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Abstract

Based on the idea of quantum groups and paragrassmann variables, we present a

generalisation of supersymmetric classical mechanics with a deformation parameter

q = exp 2�i
k

and we work with the k = 3 case. The coordinates of the q-superspace

are a commuting parameter t and a paragrassmann variable �, where �3 = 0. The

generator and covariant derivative are obtained, as well as the action for some

possible super�elds.
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1 Introduction

For the last few years, Quasi Triangular Hopf Algebras or Quantum Groups [1, 2, 3] had

attracted a lot of attention from physicists. One of the most interesting features is that

such structures can be related to underlying symmetries on spaces where the coordinates

are non-commutative [4].

Recently, it has been shown that the creation and anihilation operators of the q-

deformed harmonic oscilator [5]

a ay� qay a = q�N ; (1)

possesses a classical limit where these operators can be understood as coordinates obeying

[6]

�k = 0; (2)

where k is an integer, and the q-factor of the deformation is a prime root of unity,

qk = 1. In general, the properties of these coordinates are generalizations of some prop-

erty associated with Grassmann variables. Promoting these coordinates to functions of

a (non-deformed) parameter t, it was shown that it is possible to write down an action

for such �elds that, when added to the action of a commuting �eld, it has a symmetry

resembling supersymmetry [7], and it was also shown how to do functional integration on

a heterotic quantum �eld theory [8]. The aim of this letter is to show how it is possible

to understand the transformations on such �elds, and the action invariances, as resulting

from a superspace formulation of a classical mechanical model where its coordinates are

the Paragrassmann variables (a q-superspace), and the q-supersymmetric multiplets are

composed of (in general) non-commuting �elds.

In the next section we give a brief review of Paragrassmann variables and also how

one can construct coordinates from them. Section 3 is devoted to construct the q-

superspace, transformations between its coordinates, and the induced transformations

on the q-super�elds de�ned on it. Invariant actions are constructed on section 4, in par-

ticular for a free particle and the harmonic oscilator. We leave some �nal comments to

the last section.
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2 Paragrassmann Variables and Quermionic Coor-

dinates

We start this section introducing a Paragrassmann variable � and its derivative, @
@�
� @�

that obeys [9]

�k = 0; @�
k = 0; (3)

for a positive integer k.

If we demand that the action of @� on �n is proportional to �n�1, it turns out that it

becames necessary to deform the Leibniz rule to be

@�(a b) = (@�a)b+ g(a)(@�b); (4)

where a; b are arbitrary polynomials in �, and g(a) is an automorphism of the algebra,

satisfying

g(�a+ � b) = � g(a) + � g(b);

g(a b) = g(a) g(b); (5)

where �; � are c-numbers.

Choosing a = � in (4), we see that @� and � must obey a q-deformed commutation

(quommutation) relation

[@�; �]q � @�� � q�@� = 1; (6)

implying the automorphism for �

g(�) = q �: (7)

This derivative, however, is not unique. Indeed, we could change the power 1 in eq.

(6) by any other integer, thus for each value of k one can de�ne k�1 di�erent derivatives.

For the speci�c case k = 3, one can also de�ne another derivative �� [10] that quommutes

with � as

[��; �]q � ��� � q2��� = 1; (8)

and its Leibniz rule di�ers from eq.(4) by changing g(a) by g(g(a)).

Integration over the paragrassmann variable is de�ned such that

Z
d� �n � �n;k�1: (9)

It is interesting to notice that, for k = 2, q = �1, eq.(1) becomes the usual anti-

commutator, consistent with eqs.(3) and (6), which are the conditions for Grassmann
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variables. Taking k ! 1, eq.(1) becomes the usual commutator. The meaning of this

limit in eq.(3) is that, if we Taylor expand a function of these variables, it will become

a series (obviously, if �k = 0, k �nite, a Taylor expansion will be a polynomial of degree

(k � 1)).

The Paragrassman variables can be promoted to coordinates if we take them to be

functions of a (commuting) parameter t. Let us recall that in the Grassmannian case

we have two di�erent coordinates: one that behaves like � (a fermionic coordinate), and

another that behaves like �0, a bosonic (commuting) coordinate. In the Paragrassmann

case, we will have k di�erent types of coordinates, each one corresponding to a power of

�, and again �0 being a commuting one. We call the  (i)(t) the q-fermionic generalization

of the coordinates or, simply, the quermionic coordinates and its label (i) indicates the

sector to wich it belongs.

We take two quermions of di�erent sectors to obey the quommutation relation

 (i) (j) = q(i;j) 
(j) (i); (10)

where the parameters q(i;j) are powers of q, q
k = 1.

