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I. INTRODUCTION

The R-deformed Heisenberg or Wigner-Heisenberg (WH) algebraic technique [1] which

was recently super-realized for quantum oscillators [2–4], is related to the paraboson relations

introduced by Green [5].

Let us now point out that the WH algebra is given by following (anti-)commutation relations

([A,B]+ ≡ AB +BA and [A,B]− ≡ AB − BA) :

H =
1

2
[a−, a+]+, [H, a±]− = ±a±, [a−, a+]− = 1 + cR, (1)

where c is a real constant associated to the Wigner parameter [2] and the R operator satisfies

[R, a±]+ = 0, R2 = 1. (2)

Note that when c = 0 we have the standard Heisenberg algebra.

The generalized quantum condition given in Eq. (1) has been found relevant in the context

of integrable models [6]. Furthermore, this algebra was also used to solve the energy eigenvalue

and eigenfunctions of the Calogero interaction, in the context of one-dimensional many-body

integrable systems, in terms of a new set of phase space variables involving exchanged operators

[7, 8]. From this WH algebra a new kind of deformed calculus has been developed [9–11].

The WH algebra has been considered for the three-dimensional non-canonical oscillator to

generate a representation of the orthosympletic Lie superalgebra osp(3/2) [12], and recently

Palev et. al. have investigated the 3D Wigner oscillator under a discrete non-commutative

context [13, 14]. Also, the connection of the WH algebra with the Lie superalgebra s�(1|n) has

been studied in a detailed manner [15].

Recently, the relevance of relations (1) to quantization in fractional dimension has been also

discussed [16, 17] and the properties of Weyl-ordered polynomials in operators P and Q, in

fractional-dimensional quantum mechanics have been developed [18].

The Kustaanheimo-Stiefel mapping [19] of a constrained isotropic oscillator in four dimen-

sions (4D) onto the corresponding system in 3D yields the hydrogen atom that has been exactly

solved and well-studied in the literature. (See for example, Chen [20], Cornish [21], Chen and

Kibler [22], D’Hoker and Vinet [23].) Kostelecky, Nieto and Truax [24] have studied in a

detailed manner the relation of the supersymmetric (SUSY) Coulombian problem [25–29] in

D-dimensions with that of SUSY isotropic oscillators in D-dimensions in the radial version.
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(See also Lahiri et. al. [30]) For the mapping with 3D radial oscillators, see also Bergmann

and Frishman [31], Cahill [32] and J. - L. Chen et. al. [33].

The connection of the D-dimensional hydrogen atom with the D-dimensional harmonic os-

cillator in terms of the su(1, 1) algebra has been investigated by Gao-Jian Zeng et. al. [34].

However, the correspondence mapping of a 4D isotropic constrained super Wigner oscillator

(for super Wigner oscillators see our previews work [2, 3]) with the corresponding super system

in 3D such that the usual 3D hydrogen atom emerges in the 4D → 3D mapping in the bosonic

sector has not been studied in the literature; the objectives of the present work are to do such

a mapping and to analyze in detail the consequences. In this work, the stationary states of the

hydrogen atom are mapped onto the super-Wigner oscillator by using the Kustaanheimo-Stiefel

transformation.

This work is organized as follows. In Section II, we start by summarizing the R-deformed

Heisenberg algebra or Wigner-Heisenberg algebraic technique for the Wigner oscillator, based

on the super-realization of the WH algebra for simpler effective spectral resolutions of general

oscillator-related potentials, applied by Jayaraman and Rodrigues, in Ref. [2]. In Section III,

we illustrate how to construct the 4D → 3D mapping in the bosonic sector which offer’s a

simple resolution of the hydrogen energy spectra and eigenfunctions. The conclusion is given

in Section IV.

II. THE SUPER WIGNER OSCILLATOR IN 1D

The Wigner oscillator ladder operators

a± =
1√
2
(±ip̂x − x̂) (3)

of the WH algebra may be written in terms of the super-realization of the position and mo-

mentum operators viz., x̂ = xΣ1 and p̂x = −iΣ1
d
dx

+ c
2x

Σ2, satisfy the general quantum rule

[x̂, p̂x]− = i(1 + cR), where c = 2(� + 1). Thus, in this representation the reflection operator

becomes R = Σ3, where Σ3 is the diagonal Pauli matrix.

