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I. INTRODUCTION

In a common sense, it is generally settled that a \good" Quantum Field Theory (QFT) must respect at least

two symmetries: the Lorentz covariance and the CPT invariance. The traditional framework of a local QFT, from

which one derives the Standard Model that sets the physics inherent to the fundamental particles, satis�es both

these symmetries. In the beginning of 90�s, a new work [1] proposing a correction term to the conventional Maxwell

Electrodynamics, that preserves the gauge invariance despite breaking the Lorentz, CPT and parity symmetries, was

�rst analyzed. The correction term, composed by the gauge potential, A�; and an external background 4-vector, v�;

has a Chern-Simons-like structure, �����v�A�F��, and is responsible by inducing an optical activity of the vacuum - or

birefringence - among other e�ects. In this same work, however, it is shown that astrophysical data do not support the

birefringence and impose stringent limits on the value of the constant vector v�; reducing it to a negligible correction

term. Similar conclusions, also based on astrophysical observations, were also con�rmed by Goldhaber & Timble [3].

Some time later, Colladay and Kostelecky [2] adopted a quantum �eld theoretical framework to address the issue of

CPT- and Lorentz-breakdown as a spontaneous violation. In this sense, they constructed an extension to the minimal

Standard Model, which maintains una�ected the SU(3) � SU(2) � U(1) gauge structure of the usual theory, and

incorporates the CPT-violation as an active feature of the e�ective low-energy broken action. They started from a

usual CPT- and Lorentz-invariant action as de�ning the properties of what would be an underlying theory at the

Planck scale [4], which then su�ers a spontaneous breaking of both these symmetries. In the broken phase, there rises

the e�ective action, endowed with breakdown of CPT and Lorentz symmetries, but conservation of covariance under

the perspective of the observer inertial frame. The Lorentz invariance is spoiled at the level of the particle-system,

which can be viewed in terms of the non-invariance of the �elds under boost and Lorentz rotations (relative inertial

observer-frames). This covariance breakdown is also manifest when analyzing the dispersion relations, extracted from

the propagators.

Investigations concerning the unitarity, causality and consistency of a QFT endowed with violation of Lorentz and

CPT symmetries (induced by a Chern-Simons term) were carried out by Adam & Klinkhamer [5]. As result, it was

veri�ed that the causality and unitarity of this kind of model can be preserved when the �xed (background) 4-vector

is space-like, and spoiled whenever it is time-like or null. A consistency analysis of this model, carried out in the

additional presence of a scalar sector endowed with spontaneous symmetry breaking (SSB) [7], has con�rmed the

results obtained in ref. [5], that is: the space-like case is free from unitarity illnesses, which arise in the time- and

light-like cases.

The active development of Lorentz- and CPT-violating theories in D = 1 + 3 has come across the inquiry about

the structure of a similar model in 1+2 dimensions and its possible implications. In order to study a planar theory,

endowed with Lorentz- and CPT-violation, one has decided to adopt a dimensional reduction procedure, that is: one

starts from the original Chern-Simons-like term, �����v�A�F��, promoting its systematic reduction to D = 1 + 2;

which yields a pure Chern-Simons term and a Lorentz non-invariant mixing term. Our objective, therefore, is to

achieve a planar model, whose structure is derived from a known counterpart de�ned in 1+3 dimensions, and to

investigate some of its features, like propagators, dispersion relations, causality, stability and unitarity.

More speci�cally, one performs the dimensional reduction to 1+2 dimensions of the Abelian gauge invariant model

with non-conservation of the Lorentz and CPT symmetries [1], [5] induced by the term �����v�A�F��, resulting

in a gauge invariant Planar Quantum Electrodynamics (QED3) composed by a Maxwell-Chern-Simons gauge �eld

(A�) ; by a scalar �eld (') ; a scalar parameter (s) without dynamics (the Chern-Simons mass), and a �xed 3-vector

(v�). Besides the MCS sector, this Lagrangian has a massless scalar sector, represented by the �eld ', which also

works out as the coupling constant in the Chern-Simons-like structure that mixes the gauge �eld to the 3-vector,

v� (where one gauge �eld is replaced by v�). This latter term is the responsible by the Lorentz noninvariance.
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Therefore, the reduced Lagrangian is endowed with three coupled sectors: a MCS sector, a massless Klein-Gordon

sector and a mixing Lorentz-violating one. As it is well-known, the MCS sector breaks both parity and time-reversal

symmetries, but preserves the Lorentz and CPT ones. The scalar sector preserves all discrete symmetries and Lorentz

covariance, whereas the mixing sector, as it will be seen, breaks Lorentz invariance (in relation to the particle-frame),

keeps conserved parity and charge-conjugation symmetries, but may break or preserve time-reversal symmetry. This

implies that it may occur both conservation (for a purely space-like v�) and violation (for v� time-like and light-like)

of the CPT invariance.

