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1 Introduction

These notes are based on a series of lectures given at X Jorge Andr�e Swieca Summer

School on Particles and Fields in 1999. It aims to give a very elementary introduction to

dualities in �eld theories3. This subject have been quite a lot activity in the last few years.

3We recommned also some other nice review papers [3]-[9].
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In summary we could say that dualities relate quantum �eld theories (or string theories)

at di�erent values of the coupling constant. Sometimes it can relate a theory at strong

coupling to another (or same) theory at weak coupling. So, it can open the possibility of

calculating strong coupling e�ects by mapping it to a weak coupling problem. Therefore,

it can be relevant to understand quark con�nement.

Duality was �rst observed in the end of the last century in Maxwell theory in the

vacuum. In order to preserve duality in the presence of matter it is necessary to introduce

magnetic monopoles as we will see in section 2. Another example of duality happens

between sine-Gordon theory described by Lagrangian

L =
1

2
@��@

��+
m2

�2
(cos ��� 1) ;

and massive Thirring model described by

L = � (i�@
� +m) � g

2
� � � � :

Sine-Gordon has a scalar particle and a soliton, and Thirring model has a spinor particle

and a bound state. The two theories are equivalent at the quantum level (or dual) when,

�2�h

4�
=

1

1 + g�h=�
;

with the soliton and scalar particles of sine-Gordon mapped to the spinor particle and

bound state of Thirring respectively. We see that the strong coupling of one theory

corresponds to the weak coupling of the other theory. This quantum equivalence was

proven by Coleman[1] and Mandelstam[2].

Later, from the spectrum of masses of SU(2) Yang-Mills-Higgs theory was conjectured

by Montonen and Olive [21] a duality between a theory with coupling e and another with

coupling e0 = 4�=e�h, as will be explained in section 3. In this duality, the monopoles

of the �rst theory would be mapped to the gauge particles of the second and vice-versa.

However this beautiful idea had some problems. The �rst was that the mass formula was

a classical formula and there was no evidence that it would keep the same form at the

quantum level. The second problem was how to have monopoles with spin 1 in order to

map to the gauge particles with have spin 1.
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We can solve this two problems by adding supersymmetry, more in particular, when

we have N = 4 supersymmetry, as will by explained in sections 4 and 5. The reason is

because, only in this case the monopole would belong to a supermultiplet like the one

of the gauge particles, containing a state with spin 1. Moreover, in N = 4 Super Yang-

Mills(SYM), the �-function vanishes and the mass formula have no quantum correction,

solving the second problem. Di�erently from N = 4 SYM which have exact duality,

Seiberg and Witten proposed that N = 2 SYM would have a kind of residual duality in

its e�ective theory, but unhappily this topic will not be discussed here.

Finally in section 6 we discuss a consistency test for the exact duality conjecture in

N = 4 SYM proposed by A. Sen. In this quite non trivial test one gets results in agreement

with the conjecture.

Although exact duality is not realized in nature, the more realistic theories could be

broken versions of the exact theory, having some residue of the duality, which could be

important for explaining quark con�nement for example.

2 Duality in Maxwell's Theory

2.1 Introduction

Maxwell's equations in the vacuum are given by

�!r � �!E = 0
�!r � �!B = 0

�!r ��!E + @
�!
B
@t

= 0
�!r ��!B � @

�!
E
@t

= 0

These equations are invariant under the electromagnetic duality transformation (
�!
E ;
�!
B ) !

(
�!
B ;��!E ). Indeed, one can enlarge this duality group. In order to see this, it is convenient

to write Maxwell equations in a manifestly Lorentz covariant form, by introducing the

�eld-strength F ��given by4

F i0 = Ei ; F ij = ��ijkBk: (1)

4In these lectures it will be adopted the metric signature (+;�;�;�), �0123 = 1, it will be set c=1

and f�; �g = 2g��
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De�ning �F �� = 1=2�����F��, it follows that

�F i0 = Bi : (2)

Then, Maxwell's equations become

@�F
�� = 0 ; @�

�F �� = 0 (3)

These two real equations can be combined in a single complex equation

@� (F
�� + i �F ��) = 0 (4)

It is easy to see that this equation is invariant under

F �� + i �F �� ! ei' (F �� + i �F ��) (5)

where ' is a constant phase. In terms of the electric and magnetic �elds,

Ei + iBi ! ei'
�
Ei + iBi

�
(6)

)
8><>:
Ei ! cos'Ei � sin'Bi

Bi ! sin'Ei + cos'Bi

Taking ' = ��=2, it gives the previous particular transformation (
�!
E ;
�!
B ) ! (

�!
B ;��!E ).

This beautiful duality transformation is lost when we consider Maxwell's equation in

the presence of matter,

@�F
�� = j�el ; @�

�F �� = 0 : (7)

These equations are clearly not invariant under (5). In order to restore the symmetry in

the presence of matter, Dirac(1931)[10] postulated the existence of particles with magnetic

charges and called them magnetic monopoles. In 1969, Schwinger[11] and Zwanziger[12]

improved Dirac's idea, considering the possibility of particles having both electric and

magnetic charges, and called them dyons. In either case, Maxwell's equations read

@�F
�� = j�el ; @�

�F �� = j�mag (8)

where j�mag is the magnetic current. As before, these equations can be combined as

@� (F
�� + i �F ��) =

�
j�el + i j�mag

�
(9)
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and it is invariant under (5) if the currents transform as

j�el + i j�mag ! ei'
�
j�el + i j�mag

�
: (10)

If the currents result from point particles, each one with electric and magnetic charge

(qa ; ga), we must have that

qa + i ga ! ei' (qa + i ga) : (11)

2.2 Dirac Quantization Condition

In electromagnetism without magnetic monopoles,

@�
�F �� = 0; (12)

which implies that F �� can be written as

F�� = @�A� � @�A� (13)

where A� is a well de�ned vector function in all spacetime. If A� solves (13), then

A0
� = A� + @�� (14)

will also satisfy (13)(i.e., it will give the same magnetic �eld
�!
B ).

The vector potential A� plays a central role in the quantum theory: a particle with

mass m and electric charge q satis�es the Schrodinger equation

i�h
@ 

@t
=

1

2m

�
i�h
�!r � q

�!
A
�2

 + qA0 (15)

In order that this equation to be invariant under (14), the wave-function must transform

as

 0 = e�
iq�
�h  (16)

Consider now a magnetic monopole at the origin. It will produce a magnetic �eld

�!
B m =

g

4�r3
�!r ) �!r � �!B m = g�3(�!r ) (17)
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Since
�!r ��!B 6= 0 we cannot have an

�!
A that is regular for all x�, satisfying (13) and (17).

However, we can use the ambiguity (14) and use vector potential in one part of space and

another vector potential in the other part of space.

Let us work in spherical coordinates and take

�!
A N =

g

4�i

(1 � cos �)

sin �
be� (18)

which satis�es
�!r � �!A N =

�!
B m . It can be seen that

�!
A N is well de�ned in all space,

except where � = �. Now let us take

�!
A S = � g

4�i

(1 + cos �)

sin �
be� (19)

which is well de�ned on all space except � = 0. Since

�!
A S =

�!
A N +

�!r� ; �(�) = � g

2�
� ; (20)

in the region where both are well de�ned, we can conclude that
�!r��!A S =

�!
B m. Therefore

�!
B m can be written in the form (13), with

�!
A N in the north hemisphere and

�!
A S in the

south hemisphere. In each hemisphere we shall have a wave-function  N and  S, which

will di�er by a phase (16). We know from quantum mechanics that wave-functions must

single-valued. But from (16) we can conclude that  N and  S can only be simultaneously

single-valued if

e�
iq�(�)

�h = e�
iq�(�+2�)

�h :

From (20) we see that this implies that

qg = 2�n�h n 2 Z : (21)

This can be extended (see for instance [3])to the situation with various electric charges

and magnetic monopoles, which results in the condition

qigj = 2�nij�h nij 2 Z : (22)

This quantization condition has a very important consequence: suppose that at least one

magnetic monopole exist in the whole Universe, with a magnetic charge g = g0. Then,

condition (22), would imply that all particles would have electric charges of the form

qi = niq0 where q0 =
2��h

g0
ni 2 Z ; (23)
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i.e., the electric charges would be integer multiples of a fundamental charge5 q0.

