with respect to n leads to

� �"

�n
� u�@�� = 0: (12)

Note that, if the motion of the uid is not adiabatic, then �"=�n does not necessarily be equal

to the usual derivative d"=dn (see the later discussion). On the other hand, the variation in

u� leads to

�In fact, the action above only applies to the case of non-rotational ow. It is also possible to

formulate the variational principle for more general ow pattern. See [19,20] for discussion.
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@�� =
1

n
�u�; (13)

and substituting this into Eq.(12), we obtain:

� = �n �"
�n

; (14)

where we have used u2 = 1, cf. Eq.(4). Thus, Eq.(13) is rewritten as

@�� = � �"

�n
u�: (15)

Taking the contraction of both sides with the four-velocity, we have

u�@�� = � �"

�n
u�u

� = � �"

�n
: (16)

Thus we conclude that

@�

@�
= � �"

�n
; (17)

since u�@�� = @�=@� .

In the usual hydrodynamic equations, we assume that the matter is always in thermo-

dynamical equilibrium. Furthermore, if there is no viscosity or heat conduction, the energy

change associated to the motion is adiabatic, that is, the change in speci�c energy E caused

by the change in the speci�c volume V is given by

�E = �P�V; (18)

where V = 1=n and P is the pressure. In such cases, we have

@"

@n
! �(nE)

�n
=

"+ P

n
; (19)

and

d

�
�"

�n

�
! 1

n
dP: (20)

Therefore, for adiabatic changes of the density n; Eq.(17) becomes
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@�
@�

@�
= �1

n
@�P: (21)

On the other hand, we have also

@�
@�

@�
= @�(u

�@��) = u�@�@�� + (@�u
�) @��

= u�@�@�� � "+ P

n
u� (@�u

�)

=
@

@�
@�� � "+ P

n
@�

�
1

2
u�u

�

�
=

@

@�
@��; (22)

that is, the two derivatives @� and @=@� commute when applied to �. Therefore, from

Eqs.(15) and (17) we can eliminate � to get

u�@�

�
"+ P

n
u�

�
=

@�P

n
: (23)

Again using Eq.(20), this reduces to

u� u
�(@�P ) + ("+ P )u�@� u� = @�P: (24)

The �rst term of this equation is further modi�ed as

u�(@�P ) = u�n@�

�
"+ P

n

�

= u�@� ("+ P )� "+ P

n
u�@�n

= u�@� ("+ P ) + ("+ P ) @�u
�; (25)

where the continuity equation (5) was used. Thus, Eq.(24) can be rewritten as

@� T
�
� = 0; (26)

where

T�� = ("+ P ) u�u� � Pg�� : (27)

That is, we arrive at the equation of motion of relativistic uid dynamics with the energy-

momentum tensor of the perfect uid. From this equation, we obtain the relativistic version

of the Euler equation [27],
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@

@t
~v + (~v � r) ~v = � 1

("+ P ) 2

�
rP + ~v

@P

@t

�
: (28)

In the above derivation, we assumed the Minkowski space-time metric, but as mentioned

before all the calculations can easily be extended to the case where the metric is more

general. For example, the �nal result Eq.(26) in the curved metric is

T �
� ;� = 0; (29)

where ; stands for the covariant derivative, as usual.

As pointed out by several authors [19,20,26], the above scheme leads only to non-

rotational ow. This can be seen from Eq.(13), where the velocity �eld is proportional

to the four-gradient of a scalar function. In order to include the rotational ow, we have to

add a term coming from another constraint with respect to entropy in the original action.

However, for the spherically symmetric case below, one does not need to worry about the

rotational ow, so we omit the discussion for the sake of simplicity.

III. SPHERICALLY SYMMETRIC CASE

The above variational approach is particularly useful when we can solve the constraint

equations explicitly. One dimensional, or spherically symmetric system is such a case. Here

we study the spherically symmetric case. Let the density pro�le in a space �xed frame be

�n = f(r; t): (30)

Then the velocity �eld is determined from the continuity equation as

v = � 1

r2f

Z r

0

r2 _fdr: (31)

If we use this expression for the velocity �eld, then we can omit the constraint terms in the

action. Thus, we have a Lagrangean for f as

L = �4�
Z

1

0

r2dr " (n) ; (32)
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where the local density in the comoving frame is given by

n =
f


: (33)

To see explicitly how the variational principle works with this Lagrangian, let us consider

an arbitrary density variation,

f ! f + �f:

Under such variation, we get

�I = �4�
Z

dt

Z
1

0

r2dr �"

�
1


f

�

= 4�

Z
dt

Z
1

0

r2dr

�
�"

�n

��
��f


+ vf�v

�
; (34)

and,

�v = ��f

f
v � 1

r2f

Z r

0

r2� _fdr;

�I = 4�

Z
dt

Z
1

0

r2dr

�
�"

�n

��
��f


+ v

�
��f v � 1

r2

Z r

0

r0 2� _fdr0
��

= �4�
Z

dt

�Z
1

0

r2dr

�
�"

�n

�
�f +

Z
1

0

dr

�
�"

�n

�
v

Z r

0

r0 2� _fdr0
�

= �4�
Z

dt

Z
1

0

r2dr

��
�"