Let us take now the particular case k = 3, and to construct an action which extends

the supersymmetric point particle through the use of these generalized �elds [7]. This

generalized particle is described by the coordinates (x(t);  (1)(t);  (2)(t)), in the same way

as a supersymmetric point particle is described be the coordinates (x(t);  (t)). The action

involving the quermions is given by

S =
Z
dt(

1

2
_x2 � qC(s)2 _ (2) (1)); (11)

where we choose the mass equal to one. We choose the second term in (11) in such a way

that it resembles the classical fermionic equation of motion. The cocycle{type factor C(s)2

is required because when we multiply two objects of di�erent sectors, A(r)B(s), it must

behave like an object of the sector (r + s)mod 3. However, if this factor is not inserted

this product would not quommute correctly with A(r) or B(s). Underlying this point is the

fact that di�erently from the fermionic case we choose that equal �elds at equal points

commute.

This cocycle{type factor C(s) actually behaves like a sector{counter, that is,

C(s)A(i) = qiA(i)C(s): (12)

Finally, with the choice [ (1);  (2)]q = 0, taking all the �elds as real, the second term

in the action, eq. (11), becomes real and is a representative of the zeroth sector.
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Doing the transformation (the variations of a �eld will be written as � to one not be

confused with the derivative �),

�x = qC(s)�(1) (2);

� (1) = q2C(s)2�(1) _x;

� (2) = �q�(1) (1); (13)

on the action (11) we get

�S = �
Z
dt
d

dt
(�(1) (1)2); (14)

where we used [�(1);  (1)]q = [ (2); �(1)]q = 0. Such transformation is similar to a supersym-

metric transformation: the parameter �(1) is non-commuting one, the action transforms as

a total derivative, and one of the �elds,  (1), transforms as a total derivative, which can

be taken as indicating that  (1) is the highest term in a �{expansion of some super�eld.

One could also write transformations among the �elds with a parameter belonging to the

sector-two. However, it can be shown that this transformation is not a symmetry of the

action (11) [7].

3 The q-Superspace and q-Super�elds

We now begin to contruct a q-superspace formulation that will recover the results con-

cerning the quermionic coordinates presented in the last section. As previously stated,

we will consider in detail only the k = 3 case. Some of the ideas discussed here and in

the next section had been discussed also in refs. [11, 12].

The q-superspace coordinates are (t; �), where t is a c-number to be identi�ed with

time and � is a paragrassmannian variable obeying �3 = 0, and both are taken as real

parameters.

Let us now to introduce transformations between these coordinates that are transla-

tions on the q-superspace. We write them as

�0 = � + q2 C(0) ";

t0 = t+ qC(0)�2"; (15)

where " is an in�nitesimal constant that, by homogenity, is in the same sector than �.

The cocycle-like factor C(0) is necessary because the transformed coordinates (t0; �0) must

behave under quommutation relation in the same way than (t; �). The translation in the

q-superspace �xes the mass dimensions of � and " to be �1
3 .
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De�ning the quommutator to be

[A;B]q � AB � q B A; (16)

and choosing

[�; "]q2 = 0; (17)

we �x

[C(0); �]q2 = [C(0); "]q2 = 0: (18)

It is after determining these quommutation relations that we set the q factors in (15) to

preserve the reality conditon for the coordinates. We could choose q instead of q2 in (17)

(i. e., take ["; �]q = 0). With this choice we necessarilly have to change q $ q2 in eqs.

(15) and (18). In fact, there is no signi�cative di�erence between these two cases.

After introducing the q-superspace (t; �), our next step is to write down a function of

these variables. As in the supersymmetric case, let us expand this function in a Taylor

series on �, and this expansion is a polynomial of degree 2 (for the generic case �k = 0,

the polynomial goes up to the order (k � 1)).

X(t; �) = x(t) + q2 � C(2) (2)(t) + q2 �2 C(1) (1)(t): (19)

The coordinate x(t) is a commuting function, so by homogenity X(t; �) also has this

property, playing the same rôle of a scalar �eld. The  (i)(t) are the q-supersymmetric

partners of the coordinate x(t), and their dimensions are [ (j)] = � j

3. We take their

quommutators to be

[ (1);  (2)]q2 = 0 ; [C(1); C(2)]q2 = 0;

[�;  (j)]
q2j

= 0 ; [";  (j)]
qj
= 0;

[ (1); C(1)]q = 0; ; [ (1); C(2)] = 0;

[ (2); C(1)]q = 0 ; [ (2); C(2)]q = 0:

(20)

With this choice we garantee that X is indeed a zero-sector �eld, and it is real.