If one considers the more general case with not just magnetic monopoles but also

dyons, it results the Dirac-Schwinger-Zwanziger quantization condition[10][11][12]

qigj � qjgi = 2�nij�h (24)

A good property of this more general condition is that it is invariant under the duality

transformation (11). This can be easily seen by noting that this condition is the imaginary

part of (qi + igi)(qj + igj)�which is manifestly invariant under duality transformation 6.

3 Duality in Yang-Mills Theories

3.1 Yang-Mills Theories

As we know, electromagnetism is just a sector of the Weinberg-SalamModel which is built

from Yang-Mills theory with Higgs mechanism. So, a natural question one could raise is

if it is the existence of magnetic monopoles and/or dyons in Yang-Mills theories possible.

In 1974, 't Hooft[13] and Polyakov[14] independently discovered that Yang-Mills theory

with the gauge group SU(2), with scalar �elds in the adjoint representation(triplet) admits

magnetic monopoles as solutions for the equations of motion. This result was extended

to other gauge groups[15]. In order to keep the arguments general, we shall start by

considering Yang-Mills with an arbitrary gauge group and the scalar �eld in the adjoint

representation. There are two strong motivations to consider the adjoint representation:

the �rst is because, in this case the gauge group is always broken to a group which contains

a U(1) factor. This factor can be identi�ed as the electromagnetic U(1), from which we

can de�ne electric and magnetic charges. The second reason is because this U(1) factor

is compact (i.e. isomorphic to the circle) and then it can be shown that these theories

always possess magnetic monopole solutions. The action for this theory can be written as

S =
Z
d4x

�
�1

4
G�� �G�� +

1

2
D�� �D��� V (�)

�
(25)

5The same is true if one has various magnetic monopoles. For a detailed argument see [3].
6Note that Dirac's quantization condition is not invariant under the duality transformation (11), exept

for � = ��=2.
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V (�) =
1

4
�
�
�2 � a2

�2
(26)

where A � B � AaBa and � is assumed to be non-negative constant, a is a real number

and

(D��)a = @��a � efabcWb��c (27)

G��
a = @�W �

a � @�W �
a � efabcW �

b W
�
c (28)

The equations of motion are

(D�G
��)a = �efabc�b (D��)c (29)

(D�D��)a = ���a
�
�2 � a2

�
(30)

Further we have the Bianchi identity:

D�
�G�� = 0 (31)

The associated symmetric energy-momentum tensor is7

��� = �G�� �G�
� +D�� �D��� ���L (32)

Analogously to the Maxwell case, the non-Abelian electric and magnetic �elds are de�ned

as

Gi0
a = Ei

a ;
�Gi0 = Bi

a (33)

Then the total energy can be written as

E =
Z
d3x�00 =

Z
d3x

�
1

2

��
Ei
a

�2
+
�
Bi
a

�2
+
�
D0�

�2
a
+
�
Di�

�2
a

�
+ V (�)

�
(34)

Note that �00 � 0 and vanishes if and only if

Ei
a = Bi

a = (D��)a = V (�) = 0 (35)

A �eld con�guration which satis�es (35) everywhere, and therefore has total energy

E = 0, is the vacuum con�guration. The condition V (�) = 0 implies that �2 = a2.

7The best procedure to arrive to ��� is to couple the theory with a background metric g��. Then, ���

can be obtained by taking the variation of the action S with respect to g��, i.e. ��� / �S=�g�� jg!at
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We shall see presently that in Yang-Mills theories, the monopoles/dyons appear as

solutions of the equations of motion with �nite energy. So we shall now analyze the

�nite energy �eld con�gurations. In this case, the �eld con�guration must satisfy (35)

asymptotically, as r!1. Therefore, in this limit, we shall consider W a
� ! 1=r and

(�)2a = a2 ; D�� = 0 (36)

It is this non-trivial asymptotic con�guration for the scalar �eld that is responsible

for the spontaneous symmetry breaking.

We shall de�ne

F �� =
1

a
G�� � � (37)

This tensor has the important property that, at spatial in�nity, it satis�es Maxwell's

equations in vacuum (3), and therefore it is called the electromagnetic �eld-strength. To

prove this result one has just to use the condition D�� = 0, the scalar �eld equations

of motion and the Bianchi identity. This result is a consequence from the fact we have

mentioned before that spontaneous symmetry breaking of a gauge symmetry by a scalar

in the adjoint representation is always[3] of the form G! K
U(1) where G is the initial

gauge symmetry,K
U(1) is the residual symmetry where the U(1) factor is associated to

the Maxwell sector of the theory. Given this de�nition of electromagnetic �eld-strength,

the electric and magnetic charges are de�ned, as usual, as the surface integral

q =
Z
d2SiE

i =
Z
d2Si F

i0 =
Z
d2Si

Gi0 � �
a

(38)

g =
Z
d2SiB

i =
Z
d2Si

�F i0 =
Z
d2Si

�Gi0 � �
a

(39)

3.2 The Bogomol'nyi Bound on the Dyon Masses

Let's calculate the mass of an arbitrary �nite energy solution. To do so, we shall �rst use

the fact that in the rest frame M = E. Then, from (34), dropping some non-negative

terms gives

M �
Z
d3x

1

2

��
Ei
a

�2
+
�
Bi
a

�2
+
�
Di�

�2
a

�



CBPF-NF-008/00 10

=
Z
d3x

1

2

��
Ei
a � sin�Di�a

�2
+
�
Bi
a � cos�Di�a

�2�
+

+
Z
d3x

n
sin�Ei

a

�
Di�

�
a
+ cos�Bi

a

�
Di�

�
a

o
�

Z
d3x

n
sin�@i

�
Ei
a�a

�
+ cos�@i

�
Bi�a

�o
where � is an arbitrary constant and in the last step we have dropped the �rst integral,

which is non-negative, made integrations by parts, used the equation of motion (29) and

the Bianchi identity (31). Using the de�nition of electric and magnetic charges (38,39)

we can rewrite this mass bound as

M � a (q sin�+ g cos�) :

The sharpest bound occurs when the right side is a maximum, which happens for tan� =

q=g. Plugging this back in the original expression, we �nd the BPS bound [16][17]

M � a
q
q2 + g2 = ja (q + ig) j : (40)

This is a quite important result as will be seen later. It holds for any �nite energy

solutions of the equations of motion. A natural question one could ask is whether there

exist solutions whish saturate the bound. From an inspection at the way we derived the

bound we conclude that such kind of solutions (called BPS), with electric and magnetic

charges (q; g), must satisfy the following condition throughout the space,

D0� = 0 ; V (�) = 0; (41)

Ei
a = sin�

�
Di�

�
a
; (42)

Bi
a = cos�

�
Di�

�
a
; (43)

where tan� = q=g. These conditions are called BPS conditions. The condition V (�) = 0

can only be realized if � vanishes. However this condition must be understood as a limit

�! 0, in order to retain the boundary condition

�2 ! a2 as r!1 ;

responsable for the spontaneous breaking of gauge symmetry. Note that � ! 0 implies

that the scalar �eld is massless. It is not di�cult to prove that the BPS conditions
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(together with the Bianchi identity) imply the equations of motion (29) and (30) with

� = 0. Therefore any solution of the BPS condition automatically satis�es the equations

of motion.

It is very important to note that, doing the standard calculation of the gauge particle

masses, due to the spontaneous symmetry breaking, one obtains that their masses (for

the scalar �eld in the adjoint representation) satisfy

MW = ajqW j (44)

where qW is gauge particle electric charge. Therefore, the gauge particles satisfy the BPS

bound (40). It is also directly observable from the Lagrangian that the Higgs is massless

when � = 0, and so it satisfy the BPS bound.

