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Abstract

We construct a semiclassical expression for the Husimi function of au-

tonomous systems in one degree of freedom, by smoothing with a Gaussian

function an expression that captures the essential features of the Wigner

function in the semiclassical limit. Our approximation reveals the \center

and chord" structure that the Husimi function inherits from the Wigner

function, down to very shallow valleys, where lie the Husimi zeroes. This

explanation for the distribution of zeroes along curves relies on the geom-

etry of the classical torus, rather than the complex analytic properties of

the WKB method in the Bargmann representation. We evaluate the zeroes

for several examples.
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I. INTRODUCTION

The features that distinguish integrable from chaotic motion in classical mechanics

manifest themselves most clearly in phase space. This is one of the reasons for the

great interest in the so called \quasiprobability distribution functions" in phase space

within the semiclassical theory of quantum states. These distributions are de�ned as

the symbols associated with the density operator �̂ in some representation of quantum

operators [6,7]. It is expected that these representations of quantum states show the

di�erences between an integrable, or a chaotic classical counterpart in the semiclassical

limit (�h ! 0). Among these phase space representations of quantum states, the Wigner

function (i.e. the symbol of the density operator �̂ in the Weyl representation) and its

smoothing by a Gaussian function, the Husimi function, are of paramount importance.

In fact, Berry [1] showed that the peak of the amplitude of the Wigner function is located

very close to the curve of constant energy, for a pure state of an autonomous system with

one degree of freedom, collapsing onto a zero-width distribution (i.e., a delta function)

over that curve in the classical limit (�h = 0) (see also [4{6]). Ozorio de Almeida and

Hannay generalized this picture for states supported by invariant tori of higher dimensions

[2]. In all such systems, the semiclassical analysis of the Wigner function [1{5] reveals

an interesting geometrical structure of \chords and centers" that determines the phase

of the oscillations of the Wigner function as the point x = (q; p) is varied within the

torus. This phase is proportional to the symplectic area -or center action- bounded by

the torus and the chord, centered on x, joining two points of the torus. The links of this

\semiclassical geometry" to the generating function formalism of classical mechanics and

the path integrals of quantum mechanics are reviewed in reference [8].

Although the oscillations of the Wigner function thus re
ect legitimate structures of

classical mechanics, its positive de�nite Gaussian smoothing, the Husimi function, is much

closer to a classical Liouville density. The density peaks near the region of classical motion,

decaying exponentially in classically forbidden regions [14,15]. The �rst impression is

that smoothing cancels all trace of the centre and chord skeleton of the Wigner function.

However, we shall show that very delicate e�ects are still discernible.

First, we must recall that the Husimi function can also be viewed as the mean value
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of the density operator �̂ in coherent states, whose holomorphic (entire) part is called the

Bargmann function [9]. This function corresponds to the wave function for the quantum

state in a representation of the quantum mechanics introduced by Bargmann [10] (in the

case of the Heisenberg-Weyl group), where the basis for the Hilbert space is made of

coherent states not normalized to unity. Thus, in the Bargmann representation the wave

functions are holomorphic (entire) functions of the variable z = 1p
2
(�q� ip=�), acting as

a phase space coordinate. The analiticity of the Bargmann function compels its zeroes

and those of the Husimi function to be isolated for 1-D systems. Leboeuf and Voros [16]

have shown that in many cases the distribution of Husimi zeroes is completely di�erent

for chaotic maps, where they are spread out, as opposed to integrable maps, where they

are distributed along curves. Only the latter alternative is available for systems with

continous time and one degree of freedom. Furthermore, these lines of zeroes cannot

occur close to the energy shell where the smoothed Wigner function has a non-oscillatory

peak. The lines supporting zeroes may only be found in regions where the Husimi function

is already exponentially small.

In these circunstances, we can only expect to predict the general pattern of zeroes

with a very delicate \subdominant" semiclassical theory. This is the case of WKB type

of theory developed by Voros for the Bargmann representation [9], which predicts zeroes

on the anti-stokes lines where two or more branches of the complex action have the same

amplitude. The zeroes along these lines are selected by the condition that the imaginary

part of the complex action be an integer multiple of �. However, this approach has

practical di�culties to obtain explicit formulae even to leading order in �h. First, it is

generally very di�cult to obtain analitically the branches of the classical energy curve

in complex coordinates, in order to calculate explicitily the complex action (i.e. the

phase in the WKB wave function). Second, an approximation valid anywhere outside the

neighborhood of the energy curve, requires the analytic continuation of the functions that

de�ne the branches; this needs the analyticity of the Weyl symbol, HW , for the quantum

Hamiltonian.

