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On the critical properties of the topological

Ginzburg-Landau model
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abstract

We consider a Ginzburg-Landau model for superconductivity with a Chern-Simons term

added. The ow diagram contains two charged �xed points corresponding to the tricritical

and infrared stable �xed points. The topological coupling controls the �xed point structure

and eventually the region of �rst order transitions disappears. We compute the critical

exponents as a function of the topological coupling. We obtain that the value of the �

exponent does not vary very much from the XY value, �XY = 0:67. This shows that the

Chern-Simons term does not a�ect considerably the XY scaling of superconductors. We

discuss briey the possible phenomenological applications of this model.
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I. INTRODUCTION

The Ginzburg-Landau model (GL) has been introduced almost half a century ago [1] as

a phenomenological model for superuidity and superconductivity. In its one component

order parameter version it has been used with reamarkable success as a statiscal mechanics

model for the critical phenomena of systems lying in the same universality class as the Ising

model [2]. In its N component version coupled to Abelian gauge �elds it has been used

as a model for superconductivity and liquid crystals [3]. However, in this last situation

the �-expansion, which works very well in the non-gauged version, seems to be insu�cient

to describe unambiguously the critical properties of the model [4,5]. Only in the large N

limit the �-expansion gives consistent results [4]. The trouble is the absence of a second

order (infrared stable) �xed point in the ow diagram. This result is physically correct

only in the extreme type I regime u=e2 << 1 (here u is the quartic scalar self-coupling

and e is the charge), where we expect a weak �rst order phase transition. This regime is

also well described by the uctuation corrected mean �eld analysis of Halperin et al. [4].

The weak �rst order transition has been probed experimentally in certain classes of liquid

crystals, where essentially the same GL model holds [6]. For the extreme type II region

(u=e2 >> 1), a second order �xed point is expected. Indeed, this result follows from

numerical studies performed in a lattice dual GL model [7]. Therefore, the prediction

of a �rst order transition even in the type II regime seems to be an artifact of the �-

expansion. More recent works support also this point of view [8,10,11,9,15]. Also, it

has been shown that the renormalization group (RG) in a �xed dimension approach is

more appropriate [8,10,11]. The ow diagram in the u� e2 plane exhibits in general four

�xed points: Gaussian and superuid (or XY), both uncharged, and the tricritical and

superconducting which are charged �xed points. The Gaussian �xed point is trivial and

describes the mean �eld critical behavior of a O(2) model (we shall work with N = 2).

The superuid �xed point describes the �-transition in He4 and lies in the same class of

universality as the XY model. The tricritical �xed point is over a line, called tricritical
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line, which separates the regions of �rst and second order phase transition. This �xed

point is attractive along the tricritical line but repulsive in the direction nearly parallel

to the u-axis. Finally, the superconducting �xed point is a charged infrared stable �xed

point and describes a second order superconducting phase transition. Bergerho� et al. [10]

obtained this ow diagram using Wilson's RG [12] in a non-perturbative version called

exact renormalization group [13]. They used the background �eld formalism to control

gauge invariance which is in principle violated due to the presence of the cuto� (further

discussions on this subtle point in Wilson's RG can be found in refs. [14]). This ow

diagram has been also obtained by Herbut and Tesanovic [11] using a simpler method.

They performed a 1-loop calculation in a �xed dimension approach.

Recently a ow diagram with qualitatively the same structure has been also obtained

for a GL model with a topological Chern-Simons (CS) term by Malbouisson et al. [16].

Their analysis was performed using Wilson's RG in perturbative form, which is not man-

ifestly gauge invariant due to the cuto�ed integrals. Due to the presence of a CS term,

an intrinsically three dimensional object, their calculations were performed in d = 3 and

N = 2, resulting therefore in an uncontrolled approximation since there is no small pa-

rameter as � or 1=N . The same type of model has been considered earlier by Kleinert

and Schakel [17] using a di�erent scaling. They performed a 1-loop calculation of critical

exponents. However, their scaling did not allows for a consistent zero CS mass limit since

Feynman graphs were evaluated at zero external momenta. The reason comes from the

graph shown in Fig.1. When evaluated at zero external momenta this graph gives zero

due to the structure of the CS gauge �eld propagator. On the other hand, in the same

scaling this graph is infrared divergent if no CS mass is included in the action. Thus,

it is not legitimate to perform the zero CS mass limit in the scaling considered in [17]

as observed by the authors themselves. There are many other RG studies of bosonic CS

models in the literature but the F 2 term is almost always absent [18]. The presence of

such a term is crucial in order to obtain the ow diagram of ref. [16]. Moreover, it is
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desirable to recover the usual GL model in the limit of zero CS mass.