3.3 The 't Hooft-Polyakov Monopole

We shall now see that Yang-Mills theories with scalar �elds in the adjoint representation

possess magnetic monopole solutions. For simplicity, from now on we shall only consider

Yang-Mills with the gauge group SU(2). The monopole solutions for other gauge groups

were obtained in [15]. Using some symmetry considerations (see [3]), 't Hooft[13] and

Polyakov[14] constructed the monopole solution, starting from a radially symmetric ansatz

�a =
ra

er2
H(aer)

W i
a = ��aij r

j

er2
[1�K(aer)] (45)

W 0
a = 0

where H and K are some arbitrary functions. Plugging this in the equation of motion,

we obtain that

�2
d2K

d�2
= KH2 +K

�
K2 � 1

�
�2
d2H

d�2
= 2K2H +

�

e2
H
�
H2 � �2

�
(46)

where � = ear. Moreover, putting 't Hooft-Polyakov ansatz in the expression for the total

energy (34), it can be obtained from the condition of �nite energy that

K ! 0 and H=� ! 1 for � !1
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K � 1 � O(�) and H � O(�) for � ! 0 (47)

There is no analytical solution for the equations (46) with the boundary conditions (47).

But the existence of solutions for these equations have been shown by some numerical

studies and proven rigorously by Taubes[18]. On the other hand, if one imposes the BPS

conditions (42), it would give rise to �rst-order di�erential equations. These equations

have closed analytical solutions:

K(�) =
�

sinh �
H(�) =

�

tanh �
� 1 (48)

which are solutions for (47) with � = 0 .

However, in order to obtain the value of the magnetic charge of 't Hooft-Polyakov

monopole, one need only use the boundary condition at � ! 1 (r ! 1) which implies

that

W i
a ! ��aij r

j

er2
; �a ! a

ra

r
for r!1 (49)

and therefore

Gij
a !

1

er4
�ijkr

ark =
1

aer3
�ijkr

r�a for r!1 : (50)

So, the asymptotic (Abelian) magnetic �eld is

Bi =
�Gi0 � �
a

!�1

e

ri

r3
(51)

This expression reveals that the magnetic charge of the 't Hooft-Polyakov monopole is

g = �4�

e
: (52)

A natural question one could rise is if the Dirac quantization condition holds here. We

shall shortly prove below that the electric charge takes the values8

q =

8><>:
0;�e�h for the adjoint repres.

� e�h
2

for the fundamental repres.
(53)

8Roughly speaking, it comes from the fact that the electromagnetic U (1) embedded in SU (2), is

generated by the T3 element which has eigenvalues �1; 0 in the 3 dim. irrep and �1=2 in the 2 dim.

irrep. On the other hand, by Noether procedure one obtains that q = e�hT3 (when the � angle vanishes).
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Therefore the smallest charge which might enter in the theory is q0 = e�h=2. Therefore,

we conclude that 't Hooft-Polyakov monopole satis�es Dirac quantization condition (22)

q0g = �2��h (54)

and g assumes the lowest value compatible with Dirac quantization condition. Note that

q0 is the electric charge of another particle since the 't Hooft-Polyakov is chargeless. We

obtained this electrically neutral monopole solution because we imposed the condition

W0 = 0. However Julia and Zee[19] obtained a spherically symmetric dyon solution

considering 't Hooft-Polyakov ansatz (45) but with

W 0
a =

J(aer)ra

er2
: (55)

One can then repeat the same steps as for the 't Hooft-Polyakov monopole. In particular

considering the BPS conditions (42) one obtains an analytical solution

�a(r) =
aH(� cos�)

cos�

�a

�2
(56)

W 0
a (r) =

aH(� cos�)

cot�

�a

�2
(57)

W i
a(r) = �a�aij �

j

�2
[1 �K (� cos�)] (58)

where the functions K and H are de�ned in (48) and we recover the 't Hooft-Polyakov

monopole (satisfying the BPS conditions) by putting � = 2�n. As we have seen before,

the electric charge of this dyon is

q = g tan� = �4�

e
tan� (59)

This is a classical result. As we shall see later, at the quantum level, the electric charge as

q = n�he=2 and therefore satis�es the Dirac-Schwinger-Zwanziger quantization condition

(24).

The reason why we have never observered a monopole/dyon is because if it existed its

mass would be huge in comparison with the particle accelerators we have today. We can

give a rough estimative of the monopole mass: from () we see that

Mm � a
4�

e
=MW�

�1 (60)
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where MW = ajqj = ae�h is the gauge particle mass and � = e2�h=4� is the �ne structure

constant. So if, for example, we consider MW = 100GeV and � = 1=137, we would �nd

Mm
�= 14TeV .

3.4 The Topological Origin of the Magnetic Charge

Let's now prove that the Dirac quantization condition holds not just for t'Hooft-Polyakov

but for any monopole solution. To do so, we must use that � should satisfy (36) asymp-

totically. Using the de�nition for the covariant derivative (27), with fabc = �abc , and

remembering the de�nition of vector product, we can rewrite the condition D�� = 0 as

�!
� ��!W� = �1

e
@�
�!
� (61)

Taking a vector product of this equation with
�!
� and using the identity u � (v � w) =

(u � w)v � (u � v)w we obtain that the gauge �eld asymptotically has the form

�!
W� =

1

ea2
�!
� � @�

�!
� +

1

a
A�

�!
� (62)

where

A� =

�!
W� � �!�

a
(63)

Then,
�!
G �� = @�

�!
W � � @�

�!
W � � e

�!
W � ��!W � =

1

a
F��

�!
� (64)

with

F�� =
1

a3e

�!
� �

�
@�
�!
� � @�

�!
�
�
+ @�A� � @�A� (65)

being the electromagnetic �eld-strength (37). It is interesting to note that asymptotically

the only non-zero component of the
�!
G �� is the component in the

�!
� direction which is

the generator of the electromagnetic U(1) and F�� satis�es Maxwell equations. So, far

from the monopole, only the electromagnetic �elds survive.

Then, the magnetic charge (39) will be

g =
�4�Nm

e
(66)
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where

Nm :=
1

8�a3

Z
dsi�ijk

�!
� �

�
@j
�!
� � @k

�!
�
�

(67)

So the magnetic charge depends on the asymptotic con�guration of
�!
� . This integral is

topological under continuous deformations of �. In order to prove this one should consider

a new con�guration �0 = �+��, where �� is in�nitesimal deformation and �0 also satis�es

the asymptotic conditions (36). This implies that

D��
�!
� = 0

�!
� � ��!� = 0 :

Using these conditions is possible to prove that �Nm = 0. This means that Nm is invari-

ant under in�nitesimal deformations of � and hence under any deformation achieved by

iterating these in�nitesimal deformations. Moreover it can be proven Nm can only take

integer values (see [20]). Therefore the magnetic charge is topologically conserved and

quantized in units of 4�=e, i.e.

g =
4�

e
nm (68)

Remembering that the smallest electric charge is q0 = e�h=2, then

q0g = �2�nm�h ; (69)

and therefore we see that Dirac's quantization condition holds for any magnetic monopole

of this theory.

3.5 The Montonen-Olive Duality Conjecture

In the previous sections we have seen that the mass for the BPS-monopole satisfying

the BPS is mM = ajgj = 4�a=e. On the other hand, due to the spontaneous symmetry

breaking, the gauge particles W �
� = (W �

1 � iW �
2 )=
p
2, which have electric charges qW�

=

��he, will acquire masses mW�
= a�he and W3 remains massless(photon) like the Higgs

(remember V=0)
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state elec. char. mag. char. mass spin

Photon 0 0 0 1

Higgs 0 0 0 0

W� q = �e�h 0 ajqj = ae�h 1

M� 0 g = �4�
e

ajgj = 4�a
e

?

From this table we observe the following features

� all particles saturate the Bogomol'nyi bound m = ja (q + ig) j

� the mass of the BPS-monopole (W�)of one theory with coupling constant e is equal

to the mass of the W�(BPS-monopole) of a dual theory with with coupling e0 =

4�=e�h.

Based on these observations, Montonen and Olive[21] conjectured that at the quantum

level, the monopoles9 of one theory would be described by the W� particles of the dual

theory. Similarly the W�'s of the original theory would be the monopoles of the dual

theory. For example, the S-matrix element for two monopoles in one theory would be the

same as two W�'s in the dual theory.