Thus, from the super-realized first order ladder operators given by

a±(�+ 1) =
1√
2

{
± d

dx
± (�+ 1)

x
Σ3 − x

}
Σ1, � > 0, (4)

the Wigner Hamiltonian becomes
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H(�+ 1) =
1

2

[
a+(�+ 1), a−(�+ 1)

]
+

(5)

and the WH algebra ladder relations are readily obtained as

[
H(�+ 1), a±(�+ 1)

]
− = ±a±(� + 1). (6)

Equations (5) and (6) together with the commutation relation

[
a−(�+ 1), a+(�+ 1)

]
− = 1 + 2(�+ 1)Σ3 (7)

constitute the super WH algebra.

Thus, the super Wigner oscillator Hamiltonian in terms of the Pauli’s matrices (Σi, i=1,2,3)

is given by

H(�+ 1) =
1

2

{
− d2

dx2
+ x2 +

1

x2
(�+ 1)[(�+ 1)Σ3 − 1]Σ3

}

=

⎛
⎜⎝ H−(�) 0

0 H+(�) = H−(�+ 1)

⎞
⎟⎠ , (8)

where the bosonic and fermionic sector Hamiltonians are respectively given by

H−(�) =
1

2

{
− d2

dx2
+ x2 +

1

x2
�(�+ 1)

}
(9)

and

H+(�) =
1

2

{
− d2

dx2
+ x2 +

1

x2
(�+ 1)(�+ 2)

}
= H−(�+ 1). (10)

Note that the bosonic sector is the Hamiltonian of the oscillator with barrier.

The super Wigner oscillator eigenfunctions that generate the eigenspace associated with

even(odd) Σ3-parity for bosonic(fermionic) quanta n = 2m(n = 2m+ 1) are given by

Ψn=2m(x; �+ 1) =

⎛
⎜⎝ ψB

m(x; �)

0

⎞
⎟⎠ , Ψn=2m+1(x; �+ 1) =

⎛
⎜⎝ 0

ψF
m(x; �)

⎞
⎟⎠ (11)

and satisfy the following eigenvalue equation

H(�+1)Ψn(x; �+1) = E−nΨn(x; �+1), Σ3Ψn=2m = Ψn=2m, Σ3Ψn=2m+1 = −Ψn=2m+1 (12)
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where the non-degenerate energy eigenvalues are obtained by the repeated application of the

raising operator on the ground eigenstate

Ψn(x; �+ 1) ∝ (a+)nΨ0(x; �+ 1) (13)

and are given by

En = �+
3

2
+ n, n = 0, 1, 2, . . . . (14)

The ground state energy eigenfunction satisfies the following annihilation condition

a−Ψ0(x; �+ 1) = 0. (15)

In this case, the normalizable ground-state eigenfunction is given, up to a normalization con-

stant, by

Ψ0(x; �+ 1) ∝
⎛
⎜⎝ x(�+1)exp(−1

2
x2)

0

⎞
⎟⎠ , (16)

which has even Σ3-parity, i.e. Σ3Ψ0(x; �+ 1) = Ψ0(x; � + 1).

For the bosonic and fermionic sector Hamiltonians the energy eigenvectors satisfy the fol-

lowing equations

H±(�)ψ
(m)
± (x; �) = E

(m)
± ψ

(m)
± (x; �), (17)

where the eigenvalues are exactly constructed via WH algebra ladder relations and are given

by

E
(m)
− = E0 + 2m, E

(m)
+ = E0 + 2(m+ 1), m = 0, 1, 2, . . . , (18)

where E0 is the energy of the Wigner oscillator ground state. Note that the energy spectrum

of a particle in a potential given by bosonic sector Hamiltonian is equally spaced like that of

the 3D isotropic harmonic oscillator, with difference of two quanta between two levels.