In short, this paper is outlined as follows. In Section II, one accomplishes the dimensional reduction, that leads

to the reduced model. Having established the new planar Lagrangian, one then devotes some algebraic e�ort for the

derivation of the propagators of the gauge and scalar �elds, which requires the evaluation of a closed algebra composed

by eleven projector operators, displayed into Table I. In Section III, we investigate the stability and the causal structure

of the theory. One addresses the causality looking directly at the dispersion relations extracted from the poles of the

propagators, which reveal the existence of both causal and non-causal modes. All the modes, nevertheless, present

positive de�nite energy (positivity) relative to any Lorentz frame, which implies an overall stability. In Section IV,

we accomplish the unitarity analysis, based on the matrix residue evaluated at the poles of the propagators. The

unitarity of the overall model is ensured in the case one adopts a purely space-like background-vector, v�. In Section

V, we present our Concluding Comments.

II. THE DIMENSIONALLY REDUCED MODEL

One starts from the Maxwell Lagrangiany in 1+3 dimensions supplemented by a term that couples the dual elec-

tromagnetic tensor to a �xed 4-vector, v�; as it appears in ref. [1]:

L1+3 =

�
�
1

4
F�̂�̂F

�̂�̂ +
1

2
��̂�̂�̂�̂v�̂A�̂F�̂�̂ +A�̂J

�̂

�
; (1)

with the additional presence of the coupling between the gauge �eld and the external current, A�̂J
�̂ : This model (in its

free version) is gauge invariant but does not preserve Lorentz and CPT symmetries relative to the particle frame. For

the observer system, the Chern-Simons-like term transforms covariantly, once the background also is changed under

an observer boost: v�̂ �! v�̂
0

= ���v
�. In connection with the particle-system, however, when one applies a boost

on the particle, the background 4-vector is supposed to remain una�ected, behaving like a set of four independent

numbers, which con�gures the breaking of the covariance. This term also breaks the parity symmetry, but maintain

invariance under charge conjugation and time reversal. To study this model in 1+2 dimensions, one performs its

dimensional reduction, which consists e�ectively in adopting the following ansatz over any 4-vector: (i) one keeps

una�ected the temporal and also the �rst two spatial components; (ii) one freezes the third spacial dimension by

splitting it from the body of the new 3-vector and requiring that the new quantities (�), de�ned in 1+2 dimensions,

do not depend on the third spacial dimension: @
3
� �! 0: Applying this prescription to the gauge 4-vector, A�̂; and

to the �xed external 4-vector, v�̂; and to the 4-current, J �̂, one has:

A�̂ �! (A�; '); (2)

v�̂ �! (v�; s); (3)

J �̂ �! (J�; J); (4)

yHere one has adopted the following metric conventions: g�� = (+;�;�;�) in D = 1 + 3; and g�� = (+;�;�) in D = 1 + 2.

The greek letters (with hat) �̂; run from 0 to 3, while the pure greek letters, �; run from 0 to 2.
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where: A(3) = '; v(3) = s; J (3) = J and � = 0; 1; 2. According to this process, there appear two scalars: the scalar

�eld, '; that exhibits dynamics, and s; a constant scalar (without dynamics). Carrying out this prescription for eq.

(1), one then obtains:

L1+2 = �
1

4
F��F

�� +
1

2
@�'@

�'�
s

2
���kA

�@�Ak + '���kv
�@�Ak �

1

2�
(@�A

�)
2
+A�J

� + 'J; (5)

where the last free term represents the gauge-�xing term, added up after the dimensional reduction. The scalar �eld,

'; exhibits a typical Klein-Gordon massless dynamics and it also appears as the coupling constant that links the �xed

v� to the gauge sector of the model, by means of the new term: '���kv
�@�Ak: In spite of being covariant in form,

this kind of term breaks the Lorentz symmetry in the particle-frame, since the 3-vector v� is not sensitive to particle

Lorentz boost, behaving like a set of three scalars.