�n

�
 +

@

@t

�Z r

0

dr

�
�"

�n

�
v

��
�f (35)

From this we have �
�"

�n

�
 � @

@t

�Z
1

r

dr

�
�"

�n

�
v

�
= 0:

Taking the derivative with respect to r of the both sides, we get

@

@t

��
�"

�n

�
v

�
= � @

@r

��
�"

�n

�


�
:

Using the adiabatic relation of the energy density and pressure in the equation of motion,

we get

_v + v
@v

@r
= � 1

("+ P )2

�
@P

@r
+ v

@P

@t

�
(36)

which is again the relativistic Euler equation for spherically symmetric case [27].
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A. E�ective Lagrangian

Now let us introduce a parametric ansatz for the density pro�le as

�n(t; r) = f(r; a(t)); (37)

where a = a(t) is a (set of) time-dependent parameter(s) which determines the form of f .

We suppose that f is suitably normalized,

4�

Z
1

0

r2fdr = N: (38)

The velocity pro�le, Eq.(31) becomes

v(r; t) = � _a
1

r2f

Z r

0

r2
�
@f

@a

�
dr � � _a; (39)

with

� = �(r; a) = � 1

r2f

Z r

0

r0 2
�
@f

@a

�
dr0: (40)

For more than one parameter, a = fai; i = 1; :::; ng Eqs.(31) and (40) should be understood

as

v(r; t) =
nX
i=1

�i _a
i; �i = � 1

r2f

Z r

0

r0 2
�
@f

@ai

�
dr0: (41)

The important point here is that the velocity �eld is linear in _a. The e�ective Lagrangian

for our variable a = a(t) becomes

L(a; _a) = �4�
Z

1

0

r2dr " (n) ; (42)

where n = f(r; a)= and  = 1=
q
1� (� _a)2. The equation of motion for the variable a is

obtained from the Euler-Lagrange equation

d

dt

�
@L

@ _a

�
� @L

@a
= 0; (43)

which is written as
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4�

Z
1

0

r2dr

�
d

dt

�
�"

�n
n2�2 _a

�
+

�"

�n

@n

@a

�
= 0; (44)

For adiabatic motion, we get

d

dt

Z
1

0

r2dr
�
("+ P ) 2v�

	
= �

Z
1

0

r2dr ("+ P )

�
1

f

@f

@a
� 2v

@v

@a

�
: (45)

The e�ective Hamiltonian H is then

H � _a
@L

@ _a
� L

= 4�

Z
r2dr

�
� �"

�n
�n _a

@

@ _a

�
1



�
+ "

�
= 4�

Z
r2dr

�
("+ P ) 2v2 + "

�
= 4�

Z
r2dr

�
("+ P ) 2 � P

�
=

Z
d3r T 00; (46)

which is in fact the total energy of the system and a conserved quantity.

B. Relativistic Rayleigh-Plesset Equation

For an example, let us consider a system composed of a homogeneous spherical gas bubble

surrounded by a homogeneous uid. We then introduce the ansatz,

f = �0G =
3

4�

NG

R3
; 0 < r < R

= �0L =
3

4�

NL

R3
1
�R3

; R < r < R1
(47)

where the radius of the gas bubble R = R(t) is the only dynamic variable. We use the

subscript G and L to specify the quantities in the gas and the uid, respectively. For

example, NG and NL are number of particles (constant) in the gas and uid, respectively.

The outer (constant) radius of the uid R1 is introduced here to take into account the

conservation of the number of particles in the uid, but ultimately should be taken equal to

1. The velocity �eld is then determined as

v(r) =
r

R
_R; 0 < r < R;

=
R2 (R3

1
� r3)

r2 (R3
1
�R3)

_R; R < r < R1; (48)
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so that

�(r) =
r

R
; 0 < r < R;

=
R2 (R3

1
� r3)

r2 (R3
1
�R3)

; R < r < R1: (49)

The e�ective Lagrangian for R is then

L = �4�
Z R

0

r2dr "G

 
fG

r
1�

� r
R

_R
�2!

� 4�

Z R1

R

r2dr "L

0
@fL

s
1 �

�
R2 (R3

1
� r3)

r2 (R3
1
�R3)

_R

�2

1
A :

(50)

The equation of motion for R = R(t) is given by

d

dt

�
@L

@ _R

�
=

@L

@R
; (51)

where

@L

@ _R
= 4�

_R

R2

Z R

0

dr r4 ("G + PG) 
2 + 4�R4 _R

Z R1

R

dr

r2
("L + PL) 

2

�
R3
1
� r3

R3
1
�R3

�2

; (52)

and

@L

@R
= �4�R2 ["G � "L]R � 4�

Z R

0

r2dr ("G + PG)

0
@� 3

R
+ 2

 
_R

R

!2

r2

R

1
A

�4�
Z R1

R

r2dr ("L + PL)

 
3R2

R3
1
�R3

� 2
R3 (2R3

1
+R3) (R3

1
� r3)

2

r4 (R3
1
�R3)3

_R2

!
:

(53)

At this stage, we can take the limit R1 !1. Thus, we have

@L

@ _R
= 4�

_R

R2

Z R

0

dr r4 ("G + PG) 
2 + 4�R4 _R

Z
1

R

dr

r2
("L + PL) 

