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INTRODUCT ION

The current algebra method 1 along with soft pion hypothesis
has been used with considerable success in variety of processes.HoW
ever, there are cases where this technique does not work so well.
Recently, new techniques of applying consistently current algebra
method (with pole dominance approximation) have been suggested in
these cases. The calculations on strong 2y 35 4 Ay and 5y 6 Ky
decays, admiting that some of the form factors satisfy a subtracted
dispersion relatign predict, contrary to the earlier calculations 7
gilving very large widths, reasonable widths consistent with
experiments. Schnitzer and Weinberg 3 developed a technique of
Ward-like identities for the vertex functions to calculate "hard"
pion processes Ay —>pr and p —mr successfully. Brown and West ?
on the other hand assume dispersion relations for vertex functions

with an appropriate fixed invariant, so as to include the poles in
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all the variables while admitting that the form factors are at
most once subtracted. The results obtained by the two methods
are ldentical. The same holds true in the case of the second
order renormalization corrections to the Kg form factors as
calculated by 8 Glashow and Welnberg and 9 Srivastava. However,
the unsubtracted dispersion relation technique seems to be rather
straightforward and amounts to writing Feynman disgrams with form
factors at the vertices and establishing appropriate current
algebra identities.We will discuss in this paper the»strong decays
KA —>Kp and KA --»K*w following the procedure exposed in
references 2 and 9, In what follows, we assume that the form
factors are at most once subtracted and the non-constant part 1is
calculated in the pdle dominance approximation. Along with the
expressions for the relevant decay rates we also re-derive the 10
Weinberg sum rules for SU(3) x SU(3) group and also illustrate
that the hypothesis of partial conservation of axial curfent need
not hold necessarily, even for plon, for every form factor. The
calculated decay rates are in‘fadr agreement with the experimental

results.considering the present uncertaintities in experimental data.

x ¥ %
* *
Ep—=Kw and K —Kr decays:
L
I. K, and K Matrix Elemepts

We introduce the following matrix elements
1, x
4k, P V= <r°() | 440X X *p)D>

L ] -
= 10,5 (p)[E; (P)g"+ Kp(ad) K (p)l + K5(a®) ¥’ aF | (1)
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v ,,p“?ﬁ“(k)lvﬂ(ﬂ)il K(p)>

(F)[&(qz) EFV + Lzﬁ 3 k ip*ﬂ"*’ L5(q2)k qa {2)

vhere q -k, and the form factors K; qu ) and Ly 5 3(42):

po P

introduced on the eonsiderations of Lorentz g6ovariance, are

calculated in the pole dominance apprnximtiun to be:

.
G, G
K 8
B = A o (o)
(m, 2 = g%)
KA q (3)
3
G Gp
Kz(qz) ER— o *Ka(cn)

Ky(q?) = —&- - ¢ Ey(0)
my° (myZ = ¢°) (g - q)
A A
a simil "
i arlys v, 2 GK* Gs
I.]_(q)==- + Ly (o)
(mxé - ¢%)
"
- Gps Gp
L>(q ) = + L,(c0)
2 .8 (4)
2(mey = q )
1y(c?) = e logt /2 apOufy - )l
(mlzc* - qz)
F GK‘ﬂ'aC

- —t + Ly (o0)
(m,, 2eg®) '3
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Here K(oo), L(0o) are subtraction constants and the various coupl-
ing constants are defined by the following invariant matrix

elements:

V2q,V <0|A/q(0)1 IK*@)> =1 Fe a,

J2q,v <01Vﬁ(0)3lx (W) =1F,ay
*

v4q.p, ve (k¥ (9] jﬁo(O)IK (p)> Grx+ O+ R (p)eq

K
J2q v < OIAF(O)%IKA+(q)>= G, © Aa)

R
/“——? K
496PoV (%7 (2) 1350(0) [Ky(p) ) = Gy 0, @ A(p).q
vaq v <OIVF(0)1IK*+(q)> = GK* el;i** (a) (5)
/"——"’2\ *+ K +
44,P, <K (q)lj”o(O)lKA(p)> = iE e B.eK 4+ G" e Aq eK*.jé]

x ¥ +
n/4qop°V2<KZ(Q)IJ1,°(0)K*+(p)>= -1 li}; e A. eK + G]') eK*.q eKA.El
The indices on the currents are the usual SU(3) tensor indices;
the coupling constants Gs ,D determine the decay rate of KA; and %
is a scalar isospinor strangenesscarrying meson. For the
discussion below we also need the K = 7° and ¢ - 7° form factors.