The Lagrangian (1), originally proposed by Carroll-Field-Jackiw [1], has the property of breaking parity symmetry,

even though conserving time reversal and charge conjugation symmetries, resulting in nonconservation of the CPT

symmetry. Simultaneously, the Lorentz invariance is spoiled, since the �xed 4-vector v� breaks the rotational and

boost invariances. On the other hand, the reduced model, given by eq.(5), does not necessarily jeopardize the CPT

conservation, which depends truly on the character of the �xed vector v�. As it is known, the parity transformation

(P) in 1+2 dimensions is characterized by the inversion of only on of the spatial axis: x�
P
�! x

0� = (xo;�x; y);

the same being valid for the 3-potential: A� P
�! A

0� = (A0;�A
(1); A(2)): The time-reversal transformation (T )

must keep unchanged the dynamics of the system, so that one must have: x�
�
�! x

0� = (�xo; x; y); A
� �
�! A

0� =

(A0;�A
(1);�A(2)), while the charge conjugation determines: x�

C
�! x

0� = x�; A� C
�! A

0� = �A�: One knows that

the Chern-Simons term breaks both parity and time-reversal symmetries and keeps conserved the charge conjugation,

which assures the global CPT invariance. The new term, '"��kv
�@�Ak ; however, will manifest a non-symmetric

behaviour before T -transformation: there will occur conservation if one works with a purely space-like external vector

(v� = (0;�!v ) ), or breakdown, if v� is purely time-like. Under parity and charge conjugation transformations, in turn,

this term will evidence non-invariance for any adopted v�, thereby one can state that it will occur CPT conservation

when v� is purely space-like, and CPT violation otherwise. Here, the �eld ' was considered as having a scalar

character under the parity transformation. Yet, if this �eld behaves like a pseudo-scalarz, the CPT conversation will

be assured for a purely time-like v�. For a light-like v�; there will always occur time-reversal non-invariance, and

consequently, CPT violation.

Neglecting divergence terms, one can write the linearized free action in an explicitly quadratic form, namely:

�1+2 =

Z
d3x

1

2

�
A�[M�� ]A

� � '�'+ ' [����v
�@�]A� +A� [����v

�@�]'

�
; (6)

which can also appear in the matrix form:

�1+2 =

Z
d3x

1

2

�
A� '

�" M�� T�

�T� ��

#  
A�

'

!
: (7)

The action (7) has as nucleus a square matrix, P; composed by the quadratic operators of the initial action. The mass

dimension of the physical parameters and tensors are: [A�] = ['] = 1=2; [v�] = [s] = 1; [T�] = [M�� ] = 2: Here, some

de�nitions are necessary:

zThe adoption of a pseudo-scalar �eld can be justi�ed by looking at the vector character of the potential (
�!
A

P
�! �

�!
A ) before

the dimensional reduction. If one assumes that the �eld ' maintains the same behaviour of its ancestral (A3), one has a

pseudo-scalar.
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M�� = ���� + s S�� +
�

�
!�� ; T� = S��v

�; (8)

S�� = "���@
�; ��� = ��� � !�� ; !�� =

@�@�
�

; (9)

where ��� , !�� ; S�� stand respectively for the transverse, longitudinal and Chern-Simons dimensionless projectors,

while M�� is the quadratic operator associated to the MCS sector. The inverse of the square matrix P; given at

the action (7), yields the propagators of the gauge and the scalar �elds, which are also written in a matrix form, the

propagator-matrix (�):

� = P�1 =
�1

(�M�� � T�T�)

"
�� T�

�T� M��

#
; (10)

The propagator of the gauge �eld, �11, and of the scalar �eld, �22; are written as:

(�11)
�� =

�
���� + s S�� +

�

�
!�� �

1

�
T�T�

��1

; (11)

(�22) = �
M��

�

�
���� + s S�� +

�

�
!�� �

1

�
T�T�

��1

; (12)

(�12)
�
= �

T�
�

�
���� + s S�� +

�

�
!�� �

1

�
T�T�

��1

; (13)

(�21)
�
=

T�
�

�
���� + s S�� +

�

�
!�� �

1

�
T�T�

��1

; (14)

while the terms �12; �21 are related to the mixed propagators hA�'i, h'A�i that indicate a scalar mediator turning

into a gauge mediator and vice-versa. Here, for future purposes, it is useful to present the inverse of the tensor M�� ;

that is, the propagator of the pure MCS Lagrangian:

(M��)
�1

=
1

�+ s2
��� �

s

�(�+ s2)
S�� +

�

�
!��; (15)

To perform the inversion of the operator above, one needs to de�ne some new operators, since the ones known so

far do not form a closed algebra, as it is shown below:

S��T
�T� = �v�T

� � �T�@� = �Q
�

� � ���
�; (16)

Q��Q
�� = T 2v�v� = T 2���; (17)

Q���
�� = T 2v�@

� = T 2� �
� ; (18)

where the new operators are:

Q�� = v�T� ; ��� = v�v� ; ��� = v�@� ; ��� = T�@� ; (19)

and,

� � � �
� = v�@

� ; T 2 = T�T
� = (v2�� �2): (20)

Their mass dimension are: [��� ] = 2; [Q�� ] = 3; [��� ] = 2 ; [��� ] = 3.