2; (54)

and

@L

@R
= �4�R2 (["G � "L]R + ["L + PL]1) +

12�

R

Z R

0

r2dr ("G + PG)

�4�
Z R

0

r2dr ("G + PG) 
2

 
_R

R

!2

r2

R
+ 8�R3 _R2

Z
1

R

dr

r2
("L + PL) 

2:

(55)



CBPF-NF-008/99 14

The equation of motion then takes the form,

d

dt

h
(I1 + I2)R

3 _R
i
= F � (I1 � 2I2)R

2 _R2; (56)

where

I1 =

Z 1

0

dx x4 ("G + PG) 
2; (57)

I2 =

Z
1

1

dx

x2
("L + PL) 

2; (58)

with x = r=R and

F = �R2 (["G � "L]R + ["L + PL]0) +
3

R

Z R

0

r2dr ("G + PG) ; (59)

where the subscipt 0 represents the quantity evaluated at v = 0. Eq.(56) is a full relativistic

equation of motion for the radius of a gas bubble under the homologous motion of the

system.

To see the non-relativistic limit of Eq.(56), we separate the energy density into the sum

of the rest-mass energy density � and the internal energy density "int as

" = � + "int; (60)

and expand Eqs.(57,58,59) in a power series of small parameters such as , v2; "int=�;and P=�

in the non-relativistic regime. We have

("+ P ) 2 ' �0 + "int0 + P0 +
1

2
�0v

2; (61)

Thus,

I1 ' 1

5

�
�0;G + "int0;G + P0;G

�
+

1

14
�0;G _R2; (62)

I2 ' �0;L + "int0;L + P0;L +
1

10
�0;L _R2; (63)

and

F ' R2 (P0;G � P0;L)�
�
1

2
(�0;L + P0;L) +

3

10

�
�0;G + P0;G + c2s�0;G

��
R2 _R2

�1

8

�
�0;L +

3

7
�G;0

�
R2 _R4: (64)
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In the lowest order in _R we get

�
1

5
�0;G + �0;L

�
R �R +

3

2
�0;L _R2 = P0;G � P0;L; (65)

which is the usual Rayleigh-Plesset equation of a gas bubble inside a liquid [16] without the

term for the energy dissipation due to the sound radiation.

When the equation of state of the uid and the gas are given as

P / �� (66)

where � is the adiabatic index, all the integrals in Eq.(56) are expressed analytically. We

get

MR3 �R+

�
1

5
�0;GJ1 + �0;LJ3 +

4 � 3�G
5

�
"in + P

�
0;G

J2 +
�
"in + P

�
0;L

J4

�
R2 _R2

= �R2 (["G � "L]R + ["L + PL]0) +R2
�
�0;GJ9 +

�
"in + P

�
0;G

J10

�
; (67)

with

M =
1

5
�0;GJ1 + �0;LJ3 +

1

5

�
"in + P

�
0;G

J2 +
�
"in + P

�
0;L

J4

+

�
1

7

�
�0;GJ5 + (2 � �)

�
"in + P

�
0;G

J6

�
+

1

5

�
�0;LJ7 + (2� �)

�
"in + P

�
0;L

J8

��
_R2

(68)

and

J1 = F

��
1

2
;
5

2

�
;
7

2
; _R2

�
; J2 = F

��
1 � �

2
;
5

2

�
;
7

2
; _R2

�
;

J3 = F

��
1

2
;
1

4

�
;
5

4
; _R2

�
; J4 = F

��
1 � �

2
;
1

4

�
;
5

4
; _R2

�
;

J5 = F

��
3

2
;
7

2

�
;
9

2
; R2

�
; J6 = F

��
2 � �

2
;
7

2

�
;
9

2
; _R2

�
;

J7 = F

��
3

2
;
5

4

�
;
9

4
; _R2

�
; J8 = F

��
2 � �

2
;
5

4

�
;
9

4
; _R2

�
;

J9 = F

��
3

2
;�1

2

�
;
5

2
; _R2

�
; J10 = F

��
3

2
;��

2

�
;
5

2
; _R2

�
;

where F ([a; b]; c; z) is the hypergeometric function.



CBPF-NF-008/99 16

For the sake of illustration, we show in Figs.1, 2, and 3, time dependences of the radius

and velocity described by the relativistic Rayleigh-Plesset equation Eq.(67) for 3 di�erent

initial conditions. In this example, we consider the case where the both gas and uid have

the same mass density and the adiabatic index � = 4=3. Three cases shown here are for

the di�erent values of the initial gas pressure, (P=�)G;0 = 1=10 (Fig. 1); 5 (Fig. 2); and

100 (Fig. 3), keeping the ratio of the initial gas to the liquid pressure PG;0=PL;0 = 100.

Solid lines are for the full relativistic equation of motion (Eq.67) and the dashed ones are

for the non-relativistic limit, Eq.(65). For the low initial gas pressure, two solutions coin-

cide (Fig. 1). For the extremely high initial pressure, the motion of the bubble becomes

completely relativistic (Fig. 3) and the non-relativistic equation of motion di�ers com-

pletely from the relativistic equation. Note that in the relativistic equation, the velocity

saturates at v=c = 1. Of course, in this extreme example, the uid motion becomes super-

sonic
�
v > vs =

p
1=3 = 0:577

�
and the hypothesis of homologous motion may breakdown.