Note that two theories have the same mass spectrum at the classical level. That is the

�rst indication that the two theories can be equivalent. For two theories to be equivalent

(or dual) they must have the same S-matrix. So, in particular, they must have the same

mass spectrum at the quantum level which gives the pole structure for the S-matrix.

So far there is no rigorous proof for this conjecture. What people have done since then

was to do some non-trivial tests to check the consistence of the conjecture. The �rst test

was made be Montonen and Olive together with the proposal of the conjecture[21]. This

test concerns the fact that a static M+M+ pair exert no forces on each other, which was

proven by Manton[22]. (This is also a consequence of the existence of static BPS-monopole

solutions with magnetic charge 2. ) As a consequence of the conjecture, forces between

static W+W+ pair should not exist. This seems quite strange because the two gauge

particles have same electric charges. However the static potential between the W+W+ has

9From now on we shall only consider BPS-monopoles, but we shall call them just monopoles.
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contributions from exchange of photons and of Higgs particles. Using Feynman rules[21],

one �nds a repulsive potential of modulus q2=r from the photon exchange and an attractive

potential of same modulus from the Higgs exchange, which cancel each other, consistently

with the conjecture. The Higgs produces a potential 1=r because it is massless in the

Prasad-Sommer�eld limit.

Note that this duality conjecture is not a symmetry, because it relates a theory with

one value of the coupling constant with the same theory with a di�erent coupling constant.

There are other duality conjectures, in which not only the value of the coupling constant

is di�erent, but the theory as well. One example is the equivalence of sine-Gordon and

massive Thirring model in 1 + 1dimensions.

3.6 The Witten E�ect

The Yang-Mills-Higgs action (25) is not the most general we can construct. We can add

to it the topological � term,

S� =
Z
d4x

��he2

32�2
eG�� �G�� (70)

which breaks CP symmetry. Since the � term is a total derivative, it will not change the

equations of motion and since it doesn't depend on the metric, it will not contribute to

the energy-momentum tensor. However, as has been pointed out by Witten[23], it will

change the spectrum of electric charges. Let us see how it happens: under a general

in�nitesimal gauge transformation f = ei"(x),

�� = [i"; �]

�W� = �1

e
D�"

Consider the particular transformation

f = ei�
b� where b� =

�

j�j ; (71)
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and � is a in�nitesimal global parameter. Clearly, under this transformation the Higgs

�eld is left invariant while

�W� = �1

e
�D�

b� :
Then, the Noether charge which generates this transformation is

N =
1

�

Z
d3x

( 
�G0i +

��he2

8�2
eG0i

!
�
�
�1

e
�Di

b��) :

Using the equations of motion, the Bianchi identity and the de�nitions of electric and

magnetic charges (38)(39), one �nds that

N =
1

e
q � ��he

8�2
g : (72)

At the quantum level the operator

G� = ei�N=�h (73)

acts on the asymptotic states jW�; � > as[24]

G�jW�; � >= jW 0
�; �

0 > (74)

where

W 0
� = fW�f

�1 + ief@�f
�1 with f = ei�

b� (75)

�0 = f�f�1 = � (76)

Since the transformation acts on asymptotic states, � satisfy the vacuum conditions:

�2 = a2 and D�� = 0. Then it is possible to show at R!1 and � = 2�

f = e2�i
b� = e2�iT3 (77)

and W 0
� = W� (remembering that [T3; T�] = �T�). Therefore,

e2�iN=�hjW�; � >= jW�; � > (78)

for any asymptotic state jW�; � >, which implies that e2�iN=�h = 1 and therefore using

(72) it can be concluded that
1

e
q � ��he

8�2
g = ne�h ; (79)
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where ne is an arbitrary integer. Using the magnetic charge quantization condition g =

4�nm=e, we arrive out the electric charge quantization condition

q = �he

 
ne +

�

2�
nm

!
ne; nm 2Z (80)

Note that if � vanishes, we recover the standard quantization condition q = ne�he that we

have mentioned in (53), which holds for the �elds in the adjoint representation. If there

exists a �eld  , say, in the fundamental representation, under a gauge transformation

 0 = f . If we take � = 2�, (77) continues to be true but now T3 is the diagonal Pauli

matrix with eigenvalues �1=2, and therefore  is not invariant. In order to be invariant,

we must consider � = 4� instead, which results the charge quantization

q =
�he

2

 
ne +

�

�
nm

!
ne; nm 2Z (81)

and we obtain (53) for the fundamental representation when � = 0. A natural question

one could ask is if the Dirac-Schwinger-Zwanziger quantization condition, which has been

obtained for Maxwell theory, holds for Yang-Mills theories. It is direct to check that it

does. In order to see this, consider two dyons with electric and magnetic charges (qa; ga)

and (qb; gb), which satisfy the electric and magnetic charges quantization conditions (81)

and (68) and therefore

qagb � qbga = 2��h
�
naen

b
m � namn

b
e

�
= 2��hZ (82)

3.7 The SL(2,Z) Duality Conjecture

For simplicity, let us consider that all �elds are in the adjoint representation. Then using

the electric and magnetic charge quantization conditions10,

q + ig = q0 (ne + �nm) where q0 = �he ; � =
�

2�
+ i

4�

�he2
: (83)

Since the numbers ne and nm can only take integer values, the set of possible states of

the theory form a lattice in the a(q+ ig) plane. Note that we have an in�nite number of

10If there are �elds in the fundamental, using the charge quatization condition (81), it convenient to

de�ne q0 = �he=2 and � = (�=�) + i(8�=he2)
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possible states. The photon is associated with the point (nm = 0; ne = 0), the W�
� gauge

particle with (0;�1) and the 't Hooft-Polyakov (anti)monopole M� with (�1; 0). The

existence of other states have been proven by A.Sen [25] as we shall explain later. De�ning

p
u = aq0 ; (84)

p
u� and

p
u form basis vectors for the lattice. The ratio of these vectors gives � . Note

that � contains all information about the couplings of the theory: from its real and

imaginary part we obtain (e; �). If we rescale W� ! eW� and � ! e�, the Yang-Mills

action can be rewritten in the form

S

�h
= �

Z
d4x

�

64�i

��
G�� + i eG��

�2 � 4D�� �D��
�
+ hc (85)

where the � dependence is shown explicitly. Therefore, di�erent � correspond to theories

with di�erent couplings.

The mass formula (40) for a BPS state jnm; ne; � >, for a theory with coupling � , can

be put in the form

M(nm; ne; � ) = ja(q + ig)j =
�������
�
nm ne

�0B@
p
u�
p
u

1CA
������� : (86)

In the original Montonen-Olive conjecture, the authors considered just the existence of

the gauge particles W�; 0 and the (anti)monopoles M� and based their conjecture in

the observation that their masses ful�lled the relations

M(0;�1; � ) = M(�1; 0;�1=� ) (87)

M(�1; 0; � ) = M(0;�1;�1=� ) (88)

M(0; 0; � ) = M(0; 0;�1=� ) (89)

where they considered � = 0 and so � = i(4�=�he2). Therefore, each state of the theory

with coupling � can be mapped to a state of the theory with coupling �1=� , such that the

mass of the two states is the same.And the two theories have the same mass spectrum at

the classical level. That was the �rst indication that the two theories can be equivalent.