Three of these new terms exhibit a non-symmetric structure, which leads to their consideration in pairs, namely:

Q�� ; Q��; ��� ;���; ��� ;���: The inversion of the operator �11 will be realized following the traditional prescription,�
��1

11

�
��

(�11)
��

= Æ�� ; where the operator (�11)
��

is composed by all the possible tensor combinations (of rank two)

involving T�; v�; @�: In such way, the proposed propagator will consist, at a �rst glance, of eleven terms:

(�11)
�� = a1�

�� + a2!
�� + a3S

�� + a4�
�� + a5T

�T� + a6Q
�� + a7Q

�� + a8�
�� + a9�

�� + a10�
�� + a11�

�� ; (21)

which are displayed in Table I, where one observes explicitly the closure of the operator algebra.
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��� !�� S�� ��� T�T� Q�� Q�� ��� ��� ��� ���

��� � �
� 0 S�

�
� �
� +

� �
�
��

�
T�T

� Q �
�

Q�
�+

� �
�
� �
�

0
��

�+

���!��
0 ��

�

!�� 0 ! �
� 0 �

�
��

� 0 0 �
�
� �
� � �

� �!�� ��
� 0

S�� S �
� 0 ��� �

� Q�
�

�� �
� +

��Q�
�

�� �
� +

�� �
� �

�T�T
� 0 @�T

� 0
�(!�

�+

� ��
�)

���
� �
� +

� �
�
��

�

�
�
��

� �Q�
� v2� �

� 0 0 v2Q�
� �� �

� v2��
� �Q�

� 0

T �T� T�T
� 0

�Q �
� +

����
�

0 T 2T�T
� T 2Q�

� 0 0 0 0 T 2Q �
�

Q��
Q �
� +

� �
�
��

�

�
�
��

� �T�T
� v2Q �

� 0 0 v2T�T
� �Q �

� v2@�T
� �T�T

� 0

Q�� Q�
� 0

�� �
� +

����
�

0 T 2Q�
� T 2��� 0 0 0 0 T 2��

�

���
��

�+

��!�
�

�! �
� �� �

� v2� �
� 0 0 v2� �

� ���
� v2� �

� �� �
� 0

��� 0 ��
� 0 �� �

� 0 0 �Q�
� ���

� v2� �
� �Q �

� 0

��� � �
� 0

�(� �
� +

��!�
�)

0 T 2� �
� T 2��

� 0 0 0 0 �T 2!��

��� 0 ��
� 0 ���

� 0 0 �T�T
�
���

� ���
� �T�T

� 0
Table I: Multiplicative operator algebra ful�lled by �, !, S, �,TT , Q, �,and �. The products are supposed to be in the ordering \row times column".

Using the data contained in Table I, one �nds out that the gauge-�eld propagator assumes the form:

(�11)
�� =

1

�+ s2
��� +

�(�+ s2)���2s2

�(�+ s2)�
!�� �

s

�(�+ s2)
S�� �

s2

(�+ s2)�
��� +

1

(�+ s2)�
T�T �

�
s

(�+ s2)�
Q�� +

s

(�+ s2)�
Q�� +

�s2

�(�+ s2)�
��� +

�s2

�(�+ s2)�
��� �

s�

�(�+ s2)�
���

+
s�

�(�+ s2)�
���;

where: � = (�2 + s2�� T 2):

By the same procedure, one evaluates the mixed propagator, (�12)
� = �T�

�
(�11)

��, which can be written in the

following form:

(�12)
�
= �

1

�

�
T � + sv� �

s�

�
@�
�
; (22)

whereas the propagator (�21)
�
, in turn, results equal to:

(�21)
�
= �

1

�

�
�T � + sv� �

s�

�
@�
�
;

In order to compute the propagator of the scalar �eld,

(�22) = �
1

�

�
1�

1

�
T� (M��)

�1
T�

��1

; (23)

one makes use of the inverse of the tensor M�� , given by eq. (15), so that: T�(M
�1)��T� =

�
�+ s2

��1
T 2: In such

a way, a compact scalar propagator arises:
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(�22) = �
�+ s2

�
(24)