The former are defined bys

/ak p V= <w°() [V, (0 |E*(p)>= F,(t)(pta), + F_(£)(p=q (6)

)
0o 0 ,l }‘ /J
where t = (p-k)? = q%. 1In the exact SU(3) limit F_(g%) = O while
F (0) =-1//2. A similar definition is given for & - w° form

factors f_,_(qz), considering the matrix element of axial current.

In the pole dominance approximation we find:
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Gien GK** Oy *

Fag.(qZ) 8 o eaictesasadi Fﬁ,}: (o)
2mgf - o) )

2 .2 ‘ & ;
meowy \ Oge Ogetpoxt T G4t

F ( q2> &3 gy TR R I D gy R TR

oy ) (mE - a®) taf) - qF)

vHere we have tsed the fact ?hat the subitraction constant in Fm(qa)
must be vanishing under the ﬁyp@the@ﬁ% of et most once subtracted
dispersion relation for the matrﬂx. element of the divergence aﬂ(v‘i e
Here the Kw i coupling is defined by s

e N, =
Vaq_p V(o * SUEINCHENTS DI FRp (8)
For w¥ar® Porm factors we find:
GKA C‘”K # ,{
£ (q““) = & + £, (o)
Q%A = d (9)
2 2\ G 6.4+ o,
o, e = oy \ Ky Ky ma Fy G gopt
£_(d%) = il Ees -
; 2 2 2
2 ( = g~) (n> = g9=)
K, K, B

1. M@A&@@m&m@;@ﬁ&@@%_ﬁl@m@@tz_, of Two Currentss

Weynow; set up a set of self consistent sum rules among the
various subtraction constants. The solution of these equations
will lead to the Weinberg sum rulss and expressions for G-s and Gy
to determine the decay width of KAO We will illustrate the
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procedure by discussing the case of K* matrix element of two

currents introduced below.
Consider the retarded matrix element:
W}f = 1 /2o 7 [a%x e Fo(x )<0lE& (x)1 A (x)z, A (0) _HK (p)>
(10)

= 14/2p V I xe10% g(x )(o”} (o)1 A (0)2, A (X%-JK (p))
Then:

1x” w‘/j"; - WL+ 0 eﬁ*(p) (11)
where ‘
p=k+aq,

R LR SO YC |  PWS By eso O8] [ >
(12)

=1/ ja‘*x e'9%a(x, )(0f [0”(4 (012-4,(0)2), AF(x);] K" (p))

and we use the current algebra equal time commutator relation
IR 1 x| a4 i k_ .k ]
8= [a5¢x7}s 2,000 |= 830 [Byv, (0= 8% v, (0] | (13)

in the second term, on the right hand side, obtained on integra-
tion by parts.

We take; now, the limit k’ —»0 so that k> —»0 and q>m&,.
Since the poles involved in Iﬁl‘K"'e are due to vo, A{, KA and K and
thus there are no poles due to zero mass in kzcm corresponding
to mass mé* in qZ, it follows that

Lim x wllf*\,z 0 (14)
-
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Consequently:

2. 2.2 . ) o
k}imo Wlﬁ*(k-o,q '“K*) i Gpu ‘F(P) (15)

To apply this result we first calculate the invariant form
factors appearing in WK*(kZ, qa) by assuming that they satisfy an
unsubtracted dispersion relation for fixed invariant Jo where

p=og® + (1 - )2 (16)
and ol (0<o¢< 1) is a fixed arbitrary constant. We evaluate them
in pole dominant approximation. In this way we retain the pole
contributions from both the variables k% and q°. We find:

, VZ F, uf Ky(ad) ‘}Kfl“‘g)
wﬁ =4 eﬁ*(p) 2 .2 T2 2 an
(nf = ¥°) (mg = a°)
+ terms (+) involving eK*. ke
where