III. THE CONSTRAINED SUPER WIGNER OSCILLATOR IN 4D

The usual isotropic oscillator in 4D has the following eigenvalue equation for it’s Hamil-

tonian HB
osc, described by (employing natural system of units h̄ = m = 1) time-independent
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Schrödinger equation

HB
oscΨ

B
osc(y) = EB

oscΨ
B
osc(y), (19)

with

HB
osc = −1

2
∇2

4 +
1

2
s2, s2 = Σ4

i=1y
2
i , (20)

∇2
4 =

∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

+
∂2

∂y2
4

=
4∑

i=1

∂2

∂y2
i

, (21)

where the superscript B in HB
osc is in anticipation of the Hamiltonian, with constraint to be

defined, being implemented in the bosonic sector of the super 4D Wigner system with unitary

frequency. The first step is to change to spherical coordinates in 4-space dimensions, allowing

a factorization of the energy eigenfunctions as a product of a radial eigenfunction and spin-

spherical harmonic.

In (21), the Cartesian coordinates yi(i = 1, 2, 3, 4) are defined by

y1 = s cos

(
θ

2

)
cos
(
ϕ− ω

2

)

y2 = s cos

(
θ

2

)
sin
(
ϕ− ω

2

)

y3 = s cos

(
θ

2

)
cos
(
ϕ+ ω

2

)

y4 = s cos

(
θ

2

)
sin
(
ϕ+ ω

2

)
, (22)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ω ≤ 4π.

The mapping of the Cartesian coordinates yi(i = 1, 2, 3, 4) in 4D with the Cartesian coordi-

nates ρi(i = 1, 2, 3) in 3D is given by the Kustaanheimo-Stiefel transformation

ρi = Σ2
a,b=1z

∗
aΓ

i
abzb, (i = 1, 2, 3) (23)

z1 = y1 − iy2, z2 = y3 + iy4, (24)

where the Γis are a set of usual Pauli matrices. From (22), (23) and (24), we obtain

ρ1 = ρ sin θ cosϕ, ρ2 = ρ sin θ sinϕ, ρ3 = ρ cos θ (25)
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and also that

ρ =
{
ρ2

1 + ρ2
2 + ρ2

3

} 1
2 =

{
(ρ1 + iρ2)(ρ1 − iρ2) + ρ2

3

} 1
2

=
{
(2z∗1z2)(2z1z

∗
2) + (z∗1z1 − z∗2z2)

2
} 1

2

= (z∗1z1 + z∗2) =
4∑

i=1

y2
i = s2. (26)

The complex form of the Kustaanheimo-Stiefel transformation was given by Cornish [21].

Thus, the expression for HB
osc in (20) can be written in the form

HB
osc = −1

2

(
∂2

∂s2
+

3

s

∂

∂s

)

− 2

s2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2θ

∂2

∂ϕ2
+

1

sin2θ

(
2cosθ

∂

∂ϕ
+

∂

∂ω

)
∂

∂ω

]
+

1

2
s2 (27)

with the constraint condition

∂

∂ω
ΨB

osc(s, θ, ϕ, ω) = 0, (28)

imposed on HB
osc, the expression for this restricted Hamiltonian, which we continue to call as

HB
osc, becomes

HB
osc = −1

2

(
∂2

∂s2
+

3

s

∂

∂s

)
− 2

s2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
+

1

2
s2. (29)

Identifying the expression in bracket in (29) with L2, the square of the orbital angular

momentum operator in 3D which for the spin 1
2

electron in the Hydrogen atom can be written

as

L2 = (	σ · 	L)(	σ · 	L+ 1) (30)

where σi(i = 1, 2, 3) are the Pauli matrices representing the spin 1
2

degrees of freedom, we

obtain for HB
osc the final expression

HB
osc =

1

2

[
−
(
∂2

∂s2
+

3

s

∂

∂s

)
+

4

s2
(	σ · 	L)(	σ · 	L+ 1) + s2

]
. (31)
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Now, associating HB
osc with the bosonic sector of the super Wigner system, Hw, subject to

the same constraint as in (28), and following the analogy with the Section II of construction of

super Wigner systems, we first must solve the Schrödinger equation

HwΨw(s, θ, ϕ) = EwΨw(s, θ, ϕ), (32)

where the explicit form of Hw is given by

Hw(2	σ · 	L+
3

2
) =⎛

⎜⎝ −1
2
( ∂

∂s
+ 3

2s
)2 + 1

2
s2 +

(2�σ·�L+ 1
2
)(2�σ·�L+ 3

2
)