In momentum-space, the photon propagator takes the �nal expression:

hA� (k)A� (k)i = i

�
�

1

k2 � s2
��� �

�(k2 � s2)� (k) + s2 (v:k)
2

k2(k2 � s2)� (k)
!�� �

s

k2(k2 � s2)
S�� +

s2

(k2 � s2)� (k)
���

�
1

(k2 � s2)� (k)
T�T � +

s

(k2 � s2)� (k)
Q�� �

s

(k2 � s2)� (k)
Q�� +

is2 (v:k)

k2(k2 � s2)� (k)
���

+
is2 (v:k)

k2(k2 � s2)� (k)
��� �

is (v:k)

k2(k2 � s2)� (k)
��� +

is (v:k)

k2(k2 � s2)� (k)
���

�
; (25)

while the scalar and the mixed propagators read as:

h''i =
i

�(k)

�
k2 � s2

�
; (26)

hA� (k)'i = �
i

�(k)

�
T� + sv� �

s (v:k)

k2
k�
�
; (27)

h'A� (k)i = �
i

�(k)

�
�T� + sv� �

s (v:k)

k2
k�
�
; (28)

where: �(k) =
h
k4 �

�
s2 � v:v

�
k2 � (v:k)

2
i
: By the above expressions, one notes that the factor � is present on

the denominator of all propagators, in such a way the scalar and the gauge �eld will share the pole structure, and

consequently, the physical excitations associated with the poles of �(k): This common dependence on 1=� also

amounts to similarities on the causal structure of the scalar and gauge sectors of this model, as it will de discussed in

Section III.

III. DISPERSION RELATIONS, STABILITY AND CAUSALITY ANALYSIS

Some references in literature [5], [6], [8] have dealt with the issue of stability, causality and unitarity concerning

to Lorentz- and CPT-violating theories. The causality is usually addressed as a quantum feature that requires the

commutation between observables separated by a space-like interval, which one calls microcausality in �eld theory

[9]. In this section, however, one analyzes causality under a classical tree-level perspective, in which it is related to

the positivity of a usual Lorentz invariant, k2: The starting-point of all investigation is the propagator, whose poles

are associated to dispersion relations (DR) that provide informations about the stability and causality of the model.

The causality analysis is then related to the sign of the propagator poles, given in terms of k2; in such a way one must

have k2 � 0 in order to preserve it (circumventing the existence of tachyons). In the second quantization framework,

stability is related to the energy positivity of the Fock states for any momentum. Here, stability is directly associated

with the energy positivity of each mode read o� from the DR.

The �eld propagators, given by eqs. (25, 27, 26), present three families of poles at k2:

k2 = 0; k2 � s2 = 0; k4 � (s2 � v:v)k2 � (v:k)2 = 0; (29)

from which one straightforward infers the DR derived from the Lagrangian (5), namely:

k20(1) =
�!
k
2
; k20(2) =

�!
k
2
+ s2; k20(3) =

�!
k
2
+
1

2

��
s2 � v:v

�
�

q
(s2 � v:v)

2
+ 4 (v:k)

2

�
: (30)
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The �rst dispersion relation, k0 = �
�!
jk j; stands for a massless photon mode, which carries no degree of freedom,

since the Lagrangian (5) involves a massive photon. The second DR represents the Chern-Simons massive mode,

k0 = �

q
s2 + j

�!
k j2; which propagates only one degree of freedom (in the Maxwell-Chern-Simons electrodynamics

the scalar magnetic �eld encloses all information of the electromagnetic �eld, which justi�es the existence of a single

degree of freedom). These �rst two poles apparently respect the causality condition, since k2 � 0 for them. Once the

causality is set up, the stability comes up as a direct consequence.

Concerning the third DR, corresponding to the roots of �(k), it may provide both massless and massive modes

for some speci�c
�!
k -values, but in general, the mode is massive. By remembering that

�!
k is the transfer momentum,

whose values are generally integrated from zero to in�nity, one concludes it does not make much sense to �x any

value for
�!
k in order to obtain a particular dispersion relation. Remarking that the term �(k) is ubiquitous in the

denominator of all propagators, as it is explicit in eqs. (25),(26), (27), one concludes the causal structure entailed to

the poles of 1=� will be common to these three propagators. Speci�cally, for a purely space-like 3-vector, v� = (0;�!v );

this DR is written as,

k20� =
�!
k
2
+
1

2

"�
s2 +�!v 2

�
�

r�
s2 +�!v 2

�2
+ 4

�
�!v :
�!
k
�2#

: (31)

A simple analysis of this expression indicates that both k20+ and k20� are positive-energy modes for any
�!
k -value

(and for any Lorentz observer), which assures the stability of these modes. This fact may suggest that the causal

structure of the space-like sector of this model remains preserved, as it was observed by Adam & Klinkhamer [5] in

the context of the 4-dimensional version of this theory, that is endowed with a dispersion relation very similar to eq.