= ocaf + (1= = ochZ{A-p (1-e0k5 =o mt # (1-00kZ

(18)
and ﬁl 2(k‘a) are defined by:
Vaq,p 72 (KX ()1 (Aﬂ(m‘-aﬂ(o)Z)lx *p)>
’ k.t K
= i[ﬁl(kz) e A . QK* +F2(k2) e Aop eK*o ] ° (19)

The pole dominant expressions for [31 \2 are
(+) |

8ee appendix.
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-V/2F_ ul G
ﬁl(kz) = Wm"**s¥+[31 (o0 )
2 2
(m~ = k%)
(20)
2
> -2 E" mo QD )
PalE) = ———— +P, () .
(m = k™)
Henee V2 F 1t G G
T K, s
WK*(kzg ¢®) = 1er(p) i . A 4
# (k) (g -4)
V2 F_ xn,,Z]r K, (@) Gy Bq(o0)
oo e
(n® = k) (€ - q°)
+ terms involving (@K*ok) o (21)

From equation (15) we then obtain the sum rules
' o
GKA(fZ— F_ G [31(00 ))
Ges =V2 F_ K (o) + . (22)
(m, & - =)
K, Ty

A similar sum rule obtained by considering the K, matrix

element is discussed in section (V).

* k %

Information on [3192(00) can be obtained by considering:

quwI;*=~wK*+c (23)

where



|x*+<p>> (24)

- 1/ET [a% ot T a(xy) Cof [V (a i A x02)s ?PAM(O)g,

RK*"'(p))

and C is the other térm obtained on integration by parts and it
involves an equal time commutator. If this commitator is assumed
to be a local operator, C ris‘a constant. In the present case C
is vanishing due to angular momentum considerationss WK*is expres
sed (Appendix) in the pole dominant approximation proceeding as
in the case of W and, finally, from equation (23) we obtain:

H

2 2 iﬂ 2 s
- F_m" Ky(qy) + > P, (k3) —

L=l
2 2 pd 2
- F_m- KE(ql) <-o-z-> - Fp mp El(kl)
G
K
- T'Eé Esl(kg) +% (ms - o) B> (kg)] =0 (25)
A

where Bl(ka) is defined by

2+ K* .

Jaap 72 <& (a0t - & (02K T(p)) = ByxTe (plaa

e AT (26)
Allowing Jl —>0o ve find from equations (18) and (25),

which holds for arbitrary (0<x<1), that

[B,(00) =0 , Kz(00) =0 (27)
and
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- F_ o K,(o0) - Fg 22 B (o0) =
G

K
A

= [yt - 3 o 0Ep 0 »] = o (28)
A

Starting from

U;S = 1 /2q ¥ Jd4x o 1PX e(-x0)<K+(q)‘ EV(AV(O)%.- Ay<°>§>"’p(x)?]l°>
(29)

8 1/Z0 7 jdé‘x o1k o(x, )K*(0)| Eu(Ay(x)i~Ay(x)§),VH(O)ﬂl0>

and considering

~ 1 p! SF + S = constant (30)
where
8 =1/257 Jd‘*x 0P %o (ox, )k ()| [0 (AKSO)§_~AV(0)§):"D’AVP(JC)§l0>
| (31)

we can show, likewise, that

E,(0) =0 . (32)
Qonsidering
3y = LVEST | o1 X g(x ) <n200)| [of'a (035, vp<x>?]|q>
(33)
We are lead to:
E,(00) =0 ‘ (34)
where -
Jax_p 72 <n°te) oF AH(O)%[K*+(p)> = B,(q?) e~ (p)ek (35)
that is:

B,(a?) = - k(D) + (md - mDIK,(aD) + o K5 (o) (36)
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and, similarly, by considering

SP = 1 /2K V a4 ¢~lp-x e(~x°)<w°(k)|E“vp(o)§, AP(X)?L:] |0>

we show that
E3(oo) = (38)
where

/2o <ro ok v (0 IK(p) = B5(a®) @ hpya (39

that is
2
Ega?) = - Ly(a%) + <§Ki~m§> 1,(q?) +a%I5(a%)  (40)

We note that ,EZ(m) = 0 leads toy agailn, with our assumptions,

K3(oo) = 0.