The in�nitesimal coordinate transformations (15) induce a variation on the q-super�eld

X(�; t) in the form

X(t0; �0)�X(t; �) = �X = q2 C(0) " QX: (21)

We can get the operatorial realization of the q-supersymmetric generator transforma-

tion, Q, by Taylor expanding the l.r.s. of this equation. We should, however, take care
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to de�ne a q-Taylor expansion, since we have two derivatives with respect to �. Choosing

the factors to keep the reality condition we have

X(�0; t0) = X(�; t) + ��

 
q2
@X

@�
+ q

�X

� �

!
+�t

@X

@t
: (22)

With this expansion, and using eq.(15). Q becomes

Q = �2 @t + q2@� + q �� (23)

We notice that the generator is in �2 sector, and its canonical dimension is [Q] = 1
3
.

A straightforward calculation shows that

Q3 = �@t: (24)

This means that the q-supersymmetric transformations are the cubic roots of time trans-

lations.

The variation of the component �elds of X can be read o� from eq.(21), comparing

the powers of �

�x = � q C(0) C(2) "  (2);

� (1) = C(1)2C(0) " _x;

� (2) = q2C(2)2C(0)C(1) " (1): (25)

As in the usual supersymmetric case, this is a cyclical transformation among the �elds.

Having written down the q-superspace transformations and the variations on the q-

super�eld, let us now construct a q-covariant derivarive,D, that is, a di�erential operator

that obeys

[D ; Q]q = 0;

D (�X) = �(DX): (26)

Choosing D to belong to the same sector as Q, they will be proportional

D = qC(0)2
�
�2 @t + q2@� + q ��

�
: (27)

As in the supersymmetric case, the component �elds can be de�ned by projecting the

super�eld on di�erent sectors, using the covariant derivatives on � = 0.

Xj�=0 = x;

DXj�=0 = �q C(0)2C(2) (2);

D2Xj�=0 = �q2C(0)C(1) (1): (28)
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From now on, we will neglect the subscript � = 0.

We also notice some relations between powers of D and Q, that will be useful later

D : j = q2C(0)2Q : j;

D2 : j = q2C(0)Q2 : j;

D3 : j = � @t : j: (29)

Besides the above de�ned bosonic super�eld, we can also construct sectors one and

two super�elds. There � expansion can be taken to be

�(1) = �(1) + q2�M (1)A+ q�2M (2)�(2); (30)

and

�(2)(t) = �(2) + �L(1)�(1) + q2�2L(2)F ; (31)

where the supercripts indicates the sectors which the �elds belongs, and A and F are

bosonic �elds.

The dimension of the q-super�eld �(2) is taken as 2
3 , its bosonic component F being

dimensionless and, as we will see later, behaving as an auxiliar �eld. We can not, how-

ever, take the dimension of the q-super�eld �(1) as 1
3 , since this would imply a negative

dimension for the component �eld �(2). Thus we take its dimension as 4
3 . This, however,

will bring di�erent equations of motion for its quermionic components, as we will see in

the next section.

We assume that the �elds �(j) have the same behaviour as  (j) with respect the quom-

mutations relations with each other, with � and with ". The relations with the cocycles

are then �xed to be

[�(j); L(i)]qj�i;j = 0;

[L(1); L(2)]q = 0: (32)

The Leibnix rule for the covariant derivative D is �xed by the particular Leibniz rule

that each of the di�erential operators appearing on it obey. Considering the q-super�elds

introduced above, the action of D on a product of two of them is of the form

D(AB) = (DA)B + h(A) (DB) + 3 � h2(A1)B1; (33)

where A1 and B1 are the coe�cients of the linear term in the �-expansion of the respective

q-super�eld. We notice that, because of the integration rule eq.(9), this last term will not



CBPF-NF-008/94 8

contribute on an integration over the Paragrassmann variable, and integration by parts

is allowed. The factor h(A) is simply a power of q times the q-super�eld A, obtained by

the rule

C(0)2 �2A = h(A)C(0)2 �2: (34)

4 Examples of Superactions

In this section, we are going to make a general discussion about actions that are functions

of the q-super�elds introduced in the last section and give the same examples of them.

In general, an action for a generic super�eld � must be of the form

S =
Z
dtd�P(�; _�;D�;D2�); (35)

where the polynomial P in � and its covariant derivatives must behave like under quom-

mutation relations like �2, belonging to the sector two (since
R
d� = @�

2, and S is scalar),

and since the measure has mass dimension �1
3 and S is dimensionless, its dimension must

be 1
3.

By comparing the expression for the covariant derivative and the �-integration, we

notice the relation Z
d� = q2C(0)2D2j: (36)

Let us now do a transformation on the action

�S =
Z
dtd��P(�; _�;D�;D2�) (37)

since the Jacobian is one. Since P is a super�eld, its variation is of the form of eq.(21).

Using this fact and eq.(36), we arrive at the conclusion that S transforms in a total

derivative

�S = � q C(0) "

Z
dt @tP: (38)

and the transformations eq.(15) induces symmetries on the action.