(31) (this conclusion was also supported by the attainment of a group velocity, associated to this mode, smaller than

1). Concerning the pole analysis, although, we have k2+ > 0 for arbitrary
�!
k and k2� < 0 (unless

�!
k ?�!v or

�!
k = 0,

which implies k2� = 0). So, while the mode k2+ preserves the causality and stability, the mode k2�, in spite of assuring

stability, will be in general non-causal, preserving causality only when
�!
k ?�!v or

�!
k = 0:

In the case of a purely time-like 3-vector, v� = (v0;
�!
0 ); the DR assumes the form:

k20� =
1

2

��
s2 + 2

�!
k
2
�
�

q
s4 + 4v2o

�!
k
2
�
; (32)

where one observes a similar behaviour: the mode k20+ will exhibit stability and causality, while the mode k20� will

present energy positivity (for arbitrary
�!
k -value) whenever the condition, s2 � v20 > 0, is ful�lled. From now on,

one must assume the validity of this condition, so that the mode k20� can be taken stable. This latter mode is

non-causal for any
�!
k 6= 0: Assuming the coeÆcients for Lorentz violation are small near the Chern-Simons mass�

s2 � v20 ; j
�!v j2

�
; we obtain an entirely causal theory (at least at zero order in v2=s2): This is consistent with some

results [8] concerning some quantum theories containing Lorentz-violating terms, which evidence the preservation of

causality when the breaking factors are small.

Hence, the modes k20� exhibit positive energy both in space- and time-like cases, which also implies these two

modes can be written as an expansion in terms of positive and negative frequency terms. This separation allows the

de�nition of particles and antiparticles states, a necessary condition for the quantization of this theory. Nevertheless,

the existence of non-causal modes, both in time- and space-like case, may be seen already at classical level, as a

prediction on the impossibility to realize a consistent quantization of this model, an issue that will be properly

addressed when one analyses the unitarity at these non-causal poles. Therefore, the existence of quantization illness

will be solved by investigating the unitarity of the model, matter to be discussed in the next section.

In a Lorentz covariant framework, k2 is a Lorentz scalar, which assures a unique value for all Lorentz frames. In

such a way, if k2 represents a causal mode for one observer, so it will be for all ones. The fact that k2 has not a

positive de�nite value in an arbitrary Lorentz frame is a unequivocal indicative of the Lorentz covariance breakdown.
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IV. UNITARITY ANALYSIS

In order to analyze the unitarity of the model at tree-level, one has adopted the method which consists in saturating

the propagators with external currents. The fact that our model possesses two sectors (the scalar and gauge one)

implies that we must saturate the scalar-propagator and the gauge-propagator individually. In such a way, we write

the two saturated propagators, namely:

SPhA�A�i = J��hA�(k)A�(k)i J
� ;

SPh''i = J�h''iJ;

where the gauge current J� must obey the conservation law valid for the gauge sector of the systemx, whereas the

scalar current, J; is not subject to any constraint. The unitarity analysis is based on the residues of SP; precisely: the

unitarity is ensured whenever the imaginary part of the residues of SP at the poles of each propagator is positive. It

is easy to notice that the saturated propagator in the momentum-space is the current-current transition amplitude.

A. Scalar Sector

We can initiate our analysis by the scalar sector, whose saturated amplitude is given by: SPh''i = J�h''iJ; or

more explicitly:

SPh''i = J�
i(k2 � s2)

�(k)
J:

This expression presents two poles, k2+; k
2
�, the roots of �(k) = 0: At the purely time-like case, v� = (v0;

�!
0 ); these

poles are exactly the ones given by eq. (32): k2� = 1
2

�
s2 �

q
s4 + 4v2o

�!
k
2
�
. Evaluating the residues of SPh''i at

the pole k2+ one achieves a positive imaginary result, while at the pole k2� a positive result appears only when the

condition
�!
k
2
< (v20 + s2). In such a way, one concludes that the unitarity of the scalar sector, in the time-like case,

is not assured. Considering now the purely space-like case, v� = (0;�!v ); the poles of SPh''i are given by eq. (31):

k2� = 1
2

"�
s2 +�!v 2

�
�

r�
s2 +�!v 2

�2
+ 4

�
�!v :
�!
k
�2#

. The residues associated with these two poles exhibit a positive

de�nite imaginary part, so that one can state that the unitarity of the scalar sector, at the space-like case, is generically

preserved.