In the Montonen-Olive conjecture just the existence of gauge particles and monopoles

was considered. Let us now extend this conjecture, considering the existence of an arbi-

trary subset of the states of the lattice.
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Like in the Montonen-Olive conjecture, we want to map each state jnm; ne; � > of a

theory with coupling � , to a state jn0m; n0e; � 0 > of a theory with coupling � 0, such that

M(ne; nm; � ) =M(n0e; n
0
m; �

0). From (86) we obtain�������
�
nm ne

�0B@ p
u�
p
u

1CA
������� =

�������
�
n0m n0e

�0B@
p
u0� 0

p
u0

1CA
������� (90)

In order to this condition to be true, we can take8>>>>><>>>>>:

0B@
p
u0 � 0

p
u0

1CA = eiM

0B@ p
u�
p
u

1CA
�
n0m n0e

�
=

�
nm ne

�
M�1

M :=

0B@ A B

C D

1CA (91)

where  2 R. Since nm; ne; n
0
m; n

0
e 2 Z , we must have that all entries in M and M�1

are integers and therefore A; B; ; C ;D 2 Z and detM = AD � BC = �1. From (91)

we obtain that

� 0 =
A� +B

C� +D
u0 = e2i (C� +D)2 u (92)

We can then obtain that

Im� 0 =
(AD �BC)

jC� +Dj2 Im�

Now, since the coupling e is a real number, we must have that Im�; Im � 0 > 0 which

implies that AD � BC > 0 and therefore detM = 1. So M 2SL(2,Z). However not
all transformations are allowed. The possible transformtations depend on the subset of

states we take and quantum numbers of the states (like spin, representation under gauge

group, etc.) which may forbid some of the maps. The set of all possible transformations

form a subgroup of SL(2,Z) which will shall denote by �: So we can conclude saying

that we extended Montonen-Olive conjecture, relating an in�nite number of theories with

di�erent coupling constants but with the same mass spectrum at the classical level and

the theories are related by transformations which form a subgroup of SL(2,Z). Clearly we

would like to have the same quantum mass spectrum.

Notice that, from (91),

a0(q0 + ig0) =
�
n0m n0e

�0B@
p
u0� 0

p
u0

1CA = ei
�
nm ne

�0B@ p
u�
p
u

1CA = eia(q + ig)
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and we can identify ei with the phase which appear in Maxwell's duality.

From the Montone-Olive conjecture or its generalization one could raise the following

questions:

1. The gauge particles have spin 1. Do the monopole (or dyons) also have spin1??

Clearly one can only map states with the same number of degrees of freedom.

2. The mass formula holds at classical level. Will the quantum corrections destroy it?

These two questions can be answered with the introduction of supersymmetry as will

be explained in the next sections. Before that it would be interesting to say that it was

proved by Witten[26] and Verlinde [27](see also [28] for a review) using path integral

approach showed that Maxwell theory has a SL(2; Z) duality (or a subgroup of it) at the

quantum level.

4 Supersymmetry.

4.1 Representations without central charge.

There are many good references on supersymmetry. Here we shall give just a very brief

review on some points of supersymmetry which will be useful for us. For further details

we recommend [29][30].

The supersymmetry algebra have the relations11

n
Qi
�; Q

jy
�

o
= 2����P��

ij ; (93)n
Qi
�; Q

j
�

o
= 0 ; (94)n

Qiy
� ; Q

jy
�

o
= 0 ; (95)

where �� = f1;�!� gare the Pauli matrices, � � = 1; 2 and i; j = 1; 2; :::; N with N being

the number of supersymmetries. Moreover we have the commutation relation

h
Qi
�; P

�
i
= 0 )

h
Qi
�; P

�P�
i
= 0 :

11For simplicity we shall not use dotted and undotted indices.
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Since P �P� gives the mass of the state, this last commutation relation implies that all

states in a supersymmetry representation have the same mass. Let us consider the mass-

less and massive representations separately:

1. Massless representations

For a massless state we can always choose a referential frame such that P� = (E; 0; 0; E)

where E is the state energy. Then the commutation relation (93) will assume the form

n
Qi
�; Q

jy
�

o
= 4

0B@ 1 0

0 0

1CA
��

�ij : (96)

Remember that in a unitary representation, all states j >must be such that jj j > jj � 0

and jj j > jj = 0 if and only if j >� 0. Now taking � = 2 = � and i = j in (96) we

obtain

0 =<  j
n
Qi

2; Q
iy
2

o
j >= jjQiy

2 j > jj2 + jjQi
2j > jj2 (97)

which implies that Qiy
2 j >= 0 = Qi

2j > for any state j >, considering a unitary

representation. So for massless representations

Qi
2 = 0 = Qiy

2 (98)

Then, we de�ne the generators

ai =
1

2
p
E
Qi

1 ; a
iy =

1

2
p
E
Qiy

1 ; (99)

satisfying the anticommutation relations

n
ai; ajy

o
= �ij ;

n
ai; aj

o
= 0 =

n
aiy; ajy

o
; (100)

which form a Cli�ord algebra with 2N generators. It is well known that a Cli�ord algebra

with n generators has a unique unitary irreducible representation of dimension 2n=2 . So a

massless irrep has dimension 2N . Let us analyze this irrep: let J3 be the helicity operator

which satis�es the commutation relation

h
J3; a

iy
i
= �1

2
aiy : (101)
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If J3j� >= �j� >, then J3aiyj� >= (��1=2)aiyj� > and therefore aiyj� >/ j��1=2 >. So

a massless irrep built from a highest state j� >, such that aij� >= 0 for i = 1; :::; N has

the structure shown in table below12, where we can see explicitly that the total number

of states in a massless irrep is 2N .

States #of states helicity

j� > 1 �

aiyj� > N �� 1=2

ai1yai2yj� > ; i1 > i2

0B@ N

2

1CA �� 1

...
...

...

ai1yai2y � � � aiNyj� > ; i1 > i2 > � � � > iN 1 ��N=2

Thefore we shall have

N=1: j� >; j�� 1=2 > ,

N=2: j� >; 2 j� � 1=2 >; j�� 1 >,

N=4: j� >; 4 j� � 1=2 >; 6 j� � 1 >; 4 j� � 3=2 >; j�� 2 >.

Usually these irrep's are not CPT invariant. For these cases, we must add the CPT

conjugate with opposite helicities.

The CPT invariant massless representations with maximal helicity 1 or less will be

the following:

12Remember that ayi1a
y
i2
j� >= �ayi2a

y
i1
j� > for i1 6= i2 so these two states should be count as the same

state.
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N=1:

J3

1 x

1/2 x x

0 x o

-1/2 o o

-1 o

We used \o" for the irrep CPT conjugate to the one with \x". The two irreps form

a CPT invariant supermultiplet. We see that for N=1 there are two possible on-shell

supermultiplets with maximal helicity 1: in the �rst column we have 1 Majorana spinor

and 2 real scalars and in the second column 1 vector and 1 Majorana spinor.

N=2:

J3

1 x

1/2 x o xx

0 xx oo x o

-1/2 x o oo

-1 o

For N=2 there is the hypermultiplet in the �rst column and the vector supermultiplet

in the second column. For the hypermultiplet we have put two irrep not because of CPT

symmetry, since each irrep by itself is CPT invariant, but because of SU(2)R symmetry.

The hypermultiplet is composed of 2 Majorana spinors and 4 real scalars. The vector

supermultiplet contains 1 vector 2 Majorana spinors and 2 real scalars



CBPF-NF-008/00 26

N=4

J3

1 x

1/2 xxxx

0 xxxxxx

-1/2 xxxx

-1 x

For N=4 there is only one possibility which is the vector supermultiplet which is a

CPT self-conjugate irrep. It contains 1 vector, 4 Majorana spinors and 6 real scalars.

It is not di�cult to see that, for N>4 there is no supermultiplet with maximal helicity

1 or smaller for the massless case. One could ask why we didn't talk about N=3. It is

straightforward to check that if one tries to construct a CPT invariant supermultiplet it

will result the N=4 vector supermultiplet. And since it has the same �eld content, the

dynamics will be governed by the same Lagrangian and therefore the N=3 supersymmetry

will be enhanced to N=4.

2. Massive representations

For a massive state we can always choose a rest frame such that P� = (M; 0; 0; 0), where

M is the state mass. In this frame the commutation relation (93) will take the form

n
Qi
�; Q

jy
�

o
= 2M

0B@ 1 0

0 1

1CA
��

�ij : (102)

We de�ne the generators

ai� =
1p
2M

Qi
� ; a

iy
� =

1p
2M

Qiy
� ; (103)

satisfying the anticommutation relationsn
ai1; a

jy
1

o
= �ij ;

n
ai2; a

jy
2

o
= �ij ; (104)

and the other anticommutators vanishing. This is a Cli�ord algebra with 4N generators

which has a unique unitary irreducible representation of dimension 22N . Therefore we

shall have
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N = 1 N = 2 N = 4

p2 = 0 2 4 16

p2 > 0 4 16 256

But then we arrived at a paradox: consider massless N=4 super Yang-Mills. For this

case we must use the vector supermultiplet which has 16 states. But now, suppose we

perform a spontaneous symmetry breaking of the gauge symmetry. In this case the theory

will becomemassive and then we would need to pass from 16 massless states to 256 massive

states (some of them with spin graeter than 1). But the Higgs mechanism preserves the

number of states and helicities. How can we solve this paradox? The solution is in the

next subsection[31].