In this paper we consider further the topological model of refs. [16,17], performing the

calculation at the critical point [2]. We consider two di�erent approximations. In a �rst

step (section II) we perform a 1-loop calculation of the RG functions assuming that the

same scale holds for both the order parameter and the gauge �eld. In this context we �nd

the following main features: (1) For the CS coupling smaller than a certain critical value

there are no charged �xed points; (2) There exists a interval of CS couplings such that two

charged �xed points are found, corresponding respectively to the tricritical and second

order (infrared stable) �xed points. In this interval it is possible to �nd respectable

values for the � exponent but not for the � exponent, eventually violating the scaling

relations; (3) For larger CS coupling, outside the interval mentioned in (2), the region of

�rst order behavior is lost since the tricritical �xed point assumes an unphysical value.

The second step (section III) consists in improving upon the 1-loop result of section II by

distinguishing the scales of the order parameter and the gauge �eld. In this approximation

we follow an idea of Herbut and Tesanovic in order to relate both scales and obtain in this

way the RG ow. In this case we have the tricritical and second order �xed points even in

the limit of zero CS coupling, consistent with the �xed point structure of the conventional

GL model. However, once again the tricritical �xed point becomes unphysical for the CS

coupling larger than a certain critical value. In this case we obtain that all the critical

exponents have respectable physical values. Moreover, the � exponent as a function of

the topological coupling does not deviate very much from XY scaling. Finally, in section

IV we discuss our results and the possible applications.

II. MODEL AND RG RESULTS

Our starting point is the following action:

S =

Z
d3x

h
j(r� ie0 ~A) j2 + r0j j2 + u0

2
j j4
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+
1

8��0
(r� ~A)2 + i

�0
2
~A � (r� ~A)

�
; (1)

where the subindex 0 denotes bare quantities. The above action is a standard GL model

with a CS term added. We shall work in the Landau gauge and therefore the bare

propagator for the gauge �eld is given by

Dij(k) =
4��0
k2 + g20

�
�ij � kikj

k2
� g0

�ijkkk
k2

�
: (2)

We choose a parametrization in which both e0 and �0 are kept �xed while � renor-

malizes. The calculations will be performed at the critical point. The renormalization

conditions for the renormalized vertex functions are given by

�(2) (k)jk2=0 = 0; (3)

@�
(2)
 

@p2
(k)

�����
k2=p2

= 1; (4)

@�(2)A;ij
@p2

(k)

�����
k2=p2

=
1

4��
; (5)

�(4) (k1; k2; k3; k4)jS:P: = up; (6)

where u is a dimensionless coupling and S.P. denotes the symmetrical point which we take

as being given by

ka � kb = (4�ab � 1)
p2

4
: (7)

Note that in the above renormalization conditions the gauge coupling and the scalar

coupling are �xed at the same momentum scale.

The renormalized couplings will depend on the momentum scale p and the beta func-

tions are de�ned through derivatives of the couplings with respect to log p. Note that

in order to preserve the local U(1) gauge symmetry of the four point function, we must

consider the Feynman graphs with all the external momenta incoming at the vertices.

If we proceed otherwise, that is, if we choose a convention which two external lines are

incoming while the other two are outcoming, then the corresponding four point function
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is not symmetric when using the above symmetrical point. This is easily seen by perform-

ing a 1-loop calculation in the uncharged model with O(N) symmetry. The resulting four

point function �
(4)
��� (the subindices are color indices) is not proportional to the O(N)

symmetric tensor (����� + ����� + �����)=3 if the graphs are not evaluated with the

convention that all the external momenta are incoming.