Let us thus return to the picture of the Husimi function as a smoothing of the Wigner

function. Since our approximation does not maintain explicitily the analytical properties,
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one could not expect to establish that there exist isolated zeroes in this way, but we

can seek for shallow valleys, even in the region where the Husimi function is already

exponentially small, and for oscillations along their bottom as indications of where the

zeroes may lie. The simplest guess is that the two dominant regions in the evaluation of

the Husimi function are the neighborhood of the centre of the Gaussian and the maximum

of the Wigner function along the energy curve E. Since we know that a zero will only

be found when the Gaussian is far removed from the energy curve, we use Berry's simple

cosine-oscillatory representation of the Wigner function for the local approximation. For

the contribution of the region near the energy curve, we start from the even cruder classical

aproximation that the Wigner function is a �-function along E. After the smoothing, the

�rst term remains cosine-oscillatory with essentially the same phase (proportional to the

center action, upon small corrections), but now damped by an exponential function which

decreases, essentially with the length of the chords (upon small corrections). The second

term is everywhere positive, smooth and peaked in the energy curve E. The combination
of both produces a positive smooth expression, peaked along the curve E oscillating in a

valley of local minima that approach the zeroes of the Husimi function when �h! 0. This

expression is valid only inside the energy curve and depends only on the properties of the

torus E.
The paper is organized as follows. In Section II we summarize important results con-

cerning Wigner and Husimi functions. In Section III we �nd a semiclassical expression of

the Husimi function for the case of a particle in a box, as a simple model of the geometrical

approach. In Section IV we introduce our geometrical approach to the distribution of the

Husimi zeroes in 1-D systems. In Section V we apply this approach to the problem of a

particle under the action of a constant force. This example corresponds to an unbounded

problem whose convex energy curve is open. Finally, in Section VI we present the results

for the case of a particle subject to an asymmetric anharmonic potencial, as example of

a general system with a convex and closed energy curve.



CBPF-NF-007/99 4

II. REVIEW OF WIGNER AND HUSIMI FUNCTIONS

Quasiprobability distribution functions are symbols associated with the density opera-

tor, �̂, in some representation of quantum operators [6,7]. The Wigner function is the Weyl

symbol of the density operator. The symbol of an operator Â, in the Weyl representation

is given by the function,

AW (x) =

Z
d�q hq + �q=2jÂjq � �q=2i exp [�ip�p=�h] ; (1)

where x = (q; p) (all integrations in this work run from �1 to +1 unless indicated). So,

in the case of pure states in 1-D systems, the Wigner function is

W (x) �
�

1

2��h

�
�W (x) =

�
1

2��h

�Z
d�q hq + �q=2j ih jq � �q=2i exp [�ip�p=�h] : (2)

We remark that since Tr[�̂] =
R

dx
2��h

�W (x) = 1 for normalizable states j i, while diverging
otherwise, the prefactor in (2) will not be considered for unbounded states.

The semiclassical analysis of this function was �rst developed by Berry [1] for the

case of an eigenstate of energy E, in nonrelativistic 1-D systems, where the classical

Hamiltonian is of the form

H(x) = p2=2m +V(q) (3)

and the \torus" is the smooth convex curve, E, of constant energy (H(x) = E). We brie
y

summarize the results in [1], which are important for this work (for more details see also

[5,4]).

a) The simple semiclassical approximation.

This is obtained by replacing the primitive WKB functions (i.e. the semiclassical

solution of the time independent Schrodinger equation) in (2) and evaluating the integral

by the stationary phase method. The result is symmetric in q and p and depends only on

the geometry of the classical curve E,

WSCL(x) =
2

�
p
2��h(!�1)

X
chord�j

1p
Dj(x)

cos

�
Sj(x)

�h
� �

4

�
; (4)

where the function Sj(x) is the symplectic area bounded by the energy curve E and the

chord �, centered in x, that joins the points x+ and x� on the \torus" (see FIG.1). The
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sum is over all the chords centered on x and ! is the frequency of the classical motion

around E. The Dj(x) are the skew products of the phase space velocities at the tips of

the chord,

Dj(x) = _x� ^ _x+ = _p� _q+ � _q� _p+ ; (5)

representing the area of the parallelogram formed by the pair of vectors (the point x+ is

reached after the point x� in the classical motion along E, see FIG.1). Outside of the

convex energy curve E there are no chords, so WSCL(x) = 0.