Likewise we consider:

S”I: = 1 /2K T a% eiq"xe(xe)(vro(k)lE,;,(x)%z V}A(O);] 0p
" (41)

) =1poX, o 1 3]
- LAY [at o Tacax )¢ 00| [a 0,7, G0f] [0

~t

=M, A Kk, + Az Py Py * Ay Bypt Ag kP

and F
1o &y e8] ==k (a2)
W T
where "
S,,O - a%g elde% e(x,)< w°(k)l EyAy(x%s VA(O);H(D

V& T
) (43)
- z b “i © (4 4 1 3
= 1 /ZET |a% 67T o(~x, ) (k)lE A,(0)3, vﬁ(x)ﬂlw
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obtained on integration by parts and using the current algebra
commutation relation. We write then unsubtracted dispersion
relations for fixed for the invariants Ai(qaa pZ). After a
straightforward calculation following the procedure already
explained, and using the results already obtained we find:

Ly(00) = Lg(00) = Ky(00) = 0

Ky(@) = lin [a? x5(a®)] (44)
q =00

Ly(o0) = et E;Z Ly (qZ)]
q =00

In addition we derive the following sum rules:

G G
F_ a Ky K, s a
7 =2 T Fileo) = — Tyleo) + — Lin [®1; D] e
qa =
mKA mKA
and

E, £,(0) = P F, (00)

G
o K| 2., 2
= === = — |L,(00) = 1im  (q¢° L, (¢))
2 2
V2 ZmKA q< - 00
+—3 K0 ) = 1im (K, (@) | (46)
ZmK* qZ -+ 00

L]
Here F_ (%) denotes the XK~ - 7° form factors defined by an

expression similar to equation (6).
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Using the pole dominant forms for the various form factors we

can re-cast them as follows (*)

F
' T
Fy £,(0) = P F (0) = o (47)
and
w Fy(0) + E, £,(0)
G G.
K K*
= E} + & GD(mK + mK* mi)]
mK*
F G Gp= _0O, - P, G G. (o]
K, K K “K* “g*+ g°Kt
L X B Kame il (48)
2 2
m” s
From equations (28), (32) and (44) we find:
prlo) =% 1mm [2 B,k )] (49)
k -
and from equations (20) and (27):
(o) = /“F GD . (50)

It is interesting to remark that according to the partial
conservation of axial plon current hypothesis we should expect both

f "P2(°°)=°9 contrary to the conclusion arrived by using our

procedure.

From equations (3), (22), (44) and (50) we deduce:

*) In arriving at this result wehave been made of SU(B) symmetﬁic couplir'lg

relations Geytp0g® = - Sk Yo% T 7 %, B0 T o
etc.
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Gyew |
= Fy Uges pogs
V2 F_
2
G
K, "K* S
+ A - [E;“ +-1Z’- G;)(m%* B m% - m‘:‘:‘ﬂ (51)
2, 2 _ .2 s A
mg, (B, = e

£ k%

V. Sum Rules From ggAg K and € Matrix Elements of Two Currents.
Weinberg Sum Rules

Considering
K e g g - ‘ -
AR N Jd*x ot Tog ) wi &xy(’x%»Ay(x)g, VP(O)JB]‘KA(I’»
‘ (52)

and proceeding as in section (II) we can obtain:
3.
A

V2 F’ﬂ,

= ¥ I{KZ e
kS mKi U NP -
- e, 'c - o
2 2 2 Ltjs %Z {}D"mKA T m"')] ° (53)
Tex (g = Te?
From equations (51) and (53) we shows
1

G
K* “Kp
- l Lg (02 4p2ogl
z2 (% ¥ 2 % (mg + mgx mrr)_] (54)
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Using equations (4), (7), (44), (47), (48) and (54) we find:

2
2
Gya Gy N
2 2
ne’  m

U
= 2 /Z F_FyF,(0) = F5

To obtain information on F;(O) we consider

(55)