We de�ne the dimensionless renormalized gauge couplings through the equations f =

4��e2=p and g = 4���=p. The ow equations are given up to 1-loop order by

p
df

dp
= �f + f2

16
; (8)

p
dg

dp
= g

�
�1 + f

16

�
; (9)

p
du

dp
= (2� � 1)u+

5

8
u2 +

!

4�
f2; (10)

where � is the anomalous dimension for the scalar �eld de�ned by

� = p
d log Z 
dp

: (11)

where Z is the wave function renormalization of the order parameter which is determined

by the renormalization condition (4). Its explicit analytical expression is given by

� = � f

4�

�
3�

4g2
+
�

2
� 3�g2

4
+ 3g � 3

g

�
�

3

2g2
� 1 +

3g2

2

�
arctan

�
1 � g2

2g

��
: (12)

The function ! is de�ned by

! =

�
� 3

2g4
� 4

g2
+ 8

�
arctan

�
1

2g

�

+

�
3

2g4
+

3

g2
� 5

2

�
arctan

�
1 � g2

2g

�

+
�

2g2
� 5�

4
+
1

g
: (13)

The function ! and the anomalous dimension � have well de�ned limits as g ! 0, which

correspond to the limit of the conventional GL model. As g ! 0, we �nd � ! �f=4 as
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g ! 0 while ! ! 3�=2. The opposite limit, g ! 1, leads to the expected decoupling

of the gauge and scalar degrees of freedom since both � and ! tend to zero in this limit.

The f2 term in Eq.(10) comes from the graph shown in Fig.1. As mentioned in the

introduction, this graph is zero when p = 0. In the scaling considered in this paper this

graph survives since p 6= 0 and we can recover the g ! 0 limit.

FIG. 1. Graph contributing to the f2 term in the beta function for u. The dashed lines

represent the gauge �eld propagator.

The charged �xed points are given by f� = 16, g� arbitrary and

u�� =
4

5

"
1 � 2� �

r
(2� � 1)2 � 160

�
!�

#
; (14)

where � = � (f�; g�) and !� = !(f�; g�). We have that u�� is real only for g� � g�c1 �
0:42, which corresponds to the condition for the existence of charged �xed points in our

model. The ow diagram is shown in Fig.2 for g� = 0:48. The left charged �xed point,

coresponding to u��, is the so called tricritical �xed point. The tricritical �xed point is

attractive over a line intercepting the origin called the tricritical line. The tricritical line

separates the regions of �rst and second order phase transitions. The right charged �xed

point, corresponding to u�+, is infrared attractive and describes the physics of second order

phase transitions in superconductors. Note also in the ow diagram the Gaussian and the

XY �xed points. Another interesting point is that there exists another critical value of

g�, g�c2 � 0:81, such that for g� > g�c2 the tricritical �xed point is in the region of the plane

uf de�ned by u < 0. In this region the tricritical �xed point lost its physical meaning. It

results that the only charged �xed point is the infrared one. Consequently, for g� > g�c2

only second order behavior seems to be possible.
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FIG. 2. Flow diagram for g� = 0:48.

Let us evaluate the critical exponents for the superconducting transition in function of

g� > g�c1 . It is su�cient to evaluate � and � since the other exponents are obtained from

these ones via scaling relations. � is given simply by evaluating � at the �xed point. The

evaluation of �, however, is more involved. In the critical theory this exponent is evaluated

by considering a  y insertion in the two point function. Thus, we must compute the

1-particle irreducible function �(1;2) subjected to the renormalization condition:

�
(1;2)
 (k1; k2;�k1 � k2)jS:P: = 1; (15)

which will determine the renormalization constant of  y , denoted by Z
(2)
 . As usual [2],

the � exponent is given by the �xed point value of the RG function � de�ned by

1

� 
= 2 + p

d

dp
log

 
Z
(2)
 

Z 

!
: (16)

We �nd:

�
(2)
 � p

d log Z(2)
 

dp

= �u
4
� f

4�

"
(3� 4g2)(3 + 4g2)

8�3=2
arctan

 p
�

g

!