2s2 0

0 −1
2
( ∂

∂s
+ 3

2s
)
2
+ 1

2
s2 +

(2�σ·�L+ 3
2
)(2�σ·�L+ 5

2
)

2s2

⎞
⎟⎠ . (33)

Using the operator technique in references [2, 3], we begin with the following super-realized

mutually adjoint operators

a±w ≡ a±(2	σ · 	L+
3

2
) =

1√
2

[
±
(
∂

∂s
+

3

2s

)
Σ1 ∓ 1

s
(2	σ · 	L+

3

2
)Σ1Σ3 − Σ1s

]
, (34)

where 	Σi(i = 1, 2, 3) constitute a set of Pauli matrices that provide the fermionic coordinates

commuting with the similar Pauli set σi(i = 1, 2, 3) already introduced representing the spin 1
2

degrees of freedom.

It is checked, after some algebra, that a+ and a− of (34) are indeed the raising and lowering

operators for the spectra of the super Wigner Hmiltonian Hw and they satisfy the following

(anti-)commutation relations of the WH algebra:

Hw =
1

2
[a−w, a

+
w]+

= a+
wa

−
w +

1

2

[
1 + 2(2	σ · 	L+

3

2
)Σ3

]

= a−wa
+
w − 1

2

[
1 + 2(2	σ · 	L+

3

2
)Σ3

]
(35)

[Hw, a
±
w]− = ±a±w (36)

[a−w, a
+
w]− = 1 + 2(2	σ · 	L+

3

2
)Σ3, (37)
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[Σ3, a
±
w]+ = 0 ⇒ [Σ3, Hw]− = 0. (38)

Since the operator
(
2	σ · 	L+ 3

2

)
commutes with the basic elements a±,Σ3 and Hw of the

WH algebra (35), (36) and (37) it can be replaced by its eigenvalues (2� + 3
2
) and −(2� + 5

2
)

while acting on the respective eigenspace in the from

Ψosc(s, θ, ϕ) =

⎛
⎜⎝ ΨB

osc(s, θ, ϕ)

ΨF
osc(s, θ, ϕ)

⎞
⎟⎠ =

⎛
⎜⎝ RB

osc(s)

RF
osc(s)

⎞
⎟⎠ y±(θ, ϕ) (39)

in the notation where y±(θ, ϕ) are the spin-spherical harmonics [35, 36],

y+(θ, ϕ) = y� 1
2
;j=�+ 1

2
,mj

(θ, ϕ) y−(θ, ϕ) = y�+1 1
2
;j=(�+1)− 1

2
,mj

(θ, ϕ) (40)

so that, we obtain: (	σ ·	L+1)y± = ±(�+1)y±, (2	σ ·	L+ 3
2
)y+ = (2�+ 3

2
)y+ and (2	σ ·	L+ 3

2
)y− =

−[2(�+ 1) + 1
2
]y−. Note that on these subspaces the 3D WH algebra is reduced to a formal 1D

radial form with Hw(2	σ · 	L+ 3
2
) acquiring respectively the forms Hw(2�+ 3

2
) and

Hw

(
−2�− 5

2

)
= Σ1Hw

(
2�+

3

2

)
Σ1. (41)

Thus, the positive finite form of Hw in (35) together with the ladder relations (36) and the

form (37) leads to the direct determination of the state energies and the corresponding Wigner

ground state wave functions by the simple application of the annihilation conditions

a−(2�+
3

2
)

⎛
⎜⎝ RB(0)

osc (s)

RF (0)

osc(s)

⎞
⎟⎠ = 0. (42)

Then, the complete energy spectrum for Hw and the whole set of energy eigenfunctions

Ψ
(n)
osc(s, θ, ϕ)(n = 2m, 2m + 1, m = 0, 2 · · ·) follows from the step up operation provided by

a+(2�+ 3
2
) acting on the ground state, which are also simultaneous eigenfunctions of the fermion

number operator N = 1
2
(1 − Σ3). We obtain for the bosonic sector Hamiltonian HB

osc with

fermion number nf = 0 and even orbital angular momentum �4 = 2�, (� = 0, 1, 2 . . .), the

complete energy spectrum and eigenfunctions given by

[
EB

osc

](m)