However, it is important to note that, there exists a case where the non-relativistic approx-

imation fails down completely although the uid and gas motion are still subsonic like in

the case of Fig.2.
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FIG. 1. Radius R(t) and velocity V (t) of the bubble of the total mass MG = 1, initially at rest,

plotted as a function of the time t for the case �G;0 = �L;0; PG;0=PL;0 = 100; � = 4=3 for di�erent

values of PG;0. For Fig.1, 2 and 3, PG;0 = 1/10, 5 and 100, respectively. The unit of the distance

is taken as Ru =
�
MGc

2=�0;G
�1=3

.
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IV. NONADIABATIC PROCESSES

In many cases, the change of the density associated with the ow of the matter causes

non-quasi static processes within the hydrodynamical volume element established in the

practical calculations. For example, in the limit of large Reynolds number, the dynamical

change of the volume easily leads to a highly turbulent regime in small regions of the uid,

and this complex uid motion will gradually thermalize inside the volume element. In such

a case, there appears the heat production inside of such a volume element. If the time scale

for the thermalization is negligible, then the heat production can be expressed in terms of

viscous tensor, and the hydrodynamic equation of motion becomes,

@� (T
�� + ���) = 0; (69)

where ��� is the shear tensor. When there is no heat transfer, we may take

��� = q(u�u� � g��); (70)

where q is a function of the local thermodynamical quantities, like �; P and its derivatives.

From Eq.(69) we have

u�@�

� "
n

�
+ (P + q)u�@�

�
1

n

�
= 0: (71)

This means that, in the Lagrange comoving system, the change of the speci�c energy with

respect to the proper time is given by

dE

d�
+ P

dV

d�
= �qdV

d�
: (72)

Thus we identify the function q as the rate of the production of the entropy S with respect

to the volume change,

q = �T dS
d�

=
dV

d�
(73)

The speci�c form of ��� , Eq.(70) allows us to write
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~T �� = ("+ P + q)u�u� � (P + q) g�� ; (74)

which conserves

@� ~T
�� = 0: (75)

From the above conservation law we get immediately the equation of motion,

_v + v
@v

@r
= � 1

("+ P + q)2

�
@(P + q)

@r
+ v

@(P + q)

@t

�
; (76)

which describes the relativistic hydrodynamical motion under the local entropy production,

Eq.(72). The function q should be speci�ed appropriately according to the non-adiabatic

processes representing the conversion of kinetic energy of the collective motion to the in-

ternal energy of the matter. Such a viscosity was �rst introduced in the non-relativistic

hydrodynamics by Neumann and Richtmyer [17] in order to simulate the entropy produc-

tion mechanism at the shock front. Eq.(76) is the relativistic extension of the method of

pseudo-viscosity of Neumann and Richtmyer.

The above scheme is easily incorporated in the variational formalism. In the presence of

non-adiabatic processes, the variation in the speci�c energy in the previous section, Eq.(18),

should be replaced by

�E = �P�V + �Q = �P�V + T�S = � (P + q) �V (77)

where �Q is the generated heat associated with the non quasi-static density variation. Con-

sequently we should, instead of the adiabatic relations (19,20), use

@"

@n
! "+ P + q

n
; (78)

d

�
�"

�n

�
! 1

n
d(P + q): (79)

From these substitutions, we get immediatelyEq.(76). In terms of parametric representation,

the equation of motion is given by

d

dt

Z
1

0

r2dr
�
("+ P + q)2v�

	
= �

Z
1

0

r2dr ("+ P + q)

�
1

f

@f

@a
� 2v

@v

@a

�
: (80)
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The e�ective Hamiltonian for dynamical variable a is given again by

H � _a
@L

@ _a
� L

= 4�

Z
r2dr

�
("+ P + q) 2 � (P + q)

�
=

Z
d3r

�
T 00 + �00

�
; (81)

which is conserved,

dH

dt
= 0; (82)

for the equation of motion, Eq.(80), together with Eq.(72). This H can again be identi�ed

as the total energy of the system including the internal heat energy generated in the uid.

V. GENERAL RELATIVISTIC HYDRODYNAMICS

For the application of the present formalism to astrophysical problems it is essential

to include the e�ect of gravity through the theory of General Relativity. The variational

approach of the general relativistic hydrodynamics has been discussed by several authors

[18{21]. In this section, starting from the variational approach, we show that the method of

e�ective Lagrangian can also be established taking the metric as one of the variational trial

functions. Let us �rst review how the general relativistic energy and momentum tensor are

derived from the variational approach.

A. Energy-Momentum Tensor and Einstein's Equation

The total action is given as

I = IG + IM ;

where

IG =
1

2�

Z
d4x

p�g<; (83)
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is the action for the gravitational �eld and � = 8�G with G the gravitational constant. As

usual, g = det jg�� j ; is the determinant of the metric tensor g�� , and < is the curvature

scalar. The action of matter is now given by [18]

IM =

Z
d4x

p�g
�
�"(n) + �(x) (nu�)

;� +
1

2
�(x) (u�u� � 1)

�
; (84)

where � and �=2 are Lagrange multipliers as before. As usual, \;" represents the covariant

derivative and the factor
p�g is inserted to guarantee that the Lagrangian density is a

scalar. The variation of the action should be carried out with respect to g�� ; n; u�; �; and �;

independently. The results of variations with respect to n; u�; �; and � are the same as before

(see Eqs.(12),(13),(14), (15) , (29) and the comments for the covariant derivative in Sec.II).