+
3 + 4g2

2
p
3g2

arctan

�
3� 4g2

4
p
3g

�
� �

3� 4g2

4
p
3g2

+
(3� 4g2)(3 + 4g2)

8g�

�
; (17)
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where

� = g4 +
g2

2
+

9

16
: (18)

At 1-loop order we obtain

� � 1

2

�
1 � 1

2
�
(2)
 +

1

2
� 

�
: (19)

The Fig.3 shows a plot of the exponent � as a function of g�. Note that the plot is made

for g� � g�c1 which corresponds to the region where charged �xed points should exist. We

observe that as g� increases the value of � tends asymptotically to 0:6, which corresponds

approximately to the XY value for the pure scalar model in the 1-loop approximation at

�xed dimension. This is an expected result since for g ! 1 the gauge modes decouple

from the scalar modes. This result can be veri�ed directly from the above RG functions

by expanding for g large.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6
g

FIG. 3. Plot of � as a function of g� for g� � 0:42

In recent years it has been stablished that the � exponent for the (non-topological)

superconducting transition is given by � = �XY � 0:67 [19,8,9]. Thus, we are tempted to

search for what value of g� we have � = �XY . One obtains that � � 0:67 for g� � 0:776.

This is smaller than g�c2 and we have still the region of �rst order transition in the ow

diagram. Unfortunately, a pathological behavior arises for this value of g�. The trouble

comes from the � exponent. Indeed, we have that � � �2:47 < �1 while we know from
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the scaling relations that the condition � > �1 must be ful�lled. This result is probably

an artifact of our 1-loop perturbation theory. Another related problem is that the above

results fail in describing a ow diagram with charged �xed points in the limit g ! 0.

In this limit our ow diagram resembles to that one obtained by Halperin et al. in the

seventies [4] and , as mentioned in the introduction, their result is an artifact of the �-

expansion. Therefore, we should improve our perturbation theory in order to bypass all

these di�culties.

III. IMPROVED RG RESULTS

As we have said in the last section, the beta functions for the topological GL model

have a well de�ned g ! 0 limit. However, we have seen that in this limit no charged �xed

points exist. Moreover, the � exponent could attain unphysical values which violate the

scaling relations. The trouble is that there are in fact two fundamental lenght scales in

this problem, namely, the correlation lenght � and the magnetic �eld penetration depth, �.

The � is related to the scaling of the scalar �eld while � is related to the scaling of the gauge

�eld. Thus, in principle, the renormalization conditions for the gauge coupling should be

�xed at a di�erent point of the scalar coupling. Since there is a relation between the

lenghts � and �, we must have also a relation between the corresponding renormalization

points. We develop this more general point of view by using a simple method suggested

recently by Herbut and Tesanovic [11]. It consists in �xing the renormalization condition

Eq.(5) at the point given by k2 = p2=c2, c giving in this way the ratio between the two

scales of the problem. If we use the same reasoning here we obtain the following beta

functions in the g ! 0 limit:

p
df

dp
= �f + cf2

16
; (20)

p
du

dp
= (2� � 1)u +

5

8
u2 +

3

8
f2; (21)
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where � = �f=4. Note that we have not exactly the same beta functions as in ref. [11].

This is due to the fact that we used the convention that all external momenta are incoming

at the vertices. Our choice is more usual in the �eld theoretical literature and has the

advantage that corresponding crossed graphs have the same value at the symmetrical

point. However, these di�erences in the conventions does not change appreciably the

physical results like the values of the critical exponents.

The value of c can be �xed by demanding that, if charged �xed points do exist, it

should happen at the same critical scale. At 1-loop this is equivalent to demanding that

the Ginzburg parameter � = u=2f should be invariant along the RG trajectory connecting

the origin and the tricritical �xed point [11]. We choose the tricritical �xed point because

there are good numerical estimates of � available [20,21]. If �tric denotes the value of �

at the tricritical �xed point we obtain that c is determined by the following equation:

�2tric =
c+ 8 �pc2 + 16c � 176

40
: (22)

We take �tric � 0:42=
p
2 which is the value obtained from Montecarlo calculations [20].

Thus, Eq.(22) gives c � 27:78. For this value of c we have the ow diagram shown in Fig.4

for the non-topological model. Fig. 5 shows the detail of the region near the tricritical

line which is not well seen in Fig. 4.

0

0.2

0.4

0.6

0.8

1

f

0.5 1 1.5 2 2.5 3
u

FIG. 4. Flow diagram for the non-topological model.
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FIG. 5. Detail of Fig.4 in the region near the tricritical line.