The Wigner caustic labeled as L in FIG.1, is the border of regions with di�erent

numbers of chords: within the caustic there are three chords, on the caustic two and

outside only one. On the Wigner caustic and on E, generically two pairs of stationary

points coalesce; in both cases the simple method of stationary phase is inapplicable. We

stress that two of the three terms in (4) diverge as a smooth side of L is approached from

the inside (FIG.1). The reason is that the phase space velocities, _x+ and _x�, are parallel,

so the area Dj(x) is zero. We also remark that when the eigenstate is normalizable, the

prefactor in (4), that arises from the correct normalization of the primitiveWKB function,

does not give the correct normalization of the Wigner function.

b) The uniform approximation.

Simultaneous consideration of a pairs of stationary points in (2) yields

WSCL(x) =

p
2

��h2=3(!�1)

X
chord�j

1p
Dj(x)

�
3Sj(x)

2

�1=6
Ai

(
�
�
3Sj(x)

2�h

�2=3)
: (6)

This is an uniformily valid approximation not only as x moves onto E, but also when x

lies on the convex side of E (H(x) > E) where the stationary values and the function

S(x) are imaginary. However, further re�nements of the method of stationary phase are

required to obtain an approximation uniformly valid over L.
On the concave side of E (H(x) < E) and not too close to E, S(x) is large in comparison

with �h so the Airy function can be replaced by its asymptotic form for large negative

argument [17],

Aif�wg � 1p
�
[w]�1=4 cos

�
2

3
[w]3=2� �

4

�
(7)
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and (4) is recovered. On the convex side of E the Airy function has positive argument

and the semiclassical Wigner function decays exponentially away from E.
When the eigenstate is normalizable, the uniform Wigner function (6) is correctly

normalized.

c) The transitional approximation.

Very close to E an expansion of (6) yields,

WSCL(x) =
1

2�(!�1)
2

[�h2B(x)]1=3
Ai

�
2

[�h2B(x)]1=3
[H(x)� E]

�
; (8)

where

B(x) = H2
q Hpp +H2

pHqq + 2HpqHpHq ; (9)

with all the partial derivatives of H evaluated at x. B(x) remains �nite as x moves onto

E.
d) The classical limit.

This corresponds to the limit when �h = 0 and is obtained by letting �h! 0 in (8) and

using the result,

lim
�!0

1

�
Ai
�y
�

�
= �(y) ; (10)

to give,

WCL(x) =
1

2�(!�1)
�[H(x)� E] : (11)

Along theWigner caustic the modulus of the Wigner function takes large values. However,

the in�nitely rapid oscillations along L cancel the amplitude of the delta function. In the

case of normalizable eigenstates, (8) and (11) are correctly normalized.

The prefactor in (4) and the normalization constants in (6), (8) and (11), are de�ned

for normalizable states. When the states are not normalizable, the formulae are still valid,

but now it is possible to de�ne the normalization using the orthogonality conditions if the

wave function belongs to an orthogonal set [5,6]. For these cases, the classical frequency !

should not be included in the formulae. An example of this type of normalization appears

in Section V.



CBPF-NF-007/99 7

>From the fundamental \quasiprobability" property (see e.g. [8]),

h jÂj i =
Z
dx AW (x) W (x) ; (12)

we obtain that the \scalar product" of Wigner functions,Z
dx W�(x) W (x) =

�
1

2��h

�
jh�j ij2 ; (13)

is always positive de�nite, including the projection onto positions,Z
dpW (x) = jhqj ij2 ; (14)

giving the probability density (see [20]).

Recently, Ozorio de Almeida [8] reviewed the link between the \semiclassical geom-

etry" underlying the Wigner function and the generating function formalism of classical

mechanics. This is based on canonical conjugate variables, the centers, x = (q; p), and

the chords, � = (�q; �p), as an alternative in the description of the classical evolution.