4.2 Representations with central charges.

There exist the possibility to add central chargers to (94). The must general form for

these anticommutators in 3+1 dimensions is

n
Qi
�; Q

jy
�

o
= ����P��

ij + ����Z
ij
� ;

�
Z ii
� = 0

�
(105)n

Qi
�; Q

j
�

o
= ���Z

[ij] + �����Z
(ij)
�� (106)

One can check directly that the total number of generators in the rhs is 8N2+2N , which

is the same dimension as the lhs, which is a symmetric 4N � 4N matrix. The central

charges Z ij
� and Z(ij)

�� are related to topological charges for strings and domain walls.

They are important but since we are dealing just with monopoles, we shall consider these

central charges equal to zero. In this case, since Z [ij]is antisymmetric, we can rotate the
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Qi
� unitarity in such a way that Z [ij] takes the form

Z [ij] =

0BBBBBBBBBBBBBBBBBBBBBBB@

0 z1

�z1 0

0 z2

�z2 0
. . .

. . .

0 zN=2

�zN=2 0

1CCCCCCCCCCCCCCCCCCCCCCCA
where the zi can be chosen to be real. To simplify the discussion we have assumed that

N is even, but one should have in mind that if N is odd, there will of course be a zero

1 � 1block in the above normal form. Clearly we can only have Z [ij] 6= 0 for N � 2 .

1. Massless representations.

Once more we we can take P� = (E; 0; 0; E). As before, from the �rst anticommutator

(105) (with Z ij
� = 0) we obtain the condition (98) Qi

2j >= 0 = Qiy
2 j >. Then, from the

second anticommutator (106) (with Z ij
�� = 0 ) it results

0 =<  jfQi
1; Q

j
2gj >= 2Z ij <  j > :

As <  j >> 0 for any j >6= 0 it implies that

Z ij = 0

for the massless representation, and we return to the situation of the previous subsection

without central charge.

2. Massive representations.

Let us take the rest frame and for simplicity consider N = 2 where Z [ij] = �ijz. Then,

n
Qi
�; Q

j
�

o
= 2����

ijz :
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De�ning

a�� =
1

2

�
Q1
� � ���Q

2y
�

�
which satisfy the anticommutation relation

�
a�� ;

�
a��
�y�

= ��� (M � z) ; (107)

where the other anticommutators vanish. Taking � = � and putting inside a \sandwich"

of states it results that,

(M � z) jj j > jj2 =<  jfa�� ; a�y� gj >= jj a�y� j > jj2 + jj a�� j > jj2 � 0

Since j > is an arbitrary state, we must have M � z � 0 or

M � jzj : (108)

In the case of N > 2 one obtains (see for instance [29]) that M � jzrj, r = 1; :::N=2.

For simplicity let us consider that all zr are equal. Then we recover (108) for a generic

N . Now we have two possibilities: if M > jzj, (107) will be a Cli�ord algebra with 4N

generators with a unique unitary irrep of dimension 22N . It is called long representation.

On the other hand, if M = jzj, the anticommutator of ai�� (ai+� ) vanishes for z positive

(negative). Then we can repeat the same argument of the massless representation and

conclude that we have a Cli�ord algebra with 2N generators with a unique unitary irrep

of dimension 2N , which is called a short representation. In summary, we have that

1. Massless case ) irrep's dimension = 2N

2. Massive case

(a) M > jzj ) irrep's dimension = 22N

(b) M = jzj ) irrep's dimension= 2N

Therefore the paradox can be solved: after symmetry breaking, the massless representa-

tions which \become" massive must satisfy M = jzj in order to continue with the same

dimension. Let us now calculate the central charge for N = 2; 4 super Yang-Mills.
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5 Super Yang-Mills and central charges.

5.1 Extended Supersymmetry

Consider in a Minkowski space of dimension D the action

S =
Z
ddxTr

�
�1

4
GMNG

MN +
i

2
��MDM�

�
(109)

for an arbitrary compact gauge group where � is a Majorana spinor in the adjoint repre-

sentation, �M are the gamma matrices and the indices M;N = 0; 1; : : : ;D � 1. Consider

the supersymmetry transformations

�WM =
i

2

h
��M�� ��M�

i
; (110)

�� =
1

2
�RSG

RS� ; (111)

�� = �1

2
��RSG

RS ; (112)

where � is a Majorana spinor parameter and �RS = 1=2[�R;�S]. One can show that

the above action is invariant (up to a total derivative) to these transformations, by using

that13

�M�RS =

24gMR�S � gMS�R � (�1)D=2

(D � 3)!
�MRSN1���ND�3�D+1�N1 : : :�ND�3

35 ;

�RS�M =

24�gMR�S + gMS�R � (�1)D=2

(D � 3)!
�MRSN1���ND�3�D+1�N1 : : :�ND�3

35
and the identity

Tr
n
��M

h
�; �WM

io
= 0

which holds for

1. D=3, if � is a Majorana spinor,

2. D=4, if � is a Majorana spinor,

3. D=6, if � is a Weyl spinor,

13where �D+1 � �0�1 : : :�D�1.
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4. D=10, if � is a Majorana-Weyl spinor.

Therefore, for these 4 cases only, the action (109) will invariant under N = 1 supersym-

metry. There is a simple way to understand this result by noting that the number of

on-shell bosonic degrees of freedom, which is equal to D � 2, is equal to the fermionic

degrees of freedom, which is equal to x2[D=2] where x = 1=2 if � is a Majorana or Weyl

spinor and x = 1=4 if � is a Majorana-Weyl spinor. The notation [D=2], means the

greater integer inside D=2. Only for the above 4 cases, these two numbers coincide. Note

that this equal number of bosonic and fermionic degrees of freedom is a necessary but not

su�cient condition in order to have supersymmetry.

As a consequence of this invariance one obtain the supercurrent

JM =
1

2
i�RS�

MTr
n
GRS�

o
; (113)

and from it we obtain the supercharges Q which are spinors satisfying the same conditions

as � in the four cases cited above.

From the N = 1 supersymmetric actions in D = 6 and D = 10, we can write down

the actions for super Yang-Mills with N = 2 and N = 4 supersymmetries in D = 4

dimensions, using so-called dimensional reduction. Let us divide theD dimensional space-

time components xM in a part x�, with � = 0; 1; 2; 3 being the four dimensional space-time

indices, and a part xr, with the indices r; s running over the compacti�edD�4 dimensions.

We also consider that the �elds don't depend on these compacti�ed coordinates. The

gauge �eld components Wr transform as scalars under the four dimensional space-time

Lorentz transformations. Therefore we shall de�ne �r �Wr (with the lower index!). Then

the dimensional reduction of GMN gives

GMN =

8>>>>><>>>>>:
G�� = @�W� � @�W� + ie [W�;W�]

G�r = @��r + ie [W�; �r] = D��r

Grs = ie [�r; �s]

(114)

Then the compacti�cation of the bosonic part of the Lagrangian results in

L = Tr
�
�1

4
GMNG

MN
�
= Tr

(
�1

4
G��G

�� +
1

2
D��rD

��r � e2

4
[�r; �s] [�r; �s]

)



CBPF-NF-008/00 32

where we can see that the pure Yang-Mills Lagrangian inD dimensions under dimensional

reduction will result in an Yang-Mills-Higgs theory in four dimensions with D � 4 scalar

�elds in the adjoint representation of the gauge group. The fermionic part must be

analyzed in each dimension separately. We refer to [32] for more details. The important

thing to have in mind is that the supercharge Q� in D = 6 is a Weyl spinor with 8

real components which, under dimensional reduction, will result on 2 Majorana spinor

supercharges Qi
�, i = 1; 2, with 4 real components each. That is the reason why we obtain

N = 2 in D = 4 from dimensional reduction of N = 1 in D = 6. Similarly the supercharge

in D = 10 is a Majorana-Weyl spinor with 16 real components which, under dimensional

reduction, will result in 4 Majorana spinor supercharges Qi
� , i = 1; 2; 3; 4, generating the

N = 4 supersymmetry.