Thus, these variations gives the relativistic hydrodynamic equation for a given metric g�� .

The functional derivative with respect to g�� is calculated to be

�IM
�g��

= �@
p�g
@g��

f"(n) + n (@��(x)) u
�g+ 1

2
�
p�gu�u�; (85)

where we already employed the constraints, cf. Eqs.(4,5). Using

@
p�g
@g��

= �1

2

p�gg�� ; (86)

and substituting the values of @�� and �, we get,

�IM
�g��

=
1

2

p�gg��
�
"(n)� n

�
"+ P

n
u�

�
u�
�
+

1

2

p�g ("+ P )u�u�

=
1

2

p�g f("+ P )u�u� � Pg��g : (87)

Comparing this result to the de�nition of the energy-momentum tensor,

�IM
�g��

� 1

2

p�gT ��; (88)

we identify that

T �� = ("+ P )u�u� � Pg�� ; (89)

which is nothing but the energy-momentum tensor of the perfect uid. Thus, the energy-

momentum tensor of the uid is derived from the Lagrangian density Eq.(84) just as in the
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case of the �eld theoretical Lagrangian. Note that the role of constraints are essential for

this derivation.

The variation of the gravitational action IG with respect to g�� gives the usual Einstein

tensor G�� ,

�IG
�g��

� �1

2

p�gG�� ;

so that we get

G�� = �T �� ; (90)

which is the Einstein equation, as expected. The hydrodynamical equation, Eq.(29),

T ��
;� = 0; (91)

can be re-obtained from Eq.(90) due to the Bianchi identity,

G��
;� = 0: (92)

It is interesting to note that if we use the metric functions as basic dynamical variables then,

the hydrodynamic equation of motion is obtained somewhat indirectly from the properties

of metric tensor and the variational principle does not lead directly to the equation of

motion. This point will be discussed later again in the context of the derivation of the

special relativistic equation of motion using the comoving coordinate system.

B. Spherically Symmetric System

The derivation of the equation of motion above is too formal and not much useful to

be applied directly for some practical problems. To make use of the variational approach,

it is necessary to establish appropriate trial functions in order to write down the e�ective

Lagrangian for these functions. As in the case of special relativity, this is possible when

the system has appropriate symmetry, such as spherically symmetric distribution of matter.

Many problems of the gravitational collapse of stars, the structure of neutron stars, and
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the Robertson-Walker cosmology can be discussed in this symmetry. Here we establish the

e�ective Lagrangian for the spherically symmetric system.

The most general form of the metric for a spherically symmetric system can be taken as

[27]

ds2 = e2�dT 2 � e2�d�2 � r2d
2; (93)

where (T; �) denotes the time and radial coordinates and � = �(�; T ); � = �(�; T ); and r =

r(�; T ) are unknown functions to be determined. Usually, if we consider the radial velocity

�eld of the uid as an independent variable, then we need only two independent functions

in the metric and we may choose, for example, r = �. However, with the above metric

involving three functions, we can further take the so-called comoving frame in such a way

that the space-like components of the four-velocity �eld vanish everywhere [28],

u� = (u0; 0; 0; 0): (94)

From the normalization condition u�u
� = 1, we get

u0 = e��: (95)

In this comoving frame, the conservation law is expressed as

(nu�)
;� =

1p�g@�
�p�gnu�� = 1

r2e�e�
@T
�
r2e�n

�
= 0; (96)

so that the density n of the conserved quantity, say the baryon number, is given by

n =
�

e�r2
; (97)

where � = �(�) should be determined by the initial condition. In this choice of the metric,

the matter Lagrangian density is expressed as

LM = �p�g"(n) = �e�e�r2"(n); (98)

where n is given by Eq.(97). No terms with Lagrangian multipliers appear, because the

constraints are automatically satis�ed. The gravitational part is calculated as
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LG =
1

2�
e�e�

h
r0 (2r�0 + r0) e�2� � _r

�
2r _� + _r

�
e�2� + 1

i
; (99)

where we introduced the notation _f = @f=@T and f 0 = @f=@�. In the above, we omitted

the part which can be written as the total derivative of a function, since this does not alter

the equation of motion. The total Lagrangian of the spherically symmetric system is then

given explicitly as

L [�; �; r] = e�e�r2
�
�"(n) + 1

2�r2

h
r0 (2r�0 + r0) e�2� � _r

�
2r _� + _r

�
e�2� + 1

i�
: (100)

When the variation for functions �; �; and r are in fact arbitrary, this Lagrangian is equiv-

alent to Einstein's equations. To see this, we write the Euler-Lagrange equations of motion

for �; �; and r from this Lagrangian to get

" =
1

�

�
1

r2
+ 2e�2�

�
r0

r
�0 � r00

r
� r0 2

2r2

�
+ 2e�2�

�
_r2

2r2
+

_r

r
_�

��
; (101)