Hence, instead of specifying the 2L-dimensional initial, x�, and �nal, x+, points in phase

space, we can give the vector �, joining each pair, and the position x of its center. The

evolution is described by the canonical transformations given by the center or chord gen-

erating functions (i.e. the center or chord actions respectively), from which we obtain the

corresponding canonical conjugate variables by di�erentation:

�q(x) = � @S(x)

@p
; �p(x) =

@S(x)

@q
: (15)

The center action S(x), for �xed energy, is the function in the expressions (4) and (6).

The Husimi function is another quasiprobability distribution function; it corresponds to

the normal symbol of the density operator in the diagonal coherent states representation

[9] (or Husimi representation [13]). In this representation the normal symbol of an operator

Â is the expectation value,

AN(X) = h
XjÂj
Xi ; (16)

where the j
Xi are the minimum uncertainty states known as coherent states [11,12].

These states are eigenstates of the destruction operator,
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â = 2�1=2(�Q̂+ iP̂ =�) (17)

for the reference harmonic oscillator:

Ĥ = P̂ 2=2m +m!2
r Q̂

2=2 = !r â
yâ+ �h=2 ; (18)

with � = (m!r)1=2. They can be obtained by displacing the normalized ground state,

j
X=0i � j0i, of (18) to the phase space location X = (Q;P ) according to,

j
Xi = expf(i=�h)(PQ̂�QP̂ )gj0i : (19)

Therefore, the Husimi function for pure states of 1-D system is,

H(X) =

�
1

2��h

�
jh
Xj ij2 ; (20)

where we include the prefactor, for the case of normalizable states, to make the Husimi

function integrable to unity over the whole phase space.

The Husimi representation can also be viewed as a Gaussian smoothing of the Weyl

representation [8], so the Husimi function is related to the Wigner function in the form,

H(X) =
1

��h

Z
dxW (x) exp

�
�1

�h
k(x�X)k2�

�
(21)

where the \�-metric" is de�ned as

k(x�X)k� � [�2(q �Q)2 + (p� P )2=�2]1=2 : (22)

This expression is the starting point for our approach developed in the next sections.

Since W
X = 1=��h exp
�� 1

�h
k(x�X)k2�

	
is the Wigner function for a coherent state

(see e.g. [8]), (21) de�nes the positive de�nite projection, (13), of the Wigner function

onto coherent states. Note that the Weyl representation is invariant under symplectic

transformations (linear canonical transformations). The introduction of a metric in (21)

implies that symplectic invariance does not carry over to the Husimi function.

The fact that the coherent states are eigenstates of the destruction operator gives them

analytical properties which are translated to the Husimi function [11,12]. We can separate

the analytical part of the Husimi function if we use the unnormalized coherent states jzi,
such that j
Xi � expf��zz=2�hgjzi, i.e.,
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H(z) =

�
1

2��h

�
expf��zz=�hg jhzj ij2 ; (23)

where the coordinates,

z = 2�1=2(�Q� iP=�) ; �z = 2�1=2(�Q+ iP=�) ; (24)

represent the complex phase space for 1-D systems.

The function hzj i corresponds to the wave function for the quantum state in a

representation of quantum mechanics introduced by Bargmann [10] (in the case of the

Heisenberg-Weyl group), where the basis for the Hilbert space are the unnormalized co-

herent states (althought overcomplete). These wave functions are holomorphic (entire)

functions of the variable z, which behaves as a phase space coordinate. >From the WKB

construction in the Bargmann representation, Voros [9] derives a semiclassical approxi-

mation for the Husimi function in 1-D systems. This is presented in Appendix D for the

energy eigenstates of the problem of a particle under the action of a constant force and

the results are compared with our approximation of Section V.

III. THE PARTICLE IN A BOX.

To introduce our approach let us study the simplest case of a particle in the symmetric

classical potential:

V(q) =

8>><
>>:

0 jqj � l
2

+1 jqj > l
2

(25)

with the pure states given by even eigenfunctions,

hqj ni =

8>><
>>:
(2=l)1=2 cos(pnq=�h) jqj � l

2

0 jqj > l
2

with pn = ��h(n+ 1)=l (n even) : (26)

Thus the semiclassical limit for a given classical momentum, pn, corresponds to the limit

of large n.