We shall now calculate the algebra of supercharges for N = 1 in D = 6 and D = 10

and then, using dimension reduction, obtain N = 2 and N = 4 algebras for D = 4. The

strategy is the following:

1. Use the fact that under a generic symmetry transformation of a quantity O

��O = i�h [�Q;O]

where Q is an arbitrary charge (or symmetry generator) and � is the transformation

parameter. In particular, for supersymmetry

��Q� = i�h
h
��Q�; Q�

i
(115)

where �� is the supersymmetry transformation parameter. Then we calculate explicitly

the supersymmetry transformation of the supercharge and write it as

��Q� = ��X�� : (116)

So, from (115) and (116), remembering that �� has a fermionic character, we conclude

that n
Q�; Q�

o
=

1

i�h
X�� : (117)

Let us now calculateX��. From supercurrent expression (113), doing a supersymmetry
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transformation[33]

��JA = �
�
2iTAB�B � 1

4
iTr (GBCGDE) �

ABCDE
�
+ fermions ;

where we have used the equation of motion, �ABCDE = 1=5!�[A : : :�E] and TAB is the

energy-momentum tensor

TAB = Tr
�
GACGB

C +
1

4
�ABGCDGCD +

1

2
i��ADB�

�
:

Now using that

��1����k =
(�1)k (k�1)

2 +D (D�1)
2

(D � k)!
��1����D��k+1����D�D+1 ;

��D+1 = � ;

where the last equality is due to the fact that � is a Weyl spinor. Let us now analyze each

dimension separately:

1. D = 6 :

��JA = 2i�
�
TAF + �AF

�
�F ;

�AF � 1

8
�ABCDEFTr (GBCGDE) ;

where we used ��ABCDE = ��ABCDEF�F in D = 6. Note that TAB is symmetric

whereas �AB is antisymmetric. Moreover �AB is conserved without use of the equa-

tions of motion and it doesn't depend on the metric. So we can say that �AB is a

topological current. Since �Q� =
R
d5x�J0

�, using (116) and (117), we obtain that

n
Q�; Q�

o
=

1

�h
2���N

�
PN + ZN

�
(118)

with

PN =
Z
d5xT 0N ;

ZN =
Z
d5x�0N :
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So we see that N = 1 super Yang-Mills in D = 6 has a central charge which is

a vector. In reality, it is not very rigorous to say that it is a central charge the

of supersymmetry algebra since it has a non trivial commutation relation with the

Lorentz generators.

2. D = 10 :

��JA = 2i�
�
TAF�F + �ABCDEF�BCDEF

�
�A1���A6 � 1

5!
�A1���A10Tr (GA7A8GA9A10) ;

where �A1���A6 is also conserved without use of the equations of motion and doesn't

depend on the metric. So �A1���A6 is a topological current. Then we obtain

n
Q�; Q�

o
=

1

�h
2
�
PN���N + ZABCDE���ABCDE

�
(119)

with

PN =
Z
d5xT 0N ;

ZABCDE =
Z
d5x�0ABCDE :

So we see that N = 1 super Yang-Mills in D = 10 has a central charge which is a

5-form(since it is completely antisymmetric).

Doing the dimensional reduction either from D = 6 or D = 10 to D = 4 we �nd that the

central charge for N = 2 and N = 4 super Yang-Mills is[31]

z = a (q + ig) :

Therefore, the mass of the short representation is

M = jzj = ja (q + ig) j :

However, we have seen before in (40) that, monopoles, dyons and gauge particles satisfy

this mass formula exactly. So they must belong to short representations.
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We have seen that N = 4 has a unique short representation. Therefore, we conclude

that the gauge particles, the monopoles and dyons must belong to vector supermultiplets

with the same spin content, having 1 vector, 4 Majorana spinors and 6 scalars. That gives

an a�rmative answer for the �rst question if duality transformations are maps preserving

the number of degrees of freedom. So the Montonen-Olive (or the more general SL(2; Z)

) conjecture is in good shape, at least for N = 4 super Yang-Mills.

The fact that the monopole in N = 4 belongs to the vector supermultiplet was con-

�rmed explicitly by Osborn[33] using semiclassical methods.

For N = 2 the situation is a little more complicated since there are two short rep-

resentations. The gauge particles belong to a vector supermultiplet and the quarks to a

hypermultiplet. It was shown by Osborn[33] that the monopoles belong to a hypermulti-

plet, like the quarks. So, the original Montonen-Olive conjecture, of a mapping between

gauge particles and monopoles, cannot work in N = 2 super Yang-Mills since they be-

long to di�erent supermultiplets with di�erent spin content. However, it was proposed

by Seiberg and Witten[34][35] that for N = 2 one should think about a duality between

monopoles and quarks. In reality, they consider N = 2 SU(2) Super Yang-Mills with Nf

quarks, with Nf = 0; :::; 4. They proposed that the duality transformations would be a

subgroup of SL(2; Z) and that this subgroup would depend on the number Nf of quarks.

Moreover this duality would hold not for the original theory (also called microscopic),

but for the e�ective theory in which one considers just the massless modes. We will not

discuss this topic, and continue to analyse the original Monotonen-Olive proposal or its

SL(2; Z) extension.

5.2 The �-function and the quantum corrections to Super Yang-

Mills

The second question we have raised about the duality conjecture was concerning to the

quantum corrections to the mass formula. We have found the mass formula (86) which

holds at the classical level and which was the key ingredient for the formulation of the

conjecture. The question is if the quantum corrections spoil this mass formula. In order
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to answer this question we must use the � -function which for a generic Yang-Mills theory,

for an arbitrary gauge group is given by

� �
�
�11

6
�Gauge +

F

3
�Weyl +

S

6
�scalars

�
e3 +O(e5) (120)

where � is the Dynkin index of the representation, F is the number of Weyl spinors and

S is the number of complex scalars.

Consider N = 2 SU(Nc) Super Yang-Mills with NF quarks in the fundamental rep-

resentation. Remember that � = 1 for the adjoint representation and � = 1=2 for the

fundamental representation of SU(Nc) and that the gauge particle is a vector super-

multiplet with 1 vector, 2 Weyl spinors and 1 complex scalar, and the quarks are in a

hypermultiplet with 2 Weyl spinors and 2 complex scalars. Then, using (120) it results

that

� �
�
�Nc +

NF

2

�
e3 : (121)

This result is exact! For N = 2 (and N = 4 ) the � -function receives just one-loop con-

tributions(in the pertubative expanssion). The reason for this is because at the quantum

level

��� �
�(e)

e3
[Tr (G��G

�� ) + susy terms] : (122)

But ��� and @�J
�
5 belong to the same supermultiplet in N = 2 where, where J�5 is the

chiral current. Since @�J
�
5 receives only one loop quantum contributions from the chiral

anomaly, the same must be true for ��� and consequently for �(e) using (122).

From (121) we see that � � 0 only for NF = 2Nc and in particular for NF = 4

for SU(2) . Therefore,it is only in these cases the coupling constant e doesn't receive

quantum corrections. The same is also true for � since in these cases the chiral anomaly

vanishes. That couplings do not receive quantum corrections implies that the mass also

will not receive quantum corrections and therefore the mass formula (86) also holds at

the quantum level.

For N = 4 Super Yang-Mills there is just the vector supermultiplet and it is straight-

forward to prove that

� � 0 :
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Like in N = 2, this result is exact and there is no quantum correction to the coupling

constants e and �. So, once more the mass formula (86) also holds at the quantum

level. And therefore the duality conjecture remains in good shape for N = 4 Super

Yang-Mills(SYM).

6 Sen's test for duality conjecture.

In this section we shall submit the duality conjecture to another test which was proposed

by A. Sen[25]. Let us now assume that SL(2; Z) duality is true for N = 4, note the

consequences and check if they are true.