B. Gauge-Field sector

The continuity equation, @�J
� = 0; in the k-space is read as: k�J

� = 0; it allows us to write the current in the

form: J� = (j0; 0; k0
k2
j(0)): The conservation constraint, j(2) = k0

k2
j(0); appears whenever one adopts k� = (k0; 0; k2)

as the momentum. The current conservation law also reduces to six the number of terms of the photon propagator

that contributes to the evaluation of the saturated propagator:

xBy applying the di�erential operator, @�; on the equation of motion derived from Lagrangian (5), there results the following

equation (see ref. [11]) for the gauge current: @�J
� = �"���@�v�@�', which reduces to the conventional current-conservation

law, @�J
� = 0, whenever v� is constant or has a null rotational ("���@�v� = 0).
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SPhA�A�i = J��(k)

�
i

D

�
�� g�� � s� S�� � s2���� +�T �T � � s�Q�� + s�Q��

��
J�(k); (33)

where: D = �(�+ s2)� : Writing this expression in the momentum-space, one obtains:

SPhA�A�i = J��(k)

�
iB��

�
J�(k); (34)

where: D = k2(k2 � s2)�; with: � (k) = k4 � (s2 � v:v)k2 � (v:k)2.

1. Time-like case:

We start by analyzing the unitarity in the case corresponding to a time-like background-vector: v� = (v0;
�!
0 ): In

this situation, the 2-rank tensor B�� can be put in the form:

B��(k) =
1

D(k)

2
64

k2(s2v20 ��) ik(2)
�
s��v20s

2k2
�

ik(1)(�s�+v20s
2k2)

ik(2)
�
�s�+v20s

2k2
�

k2
�
�+ v20k

2
2

�
is� k(0) � v20k

2k(1)k(2)

ik(1)(s��v20s
2k2) �is� k(0) � v20k

2k(1)k(2) k2
�
�+ v20k

2
1

�
3
75 ; (35)

where: � = k4 � (s2 � v20)k
2 � k20 .

For the pole k2 = 0; with k� = (k0; 0; k0), we have the following residue matrix:

B�� j(k2=0) =
1

s2

2
64

0 �isk0 0

isk0 0 �isk0

0 isk0 0

3
75 ; (36)

which is reduced to a null matrix when saturated with the conserved current, J� = (j0; 0; k0
k2
j(0)); implying also a null

saturation (SP = 0). This fact indicates that the mode associated with the pole k2 = 0 carries no physical degree of

freedom, and further, it does not jeopardize the unitarity.

For the pole k2 = s2; with k� = (k0; 0; k2), the matrix takes the form,

B�� j(k2=s2) = �
1

s2k22

2
64

s2k20 �isk(2)k20 0

isk(2)k20 0 �isk0k
2
2

0 isk0k
2
2 �s2k22

3
75 ; (37)

This matrix, whenever saturated with the external current J� = (j0; 0; k0
k2
j(0)); leads to a trivial saturation (SP = 0),

which is compatible with unitarity requirements. The vanishing of the current-current amplitude at this pole indicates

that the massive excitation k2 = s2 is not dynamical for the time-like background.

At the pole k2+ = 1
2

�
s2 +

q
s4 + 4v2o

�!
k
2
�
; the residue matrix reads as:

B�� j(k2=k2
+
) =

v20
(k2+ � s2)(k2+ � k2�)

2
64

s2 �is2k(2) 0

is2k(2) k22 0

0 0 0

3
75 ; (38)

which has as eigenvalues �1 = 0; �2 = 0; �3 = k22+ s2. Consequently, one has SP > 0 (unitarity preservation). At the

pole k2�; a similar behaviour occurs: one obtains a residue matrix exactly equal to the one given above. The di�erence

rests only on the coeÆcient appearing in front of the matrix, in this case: 1
D(k�)

= v20 [(k
2
� � s2)(k2� � k2�)]

�1 > 0.

The fact that this last coeÆcient results positive indicates that the unitarity is also preserved at the pole k2 = k2�,

once one has the same eigenvalues. Here, the situation presents a peculiarity with respect to its (1 + 3)-dimensional

counterpart: according to the analysis of the works [5], [7], for a time-like background vector, the gauge sector is

always plagued by ghost states which cannot be removed by any gauge choice. They actually spoil the unitarity.
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2. Space-like Case:

In this case, taking v� = (0; 0; v), the tensor B�� is given as follows:

B��(k) =
1

D(k)

2
64

�k2(�� v2k21) is� k(2) � k2v2k0k
(1) ik(1)(�s��sk2v2)

�is� k(2) � k2v2k0k
(1) k2(�+ v2k20) isk0(�+ v2k2)

ik(1)(s�+sk2v2) �is� k0 + iskv2k0 k2
�
�+ v2s2

�
3
75 ; (39)

where: � = k4 � (s2 � v2)k2 � v2k22 .