S,Ijv =1 »/-2-61-;\7 d43§ e"'j_koX e("‘xo)<K+(q)fEVCX)‘%-_AV(X)S, VF(O);]|O>

(56)
and proceeding as in section (II) we find
K Pep o =2) = = F (57)
k%fg %P (k*=0 p mK) K qﬂ
which leads to 7
F, g(0)
-»‘FK=+/2F1T F,(0) + ” " (58)
(mﬁ-nk)
where
Vaq,p 7= <K@ 0¥ (4,000 - 4,(00D)1e*(p)) = 1g(E7) . (59)

Considering, likewise,

S = 1VERT Jat o™ o(x,) ()| [a,ek- 4,03, 4037 [0

(60)
we obtain ~ Fk‘g(O) 6
-F“-:/Z F £,(0) —-'——2———2— . (61)
(mg =~ my)
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From equations (58) and (61):

F2 - F5 =J/ZF_(F, £,(0) - FgF,(0))

* (62)
)
=2 F_ (F,, £,(0) + FgF,(0))
Combining with equation (47) we obtain:
y FRR
v2 F (0) = , (63)
2 PRy
oo
K
V2 £,(0) = i (64)
2 EWE%
and thenyfrom equation (58)
2 2
(FR~F5 ”é%)(mx =)
g(0)= , [ (65)

These results were already discussed in references (8) and{(9) .

From equations (55) and (63) we obtain the Weinberg sum

rule 2
I
- = (FZ - F?) (66)
2 2 K &
K Tk,

as a self consistency constraint.

The results of equations (27) and (44) justify the assump-
tions made on the subtraction constants of the form factors in
reference (5) . . The equations(51) and (53) are identical to

those of the reference mentioned if F ” = 0. The decay widths in
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this case were already discussed and found to be in agreement

with experiments. We now discuss KA, ——->Kp decay madee.

* * %

L{_A —'Kg Decay
I. K, and o Matrix Blements

The decays such as K, —>Kpy K, —Kw and ¢ —K K ', with
the large mass of kaons can hardly be freated by soft kaon tech-
nique., We will only sketch the calculatibn since the technique
has been already explained above. The partial decay width

calculated for K " —>Kp process 1s in agreement with the present

experimental data.

We start by defining the form factors G1,2,3 and Hl,2,3 ap-
pearing in the following invariant matrix elements

Vo p 17 ¢ )] 8,005 (p)>

- 1hu* [g T (0) - T(a®) a4, (o), = TylaDda (cop), ]
(67)
Vaq_p V2 <K§<q)lvﬂ(o>§~ vﬁ(o>§lK+(p)>

o

- 1 (o} @'g, B 0P < B0, (), - Bj080K, (a-p), | (68)

In the pole dominant approximation we calculate
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G, G°
G;(q%) = - + El(oo)
(m 2 - qz)
N
D
G-KA G
G(a%) = + — + Gy(o0)
Z(mK = q~) (69)
s, 1
<2 (}KA E+ G(mKanI
G3(q ) =+ > =
"y (mg - 2
Fg GgrgOg*  _ |
- . * Gz(oo)
(n} = qZ)
and
_ V2 Gp G°
(k%) = = —+ B
Hy w2 - ) H, (o0 )
_ /2 Gp G°
2y . P =
B,(k%) = R + By(00) (70)
P
S
i (k%) = V2 Gp [G + 3 (ag - mfy —! -
H3 — + H3(oo) .
P (mp - kZ)

The various coupling constants are defined by:

— 1
VZp T <0]VH(0)1 - V/J(O)glpo(p)> =J/Z Gp eﬁ(p)
GI’(+POK+

~/4q°pOV2(K+(q)Ijg(O)IK"F(p)} = - -'-’-2-——— (p'*Q)H
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e T PO S A ¥ rs pa DA
/4q°pOV <KA(q)le(o)lK (p)) = i(e (q)ﬁ) [Ggf‘ +G K q] (71)

where k = (p=q).
We also introduce the form factor e(ka) defined by

(kv (o) - 7, (021K () = (prq)  e(k?) (72)
K 1 I“ 2 M
and find easily: .
A/E G’P GK+P0K+
e(k?) = = + e(o0) o (73)

2(n? - ¥°)

P

There is only one form factor in this case if we assume that the

8U(2) currents Vﬁ

j (1, § = 142) are conserved. This assumption

also leads to

ﬁ% (o0 ) =0 o (74)