P = �1

�

�
1

r2
� 2e�2�

�
r0

r
�0 +

r0 2

2r2

�
+ 2e�2�

�
�r

r
+

_r2

2r2
� _r

r
_�

��
; (102)

and

P = �1

�

�
�e�2�

�
�00 + �02 � �0�0 +

1

r
(r00 + �0r0 � �0r0)

�
(103)

+e2�
�
�� + _�2 � _� _�+

1

r

�
�r + _r _�� _� _r

���
:

We verify directly that these three equations are exactly those corresponding to the diagonal

part of Einstein's equation. In fact, writing these equations in the form

" =
1

�
G0

0; (104)

P = �1

�
G1

1; (105)

and

P = �1

�
G2

2; (106)
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where G0
0 G

1
1 and G2

2's are de�ned, respectively, as the quantities in the square bracket [ ]

of Eqs.(101), (102), and (103), we can identify the functions G as the diagonal components

of the Einstein tensor corresponding to the metric (93).

The only di�erence between our formalism here and Einstein's equation is that in the

former there is no equation corresponding to the non-diagonal element, G0
1 in the latter. In

Einstein's theory, this quantity should be zero,

G0
1 =

2e�2�

r

�
_r0 � _r�0 � _�r0

�
= 0: (107)

This is because in the comoving frame the energy-momentum tensorT �
� is diagonal. There-

fore, to prove that our result is identical to the usual theory, we have to show that Eq.(107)

is a consequence of Eqs.(104) { (106). Although this proof is rather basic matter and could

be found in text books, we show it explicitly for the sake of later discussion. We �rst start

with the well-known Bianchi identity (for example, see [27], p.363),

G�
� ;� = @�

�p�gG�
�

�
+

1

2

p�g �G� �@�g
��
�
= 0: (108)

In our case, the �rst component � = 0 leads to

@0
�p�gG0

0

�
+ @1

�p�gG1
0

�
+

1

2

p�g
"

3X
�=0

g��G
�
�@0g

��

#
= 0: (109)

On the other hand, we have

@0
�p�gG0

0

�
+

1

2

p�g
"

3X
�=0

g��G
�
�@0g

��

#

= r2e�e�
�
@G0

0

@t
+ 2

_r

r

�
G2

2 �G1
1

�
+
�
G0

0 +G1
1

��
2
_r

r
+ _�

��

= r2e�e�
�
_"+ ("+ p)

�
2
_r

r
+ _�

��
= 0; (110)

where Eqs.(104) { (106) together with the energy conservation,

_" =
d"

dn

@
�
�=r2e�

�
@T

= � ("+ P )

�
2
_r

r
+ _�

�
;

are used. Comparing Eqs.(109) and (110), we get
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@1
�p�gG1

0

�
= 0; (111)

or

r2e�e�G1
0 = C(T ): (112)

where C is a function of T only. For a non-singular metric we should have r(� = 0; T ) = 0,

hence we conclude that C(T ) � 0: Therefore, we obtain

G0
1 = 0: (113)

This completes the proof that our result is equivalent to Einstein's equation. That is, the

Lagrangian density Eq.(100) describes correctly the dynamics of a spherically symmetric

system of an ideal uid and gravitational �eld.

C. Misner-Sharp Equation

Together with Eq.(107), Eq.(113) implies the following relation,

_r0 � _r�0 � _�r0 = 0; (114)

which can be obtained from Eqs.(104) { (106) directly, without referring to the Einstein

tensor G�
� and its properties.

Following Ref. [22] we can express the equations of motion in a more convenient form.

First, putting G0
1 � 0 in the second component of the Bianchi identity, we have

@G1
1

@r
+ 2

r0

r

�
G1

1 �G2
2

�
= � �G0

0 +G1
1

�
�0: (115)

Substituting Eqs.(104) { (106), we get immediately that

P 0 = � ("+ P ) �0; (116)

which is the Euler equation in the comoving frame. Now we introduce a quantity U de�ned

by



CBPF-NF-008/99 27

U = _re�� =
dr

d�
; (117)

where � is the local proper time and d=d� is the total derivative. The relation (114) is

expressed in terms of U as

e�� _� =
U 0

r0
:

Now Eq.(101) becomes

8�G"r2 = 1� rr0
�
e�2�

�
0 � e�2�

�
r00R + r02

�
+ U2 + 2rUU 0r0�1; (118)

which can be integrated as

e�2� =
1

r0 2

�
1 + U2 � 2MG

r

�
; (119)

where

M(�; T ) = 4�

Z �

0

"r2r0d� = 4�

Z r

0

"r2dr: (120)

Inserting Eq.(119) into (105), together with (116), and after some manipulations we obtain:

d2r

d� 2
= _Ue�� = �

�
1

"+ P

��
1 + U2 � 2MG

r

��
@P

@r

�
T

�G
M + 4�R3P

r2
: (121)

This form of the equation of motion was �rst obtained by Misner and Sharp [22]. Equations

(116),(117), (120) and (121) together with an equation of state completely determine the

dynamics of a spherical collapse, or bounce, which might be relevant for the study of the

gamma ray bursts [10].