Let us now write an action of the q-super�elds X, �(1) and �(2) de�ned in section

3, and compute their equations of motion. We begin with the bosonic super�eld X. Its

quadratic action is

SX = �
m

2

Z
dtd� C(0)(D2X)(D2X) (39)

where m is a commuting mass parameter. By explicit computation of its � integral, or by

use of eq.(36), this action can be read o� in components as

SX = m

Z
dt

�
1

2
_x2 + q2C(2)C(1) _ (2) (1)

�
(40)
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The equation of motion

D _X = 0 (41)

gives in components �x = _ (j) = 0 (j = 1; 2). Computing its q-supersymmetric variation,

we obtain

�SX = qC(0)�

Z
dt@t(C

(1)2 (1)2); (42)

We notice that the action given by eq.(39), its variation eq.(42) and the variation of the

component �elds eq.(25) are, up to factors, equal to eqs.(11), (14) and (13) respectivelly.

Thus we see that the q-super�eld X describes the dynamics of a free particle and its

associated quermionic partners.

The quadratic action for the q-super�eld �(1) is

S� = �
m

2

Z
dtd�M (1) ( _�(1))2: (43)

By covenience the mass parameter was taken to be the same as in the X action. In

components, the action turns out to be

S� =
m

2

Z
dt ( _A2 + 2q2M (1)M (2) _�(2) _�(1)): (44)

Its interesting to notice that the equation of motion for �(1),

��(1) = 0; (45)

gives in component �A = ��(i) = 0. Thus this q-super�eld also represents a free particle,

but its quermionic partners obey an equation of motion that is of second order in the time

derivative, whereas in the case of q-super�eld X it is of �rst order. The q-supersymmetric

variation of the S� is

�S� = "C(0)M (1)
Z
dt
@( _�(1))2

@t
; (46)

We now consider the quadratic action for the q-super�eld �(2). It is

S� = m

Z
dtd� L(2)C(0)2 (D�(2))2; (47)

In component �elds, the action reads

S� =
Z
dt [�2L(2)L(1) _�(2)�(1) + F 2]: (48)

The equation of motion for �(2) is

D2�(2) = 0; (49)
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giving F = _�(j) = 0, meaning, as it was anticipated, that the bosonic coordinate F is an

auxiliary one. The variation of S� is

�S� = �C(0)�L(2)L(1)2
Z
dt @t �

(1)2; (50)

The super�elds X and �(2) can have a quadratic action with a mixed term

S = m!

Z
dtd�q2L(2)2 X�(2) (51)

where ! has a mass�1 dimension, that reads in components

S = m!

Z
dtFx (52)

Summing up the actions (39), (47) and (51)

SHO = SX + S� + SX� (53)

we see that the its bosonic part is

SHO =
Z
dtm(

1

2
_x2 +

1

2
F 2 + !Fx) (54)

Computing the equation of motion of the auxiliary �eld F and reintroducing it in the

action, it becomes

Sx =
Z
dt

�
1

2
m _x2 �

1

2
m!x

�
(55)

which is the action for the harmonic oscilator.

5 Conclusions

In this letter, we presented a generalisation of some supersymmetric classical mechanical

models based on a deformation parameter q, where the non-commuting coordinate is

nilpotent of order 3. Translations on the q-supespace induces transformations on the

�elds, and we were able to construct actions of these �elds that are, up to total derivatives,

invariant under such transformations.

Although there is a great paralellism between the usual supersymmetric case and the

formulation we discussed here, there are some di�erences, the most important one is the

needness to introduce cocycle-like factors to correct statistical behaviour of the �elds. We

expect that such cocycle-like factors should be some functions of the �elds, that would not

participates in the dynamics. One should conjecture that the needness to introduce such



CBPF-NF-008/94 11

factors is related to the fact that the identity operator of an algebra must also be deformed

when one goes from the non-deformed algebra to the deformed one. For instance, the q�N

factor appearing in the r.h.s. of eq.(1) can be seen as the deformation parameter of the

identity operator of Heisenberg algebra. Such factors are also important for consistency

conditions on the algebra, like associativity condition [15]. Thus one should search for

factors of the form q exponentiated to some operator as possible solutions for the cocycle-

like factors.

Another possibility would be take the parameters appearing an the formulae not as

commuting ones, but obeying some quommutation relations with the operators. This

has been done, for instance, in ref. [16] where the mass parameter was taken to be

non-commuting to ensure unitarity of the time evolution operator.

It should be interesting to study this formulation from a �eld theoretical point of

view, in particular in the (2 + 1)-dimensional case. Also, we could ask if such �elds are

representations of some q-deformed algebra, either a q-Poincar�e or a q-Cli�ord one.
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