Let us take the duality transformation given in (91). The gauge particle with (nm =

0; ne = 1) is mapped to a state with (nm = �C; ne = A). From the condition that

AD � BC = 1 is implied that A and C are coprime numbers, that is, they don't have

a common factor (other than �1 ). Indeed, if n were a common factor: A = nA0 and

C = nC 0 for integers A0 and C 0 we would have that n(A0D�BC 0) = 1 . But (A0D�BC 0)

is an integer, which forces n = �1. A BPS state (nm ne) with nm and ne coprimes is

stable. This states are indicated in �g. 1.1 with �. So if SL(2; Z) duality is true in

N = 4 SYM we can say the following[25]: \The existence of the gauge particle W+ with

(nm = 0; ne = 1) in N = 4 SYM with coupling � implies the existence of stable particles

(nm ne), with ne and nm coprime with coupling � 0. We assume that W+ exist for all

values of � in the complex upper plane. In that case the other states (nm ne) must also

exist for all values of � in the upper plane. Since W+ belongs to a vector supermultiplet

with dimension 16, it implies that (nm ne) with ne and nm coprime must also belong to a

vector supermultiplet of dimension 16." Indeed, the existence of some of these states was

proven by A. Sen. Let us now see the argument.

The set of static monopoles with �xed magnetic charge g = 4�nm=e form a multipa-

rameter family (W�(x�; za); �(x�; za)) of solutions of the equations of motion. This space

of solutions form a manifold called moduli space Mnm with the parameters za being the

coordinates of this space. For the case nm = 1,

M1 = R3 � S1 (123)
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where R3 corresponds to the position of the monopole center of mass and the momentum

associated with the coordinate on S1 corresponds to the monopole electric charge. For a

generic nm the moduli space have the general form[36]

Mnm = R3 � S1 �M0
nm

Znm

; (124)

where R3 and S1 is like before, Znm is the cyclic group of nm elements and M0
nm

is the

\rest" of the manifold. Mnm has dimension 4nm and we can de�ne a metric

gab = �
Z
d3xTr

 
@W�

@za
@W �

@zb
+
@�

@za
@�

@zb

!
: (125)

Manton[37][38] showed that the dynamics of slowly moving (or low energy) BPS

monopoles with total magnetic charge g correspond to the geodesic motion of a parti-

cle onMnm given by the e�ective action

Seff =
Z
dt
�
1

2
gab _z

a _zb + ajgj
�

(126)

=
Z
dt
�
1

2

�
ajgj _R2

i +
4�

e3a
_�2 + g0ab _z

a
0 _z

b
0

�
+ ajgj

�
; (127)

where g0ab is the metric on M0
nm and the coordinates Ri, � and za0 are the coordinates

associated to R3, S1 and M0
nm respectively.

This result was generalised by Gauntlett[39] and Blum[40] for monopoles in N = 4

Super Yang-Mills. In this case the dynamics of slowly moving monopoles with total

magnetic charge g correspond to the geodesic motion of a superparticle onMnm given by

the e�ective action

Se� = S0 + Sint

with

S0 =
Z
dt

"
1

2

4X
a=1

�
_x2a + i�a

o@0�a
�
+ ajgj

#
; (128)

Sint =
Z
dt
1

2

�
g0ab

�
_za0 _z

b
0 + i�a0D0�

b +
1

6
Rabcd�a�

b�c�d
��

; (129)

where �a; �a are 2 component Majorana spinors, D0�
b = @0�

b + �bac@0z
a
0 �

c, �bac is the

Christo�el symbol and Rabcd is the Riemann curvature tensor on M0
nm. S0 is the part
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of Se� which depends on the bosonic and fermionic coordinates associated to R3 � S1,

and for simplicity we haven't written the coe�cients explicitly. From Se� we obtain the

Hamiltonian

H = H0 +Hint

with

H0 =
1

2ajgjP
2
i +

ae3

8�nm
�2 + ajgj ;

where Pi = ajgj _Ri ; i = 1; 2; 3 , � = 4�nm
e3a

_� . Note that H0 (and therefore H ) doesn't

depend on �a. The quantum theory of a low energy monopole is equivalent to the quantum

theory of this super particle. So, let us proceed with the canonical quantization. One can

combine the 8 real spinors �a� in 4 complex spinors aa�; a
ay
� with a = 1; 2 and � = 1; 2,

which satisfy n
aa�; a

ay
�

o
= i�h�ab��� ;

which is a Cli�ord algebra with 8 generators. It has an irrep of 16 states as we have seen

in section 4.1. Since H doesn't depend on �a (or aa�; a
ay
� ), if

Hj >= Ej >

) H
�
aa1y�1

aa2y�2
� � � j >

�
= E

�
aa1y�1

aa2y�2
� � � j >

�
;

and therefore each eigenstate of H has a 16 fold degeneracy.

Since � is a periodic coordinate, in the quantum theory, � must be quantized, i.e.,

� = ne�h which is interpreted as the total electric charge[37]. Then, in the rest frame,

Pi = 0,

H0 =
ae3

8�nm
(ne�h)

2 + a
4�nm
e

= a
4�nm
e

 
1 +

(ne�he2)
2

32�2n2m

!

�= a

"
(ne�he)

2 +
�
4�nm
e

�2#1=2
= a

q
q2 + g2;

where in the last line we considered the low energy approximation �he2 �= 0. Therefore on

a eigenstate j > ,

H0j >= a
q
q2 + g2j > :
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But, in the rest frame

Hj >=M j >= a
q
q2 + g2j > :

So we can conclude that

Hintj >= 0 ;

and the wave function must have the form

 = e(i
�!p �
�!
R +i��)=�h�(z0) = ei

�!p �

�!
R

�h +ine��(z0) ;

where the �rst factor is eigenfunction of H0 and the second factor is an eigenfunction of

Hint. Under Znm , �! �+ 2�
nm

and

�(z0)! e�2�i
ne
nm �(z0) : (130)

What is the form of �(z0)? A long time ago [41] Witten have analised the problem of a

super particle moving on a manifold with the dynamics governed by Hint and proved that

Hint =
n
Q;Qy

o
;

where Q; Qy are the supercharges for the superparticle problem. They satisfy Q2 = 0 =

Q2y, i.e., they are nilpotent. Therefore Q and Qy act as exterior derivatives on M0
nm

.Then we substitute the condition Hint� =
n
Q;Qy

o
� = 0, to

n
d; dy

o
� =

�
ddy + dyd

�
� = � = 0 ;

and conclude that � is a harmonic form onM0
nm .

In summary we obtained that the quantum theory of slowing moving (or low energy)

monopoles (or dyon) with magnetic and electric numbers (nm; ne) is equivalent to the

quantum theory of a super particle moving on a manifoldMnm. The wave function has

the form

 = ei
�!
P �

�!
R

�h +ine��(z0) ;

where �(z0) under Znm transformation (130) and is a harmonic form on M0
nm which has

dimension 4(nm�1). Moreover, since we want the �nal state to have a 16-fold degeneracy,

and since the quantization of H0 already gives rise to this degeneracy, we need to have a
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unique �(z0) for which ne and nm coprime. Now, given a harmonic p form on M0
nm we

can always construct a harmonic 4(nm � 1)� p form on M0
nm

by taking the Hodge dual.

This would violate the condition that �(z0) should be the unique harmonic form onM0
nm .

The only exception is the case when it is an (anti-)self-dual 2(nm � 1) form.

Therefore SL(2; Z) duality requires that for every integer ne for which ne and nm are

coprime, the spaceM0
nm

must contain a normalizable (anti-) self-dual harmonic 2(nm�1)

form �(z0) which pick-up a phase e�2�ine=nm under the action of Znm transformations.

The metric of M(0)
2 is known[36][38]. So these harmonic forms were constructed ex-

plicitly by A.Sen for nm = 2 and ne odd con�rming the duality conjecture. On the other

hand, the metric on the other M0
nm are not known. However, Segal and Selby[42], con-

sidering some topological assumptions on these manifolds, claimed a proof of existence of

these harmonic forms whenever ne and nm are coprimes.

Until now all tests that have been done are consistent with the duality conjecture for

N = 4. However a rigorous proof is still lacking. There are also some generalizations of

the original conjecture for N = 2, N = 1 SYM, for gauge groups other than SU(2) and

for superstring theories.
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