To see the relation between this expression and the special relativistic Euler equation

Eq.(36), we set G = 0 in Eq.(121),

d2r

d� 2
= �

�
1

"+ P

��
1 + U2

��@P
@r

�
T

:

Let (t; r) the coordinate system �xed in the Minkowskian space-time. Thus, the line element

is given as
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ds2 = dt2 � dr2 � r2d
2;

in a space-�xed coordinate system. However, in the comoving coordinate system, we need

non-trivial metric functions as follows. First we introduce a coordinate transformation,

r = r(T; �);

t = t(T; �); (122)

where we may identify the coordinate � as the comoving Lagrangian coordinate. Thus, by

de�nition,

v =

�
@r

@t

�
�=cont:

: (123)

It is always possible to choose the variable T so that the cross term in the above equation

vanishes and the line element can be written in the form of Eq.(93),

ds2 = e2�dT 2 � e2�d�2 � r2(�; t)d
2: (124)

Here,

d� = e�dT jd�=0; (125)

is the (local) proper time. Note that a local Lorentz transformation relates the in�nitesimal

coordinate di�erences to those of proper time d� and local radial distance e�d� by0
B@ dt

dr

1
CA =

0
B@  v

v 

1
CA
0
B@ d�

e�d�

1
CA : (126)

On the other hand, since

ds2jd�=0 = d� 2 =
�
dt2 � dr2

�
d�=0

= dtj2d�=0
�
1 � v2

�
; (127)

we conclude

�1dtjd�=0 = d� = e�dT: (128)
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In this way we have

d2r

d� 2
� e��

@

@T

�
e��

@r

@T

�
�

= 
@

@t

�

@r

@t

�
�

= 

 
@

@t
v + 

�
@v

@t

�
�

!

= 2
�
1 + 2v2

��@v
@t

�
�

: (129)

Now, from Eq.(126) we have

dtjdT=0 = ve�d�;

drjdT=0 = e�d�;

so that

�
@P

@R

�
T

=

�
@P

@r

�
t

+

�
@P

@t

�
r

�
@t

@r

�
T

=

�
@P

@R

�
t

+ v

�
@P

@t

�
r

: (130)

We also have

�
@v

@t

�
�

=

�
@v

@t

�
r

+

�
@v

@r

�
t

�
@r

@t

�
�

=

�
@v

@t

�
r

+ v

�
@v

@r

�
t

: (131)

Therefore, Eq.(121) becomes

�
@v

@t

�
r

+ v

�
@v

@r

�
t

= � 1

"+ P

1

2

��
@P

@r

�
t

+ v

�
@P

@t

�
r

�

which is exactly the relativistic Euler equation (36).

D. Variational Principle in Comoving Coordinate for No Gravity Limit (G! 0)

The above discussion suggests the possible use of the comoving (Lagrangian) coordinate

system even for cases with no gravity, that is G! 0. The e�ective Lagrangian presented in

Sec.III is based on an ansatz for the solution of the continuity equation in the space-�xed

coordinate system. By using a comoving Lagrange coordinate system, we may better choose
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the trial function on physical grounds. Of course, the two systems of coordinates, in principle,

should be equivalent if the ansatz has enough exibility to the express any arbitrary ow

pattern of the matter. However, for practical applications, the appropriate choice of the

coordinate system is essential to get better results. For example, it is technically di�cult

to introduce the velocity dependence in the ansatz for the density pro�le consistent with

the continuity equation. Therefore, for an ansatz like Eq.(37), established in the space-�xed

coordinate system, the relativistic kinematical e�ects may induce some spurious e�ects on

the dynamics of the parameters. On the other hand, if we can choose the parametrization in

the comoving coordinate system, such kinematical e�ects are expected to be automatically

included in the equation of motion.

In the limit of G ! 0, the space-time reduces to that of Minkowski and obviously the

gravitational part of the Lagrangian density (100) vanishes. However, in the comoving frame

the line element has still the form (93) and functions e� and e� remain unknown. If we drop

out the gravitational part from the action, the variational principle does not give information

on these functions. What should be done in this limit is that Eqs.(116) and (119) are used

as constraints among the unknown functions, r; � and �. Setting G = 0 in Eq.(119) and

using the relation

p
1 + U2 =

q
1 + ( _re��)2 =

p
1 + 2v2 = ;

we obtain

e� =
r0


: (132)

On the other hand, assuming the isentropic initial condition and adiabatic process, we can

integrate Eq.(116) with respect to � to get

e�� =
"+ P

mn
� h(n) (133)

where h is the speci�c enthalpy of the matter and m is the rest mass of the constituent

particles. This integration constant was chosen so that e� ! 1; n! 0:
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Now the action becomes

I = �
Z

dT

Z
d�e�e�r2"(n) = �

Z
dT

Z
d�
r0r2



mn

"+ P
"(n); (134)

where

n =
�(�)

r0r2
; (135)

and � = �(�) is determined from the initial condition.