�4=2�
= 2�+ 2 + 2m, (m = 0, 1, 2, . . .), (43)

[
ΨB

osc(s, θ, ϕ)
](m)

�4=2�
∝ s2� exp

(
−1

2
s2
)
L(2�+1)

m (s2)

⎧⎪⎨
⎪⎩
y+(θ, ϕ)

y−(θ, ϕ)
(44)
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where Lα
m(s2) are generalized Laguerre polynomials [2]. Now, to relate the mapping of the 4D

super Wigner system given by (8) with the corresponding system in 3D, we make use of the

substitution of s2 = ρ, Eq. (28) and the following substitutions

∂

∂s
= 2

√
ρ
∂

∂ρ
,

∂2

∂s2
= 4ρ

∂2

∂ρ2
+ 2

∂

∂ρ
, (45)

in (33) and divide the eigenvalue equation for Hw in (32) by 4s2 = 4ρ, obtaining

⎛
⎜⎜⎝
−1

2

(
∂2

∂ρ2 + 2
ρ

∂
∂ρ

)
− 1

2

[
−1

4
− �σ·�L(�σ·�L+1)

ρ2

]
0

0 −1
2

(
∂2

∂ρ2 + 2
ρ

∂
∂ρ

)
− 1

2

[
−1

4
− (�σ·�L+ 1

2
)(�σ·�L+ 3

2
)

ρ2

]
⎞
⎟⎟⎠
⎛
⎜⎝ ΨB

ΨF

⎞
⎟⎠

=
1

4ρ
Ew

⎛
⎜⎝ ΨB

ΨF

⎞
⎟⎠ . (46)

The bosonic sector of the above eigenvalue equation can immediately be identified with

the eigenvalue equation for the Hamiltonian of the 3D Hydrogen-like atom expressed in the

equivalent form given by

⎧⎨
⎩−1

2

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ

)
− 1

2

⎡
⎣−1

4
− 	σ · 	L(	σ · 	L+ 1)

ρ2

⎤
⎦
⎫⎬
⎭ψ(ρ, θ, ϕ) =

λ

2ρ
ψ(ρ, θ, ϕ), (47)

where [36]

λ =
Z√−2Ea

, ρ = αr, α =
√
−8Ea, (48)

where Ea is the energy of the electron Hydrogen-like atom, (r, θ, ϕ) stand for the spherical polar

coordinates of the position vector 	r = (x1, x2, x3) of the electron in relative to the nucleons of

charge Z together with s2 = ρ. We see then from equations (43), (44), (47) and (48) that the

complete energy spectrum and eigenfunctions for the Hydrogen-like atom given by

λ

2
=
EB

osc

4
⇒ [Ea]

(m)
� = [Ea]

(N) = − Z2

2N2
, (N = 1, 2, . . .). (49)

and

[ψ(ρ, θ, ϕ)](m)
�;j,mj

∝ ρ� exp (−ρ
2
)L(2�+1)

m (ρ)

⎧⎪⎨
⎪⎩
y+(θ, ϕ)

y−(θ, ϕ).
(50)

Here, N = � + m + 1 (� = 0, 1, 2, · · · , N − 1;m = 0, 1, 2, · · ·) is the principal quantum

number. Kostelecky and Nieto shown that the supersymmetry in non-relativistic quantum

mechanics may be realized in atomic systems [25].
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IV. CONCLUSION

In this work, we have deduced the energy eigenvalues and eigenfunctions of the hydrogen

atom via Wigner-Heisenberg (WH) algebra in non-relativistic quantum mechanics. Indeed,

from the ladder operators for the 4-dimensional (4D) super Wigner system, ladder operators

for the mapped super 3D system, and hence for hydrogen-like atom in bosonic sector, are

deduced. The complete spectrum for the hydrogen atom is found with considerable simplicity.

Therefore, the solutions of the time-independent Schrödinger equation for the hydrogen atom

were mapped onto the super Wigner harmonic oscillator in 4D by using the Kustaanheimo-

Stiefel transformation.
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