The RG function � in the g ! 0 limit is given by

� � 1

2

"
1 +

u

8
� f

4

 
1

2
� 2 +

p
3

3

!#
(23)

We have the following result for the critical exponents:

� � 0:676; (24)

� � �0:14; (25)

a result in good agreement with the expected XY behavior. In ref. [11] the value � � 0:53

was obtained by using a c corresponding to �tric = 0:8=
p
2 which is determined from the

lattice dual model [21]. However, they obtained � � 0:62 for �tric = 0:42=
p
2. It is

worth to mention that non-perturbative RG calculations by Bergerho� et al. [10] gives

� � 0:53 in a certain approximation corresponding to a truncation of the average action

(the Legendre transform of the Wilsonian e�ective action) at j j4. Truncation at j j8

gives the improved result � � 0:58.

Let us come back now to the case of non-vanishing g. Since the g coupling is associated

to the gauge degrees of freedom its momentum scale should be rescaled by c. Thus, in

addition to Eqs.(10) and (20) we have

p
dg

dp
= g

�
�1 + cf

16

�
: (26)
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We keep the same value of c in order to preserve the features of the g ! 0 limit. Now we

have charged �xed points even when g = 0 and therefore there is no g�c1 . On the other

hand, we have still g�c2 . We veri�ed that g�c2 is the same as before, that is, g�c2 � 0:81.

This means that for g� > 0:81 we have only second order behavior. In Fig. 6 we show

the ow diagram for g� = 0:48 with the detail of the tricritical region shown in Fig. 7.

In Fig. 8 we plot the exponent � as a function of g� in the improved 1-loop calculation.

Note that the shape of the plot is qualitatively the same as in Fig.3. The main di�erence

is that the vertical scale is compressed and the most remarkable feature is the fact that �

is now much less sensible to the value of g�, showing only a small deviation from the XY

scaling. For instance, the exponents � and � for g� = 0:48 are given by

� � 0:628; (27)

� � �0:11: (28)

Of course, we have still the same g ! 1 limit with exponents � = 0 and � = 0:6,

corresponding to the decoupled situation.

0

0.2

0.4

0.6

0.8

1

f

0.5 1 1.5 2 2.5 3
u

FIG. 6. Flow diagram for the topological model with improved 1-loop calculations for

g� = 0:48.
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FIG. 7. Detail of Fig.6 in the region near the tricritical line.

0.5

0.55

0.6

0.65

0.7

y

0 1 2 3 4 5 6
g

FIG. 8. Plot of the exponent � as a function of g�.

IV. DISCUSSION

The main aim of this paper is to initiate a careful study of a topological GL model

from the point of view of critical phenomena. For this reason we have concentrated the

e�orts on the RG ow and the evaluation of critical exponents. The results show that the

topological coupling is a good control parameter with respect to the �xed point structure.

For instance, we have seen that the region of �rst order transition is crunched as the

topological coupling is increased and eventually the type I behavior is lost. An interesting

point is that the � exponent does not uctuate very much around the XY value.
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Besides superconductivity, the topological GL model may be useful in other physical

contexts. For example, it can be applied in the study of soft materials like the chiral

liquid crystals [22]. In this case the gauge �eld should be thought as a director �eld and

the CS term is used in order to introduce the chirality for the constituting molecules.

Another interesting problem is the physics of the chiral spin state. This state arises

when one considers the Hamiltonian for the Heisenberg antiferromagnet whose spins in-

teract not only through nearest neighbors interaction, but also through a next-nearest

neighbor one [23,24]. The next-nearest neighbor interaction frustrate the N�eel state and

generates a mean �eld solution corresponding to a disordered spin state. The most stable

con�guration corresponds to the so called chiral spin state. The continuum e�ective the-

ory is obtained by computing the uctuations around such a mean �eld ground state and

it contains a dynamically generated gauge �eld. The gauge sector of the e�ective action

is identical to that one of the topological GL model. In this case the gauge couplings are

given in terms of mean �eld parameters of the original model (for details see ref. [24]).

Finally, we hope that this work will contribute to improve the understanding of GL

models.
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