Let the T -dependence of r be speci�ed as

r(�; t) = f(�; a(T )): (136)

Then the Lorentz factor  is expressed as

 =
p
1 + e�2� _r2 =

s
1 + h2(n)

�
@f

@a

�2

_a2;

so that the number density n = n(a; _a; �) should be determined by the equation

f 0f 2n = �(�)

s
1 + h2(n)

�
@f

@a

�2

_a2: (137)

Finally the e�ective Lagrangian for a = a(T ) is given by

L(a; _a) = �
Z

d� �(�)" (n) : (138)

The Euler-Lagrange equation of motion for a then takes the form

d

dt

Z
d��(�)(" + P )

1

n

�
@n

@ _a

�
=

Z
d��(�)(" + P )

1

n

�
@n

@a

�
: (139)

Di�erently from the case of the space-�xed coordinate system, we need the equation of

state to determine the density of the matter as a function of our dynamical variable, (136).

Note the di�erence between the density pro�les n(r; t) of the Sec.III and n(�; T ) de�ned

by Eq.(137). The former is de�ned for constant time, t = const. of the space �xed global

coordinate system, and the latter is de�ned for constant time coordinate, T = const. of the

comoving coordinate system.
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Although the comoving coordinate system seems physically more advantageous than the

space �xed global coordinate system in choosing an ansatz, it may generate a di�culty in

solving Eq.(137) for a given equation of state. For the ideal gas, like

P / n

with  = 5=3 or 4=3, an analytic solution of Eq.(137) for n can be obtained explicitly.

However, for general cases, analytic solution is not available. To avoid this, one may be

tempted to use the proper time de�ned by

d� = e�dT (140)

instead of the time coordinate T and introduce the ansatz,

r(�; � ) = f(�; a(� )); (141)

in substitution for Eq.(136). In this case, the Lorentz factor becomes

 =

s
1 +

�
@f

@a

�2�
da

d�

�2

(142)

involving no density dependent term in it. Thus the density is expressed directly as

n =
�(�)

f 0f 2

s
1 +

�
@f

@a

�2�
da

d�

�2

(143)

without need for solving the equation, (137). However, unfortunately, the pair of variables,

(�; �) do not constitute the proper integrable coordinate system, so that the boundary con-

dition for the variation principle on the action,

I = �
Z

d�

Z
d�e�r2"(n) (144)

is not properly de�ned and a simple Euler-Lagrange equation for �xed � leads to a wrong

result.
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VI. DISCUSSION AND CONCLUDING REMARKS

The variational approach for systems of �elds, including the general theory of relativity,

is of course a basic and standard theoretical framework and has been well studied, even

for the application to the hydrodynamics discussed here. However, to the authors' knowl-

edge, except for the formal derivation, no explicit variational formulation for the practical

application for relativistic hydrodynamical systems has ever been carried out.

From the formal point of view, matter described by hydrodynamics is rather a phe-

nomenological concept than the consideration of the fundamental degrees of freedom. In �eld

theories, the variational approach is indispensable in discussing, for example, the underlying

symmetries of the matter �eld, such as Noether's theorem, the quantization procedure, etc.

Most of these formal aspects of the variational approach will not be much useful for hydro-

dynamical systems, except for the obvious symmetries required for the energy-momentum

tensor. Thus one might �nd no point in discussing hydrodynamics from the action principle,

once the equations of motion of hydrodynamics are well established in terms of the equations

for the energy-momentum tensor.

On the other hand, as is well-known, the variational approach has practical advantages

besides its formal side. Once the variational principle is established, we can use the method

to obtain the optimal parameters of a given family of trial solutions.

In this paper, we derived the equations of motion of hydrodynamics starting from a very

simple Lagrangian density. There it is seen that the roles of the continuity equation as

a dynamical constraint and of the local thermodynamical relations are essential to arrive

at the standard result of hydrodynamics. When the continuity equation is soluble, such a

formulation in terms of the variational principle o�ers a powerful tool to obtain approxi-

mate solutions. For a system with a high degree of symmetry such as spherically symmetric

system, we can establish the e�ective Lagrangian for the density pro�le function. Such an

e�ective Lagrangian is quite useful for obtaining the approximate solutions for the hydrody-

namical equation of motion in a simple manner. Even for the �nite element discretization of
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the hydrodynamic equation designed to a larger numerical solution, the variational approach

may o�er a physically optimized equation of motion, avoiding the mathematical instabil-

ity with a relatively small number of degrees of freedom [13]. As an example of extreme

simpli�ed case, we apply the e�ective Lagrangian formulation for a gas bubble in a uid

and for the �rst time the relativistic version of the Rayleigh-Plesset equation is obtained.

Such an approach will be useful for the analysis of the relativistic motions of blast waves

in the models of gamma ray bursters [10], or the hot and dense droplet of QGP plasma,

possibly formed in high-energy nuclear collisions. The application of our formalism for such

processes is being planned. We have discussed also the introduction of pseudo-viscosity due

to Neumann and Ritchmyer in the context of variational formulation. This will allow, for

example, not only to treat relativistically the propagation of shock waves but also to intro-

duce the �nite relaxation time of turbulent ows in a phenomenological manner [14] in the

relativistic uid dynamics.

Our formalism will be useful in studying some problems of General Relativity, too. For a

spherically symmetric system, a very simple Lagrangian density has been found. From this

Lagrangian density we can show that all the known equations of the spherically symmetric

system can be derived. We expect that, together with a good parametrization of the metric

functions, approximate solutions to these otherwise di�cult problems of stellar collapse or

explosion with realistic equations of state can be obtained. Work on this line is in progress.
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