* %k %

II. Sum Rules from K Matrix Element of Two Currents
Following arguments similar to those in sections (IV) and

(V) we can shows

Ha(oo) ='62(oo) =a3(oo) =0

5 = 2 B (2
y(w) = - 1tn |k )| (75)
k™ =»> o0
= 2 = (2
Gy(@) = - 1m [k Gy0P)]

kZ - D

Consider the retarded matrix element:

IR N Jd‘%c el X o(-x ) <ol E&},(o)%‘, v, (x);'.'-vp(x)é] |K+(p)>

g,,* App,+Akk, +Apk, + p, k (76)
Hy - T2 g 4y v °H
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We obtaln after integrating by parts and using current algebra
commtation relation

HoK )

ik s}w = = Fp p, (77

where we have also used the conserved vector current hypothesis

for YP%:S‘ This relation leads to two sum rules:

e(0) =1 (78)

and V2 Gp G;{+p°K+
Fg = = ‘
m 2
P
V2 Gp Gy 1
.g._.,.______,m_é [Gs-ﬂ-m(m%nmﬁm Z) GD] ° (79)
n2 g 2 A P
mKA P

The result in equation (78) is already expected from the C.V.C.
hypothesis used above,

Considering the matrix elements

v, = 1VEF | % o 6 < p°0| 2,000, & x)] [0>(s0)

Wt = 1/ 'v‘Ja“x e~ KT g(x ) CK}(a)] E’y(‘”% - V(0)5,

Ap(x>]3:||o> (81)

and the corresponding relations

i
WP (02=0. a2 = p2) = = _r P(x) (82)
pvlimo y (0750, a% = m) 7z %

and
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K X
ln W Ap%=0, k% =nZ ) =1 G, © A(q) (83)

wf 1 vZk ""“ov\ a%k e~1p-x e(~x0)<p°(k)£ E.V(o)%, ol AH(X);]IOXBM

and

K
0 = 4 VI e oI ax, )< K@) [7,000] ¥, 08, 0 4y 0Z] fo

(85)
we obtain the following sum rules:
F G, m°
Go K°K, 7p D
- FIZ(GK*POK 2 E ’Z) E}s 267 ¢ -mK)]
e A et (86)
and Z
/2 Gp F
o P ¥k KA [: l
- G = ¢S + & ¢P (m - mK (87)
A ma(mi - P)

From equations (78), (86) and (87) we derive the following Wein-
berg sum rules 2
@2 G

A
~§'m “E~ = Fﬁ (88)
mP mKA

Equations (66) and (88) are derived here from entirely different

point of view than was used in their original derivation in ref.
(10).

We also remark that for the form factors D

/a2 o7 <pOC) | ofa (001303

1,2 defined by

K + :
= A 2 V. 2y, V
= 1 eH (p) eg (k)El(q ) g" + Dy(q%)p kﬂ , (89)

as in the case of Fh42’ only D, is unsubtracted while Dl(oo)lﬁ L J8
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PCAC hypothesis would require both of them to be unsubtracted.

We can use equations (86), (87) and the Weinberg

rules to determine the couplings

S

6> and &P and calculate t

partial width for the decay KA'-%'KP, which is given by

sum

he

1/ k 2 x° 2 g
[R+ —_kp = —| — Gg |3 +— |+ D —A k.

A P 8r mKZ 2 2
A P e

Dy 2"

s D £ 2 k
- 26G° G& — Xk 1+ —— (90)
m yad
P o

We determine F, from decay of pion, Fy from the relation 87 7

(FK/F%)Z'3,1917 and Gp and Gy from Weinberg sum rules assum-
‘ A °

ing Gp = GAlo If we assume that p couples universally so we
Q )
can make use of GK*P0K+ :'% Gﬁ%Pow* and the experimental decay

thus

width of p° to obtain Gy+ The partial width *

(] Py
P K
calculated for the decay KZ'“*'KP comes out to be ~ B MeV.,
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APPEND IX

£ 3
The complete expressions of Wﬁ* and WK are given by:

VEF_ ot Ki(a) G Py (5)
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