For the pole k2 = 0; with k� = (k0; 0; k0); one obtains the same matrix attained in the time-like case, given by eq.

(36). Exactly by the same reasons presented at this former section, one can assert that the unitarity is preserved at

this pole.

For the pole k2 = s2; with k� = (k0; 0; k2), the resulting matrix is identical to one given by eq. (37), so that the

conclusions established in the time-like case are also valid here. The vanishing of the saturated propagator at the pole

k2 = s2, in both cases, indicates that the massive excitation k2 = s2 is not dynamical in our model.

For the pole k2+ = 1
2

"�
s2 +�!v 2

�
�

r�
s2 +�!v 2

�2
+ 4

�
�!v :
�!
k
�2#

; with k� = (k0; 0; k2); the residue matrix is reduced

to:

B�� j(k2=k2
+
) =

v2

(k2+ � s2)(k2+ � k2�)

2
64
0 0 0

0 k20 isk0

0 �isk0 s2

3
75 ; (40)

where: (k2+ � k2�) =

q
(s2 + v2)

2
+ 4v2k22 . The eigenvalues of this matrix are: �1 = 0; �2 = 0; �3 = k20 + s2, which

leads to a positive saturation (SP > 0) ; and then unitarity is guaranteed at this pole. For the pole k2�; unitarity is

also ensured, this may be seen in an exactly similar way to the one performed in the time-like case.

Taking into account all results concerning the gauge sector of this model, one concludes that the unitarity is

preserved in both time- and space-like cases (at all the poles of the gauge propagator) without any restriction.

Considering the restriction on the unitarity of the scalar sector at the time-like case, one can state that our entire

model preserves unitarity only in the space-like case. It is also interesting to note that the unitarity of the gauge

sector is guaranteed even at the non-causal poles k2�, which con�rms the consistency of our model. This fact can be

understood remembering that the modes k2�; in spite of being non-causal, are stable ones.

V. CONCLUDING COMMENTS

We have accomplished the dimensional reduction to 1+2 dimensions of a gauge invariant, Lorentz and CPT-violating

model, de�ned by the Carroll-Field-Jackiw term, �����v�A�F��. One then obtains a Maxwell-Chern-Simons planar

Lagrangian in the presence of a Lorentz breaking term and a massless scalar �eld. Concerning this reduced model,

the CPT symmetry is conserved for a purely space-like v�, and spoiled otherwise. The propagators of this model are

evaluated and exhibit a common causal structure (bound to the dependence on 1=�). The poles of the propagators

are used as starting point for the analysis of causality, stability and unitarity. Concerning the dispersion relations, one

veri�es that the modes have positive de�nite energy, which ensures stability. The causality is assured for all modes of

the theory, except for k2� (both in space- and time-like case). In connection with the unitarity of this model, one has

analyzed the scalar and the gauge sectors separately, by means of the saturation of the residue matrix. The gauge

sector has revealed to be unitary for time- and space-like background vectors, whereas the scalar sector has showed

to preserve unitarity only in the space-like case. We should now pay attention to a special property of 3-space-time
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dimensions, namely: the absence of ghosts in the gauge-�eld spectrum for a time-like, v�. Unitarity is a relevant

matter and an essential condition for a consistent quantization of any theory. Once the unitarity is here ensured, this

model may become a useful and interesting tool to analyze planar systems (including Condensed-Matter ones) with

anisotropic properties.

A new version of this work [10] may address the dimensional reduction of a gauge-Higgs model [7] in the presence

the Carroll-Field-Jackiw term. In this case, the reduced model will be composed by two scalar �elds (one stemming

from the dimensional reduction, the other being the Higgs scalar), by a Maxwell-Chern-Simons-Proca gauge �eld, and

by the Lorentz-violating mixing term. The introduction of the Higgs sector may shed light on new interesting issues

concerning planar systems, like the investigation of vortex-like con�gurations in the framework of a Lorentz-breaking

model.

Another natural investigation consists in studying the solutions to the classical equations of motion (the extended

Maxwell equations) and wave equations (for the potential A�) corresponding to the reduced Lagrangian. It is possible

that such equations reveal a similar structure (but more complex) to the MCS conventional Electrodynamics, since

the reduced Lagrangian indeed contains the MCS sector. The solution to these equations may unveil some interesting

aspects, such as the property of anisotropy (induced by a space-like background, �!v ) in the interaction potential

derived from such equations. This issue is actually being investigated and we shall report on it in a forthcoming paper

[11].
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