The Wigner function for the state [8] is zero outside the box, whereas inside:



CBPF-NF-007/99 10

W (q; p) =
1

2l

�
sin (2(p� pn)y=�h)

�(p� pn)
+
sin (2(p + pn)y=�h)

�(p+ pn)
+ 2 cos (2pnq=�h)

sin (2py=�h)

�p

�

(27)

where y = l
2
� q if 0 � q � 1

2
and y = l

2
+ q if �1

2
� q < 0.

The Husimi function can be calcutated in terms of the error function �(z) (see Ap-

pendix A),

H(Q;P ) =
1

8l�
p
��h

(
e
� (P�pn)2

�h�2

�����( z1p
2�h

) + �(
z2p
2�h

)

����
2

+ e
� (P+pn)

2

�h�2

�����( z3p
2�h

) + �(
z4p
2�h

)

����
2

+ 2 e
� (P2+p2n)

�h�2 <e
�
e�

i2pnQ
�h

�
�(

z1p
2�h

) + �(
z2p
2�h

)

��
�(

z3p
2�h

) + �(
z4p
2�h

)

���
(28)

where the arguments of the error functions are measured from the \corners of the phase

space box" shown in FIG.2, z1 = �( l
2 +Q)� i(P � pn)=�, z2 = �( l2 �Q) + i(P � pn)=�,

z3 = �( l2 + Q) � i(P + pn)=� and z4 = �( l2 � Q) + i(P + pn)=�; (the overlines in (28)

indicate complex conjugation). As opposed to the Wigner function, (28) is not zero

outside the box. A semiclassical analysis of this expression can be made with the help of

the asymptotic expansion of the error function �(w) for jwj su�ciently large, i.e. �h! 0

(see Appendix A). If we replace each �(w), by the �rst term of this expansion,

�(w) �
(

1 � e�w
2

p
�w

<e(w)� 1

�1� e�w
2

p
�w

<e(w)� �1
(29)

we get a good approximation of (28) except in narrow margins along the lines Q = �l=2
and Q = l=2, that contract when �h ! 0. This can be observed, for the region of interest

inside the box and between the branches of the classical trajectory by comparing the

plots (a) and (b) in FIG.2. Furthermore, the function �(w) approaches unity, in the

limit jwj ! +1, in the region j=m(w)j < <e(w) (<e(w) > 0). The intersection of these

regions for each error function in (28) de�nes a central rectangle shown in the plots (a)

and (b) of FIG.2. Hence, in the semiclassical limit the Husimi function is well represented

by,

H(Q;P ) � 1

2l�
p
��h

�
e
� (P�pn)2

�h�2 + e
� (P+pn)

2

�h�2 + 2 e
� (P2+p2n)

�h�2 cos(2pnQ=�h)

�
=

=
1

l�
p
��h
e
� P2

�h�2 e
� p2n

�h�2
�
cosh(2pnP=�

2�h) + cos(2pnQ=�h)
	
; (30)
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within that rectangle. This expression is explicitily positive everywhere except in its

zeroes that lie on the axis P = 0 where it simpli�es to

H(Q;P = 0) � 2

l�
p
��h
e
� p2n

�h�2
�
cos2(pnQ=�h)

	
: (31)

Alternatively, since the Husimi function is a Gaussian smearing of the Wigner function

(21), it is possible to obtain a semiclassical approximation of (28) by performing the

Gaussian smoothing over an expression that mimics the behavior of the Wigner function in

the semiclassical limit. With the help of the limiting form of the delta funtion, �(x�x0) =
limL!+1 sin[L(x � x0)]=�(x � x0), we observe that, semiclassically, the skeleton of the

Wigner function (27) is

W (q; p) � 1

2l
f�(p� pn) + �(p+ pn) + 2 �(p) cos(2pnq=�h)g : (32)

Replacing this expression in (21) and limitting the integration to the range (�l=2; l=2),
leads to

HSCL(Q;P ) =
1

4l�
p
��h

��
e
� (P�pn)2

�h�2 + e
� (P+pn)

2

�h�2

� �
�(

z01p
�h
) + �(

z02p
�h
)

�

+ 2 e
� (P2+p2n)

�h�2 <e
�
e�

i2pnQ
�h

�
�(

z03p
�h
) + �(

z04p
�h
)

���
; (33)

where z01 = �( l
2
+Q), z02 = �( l

2
�Q), z03 = �( l

2
+Q)� ipn=� and z04 = �( l

2
�Q)+ ipn=�. In

this case we can replace each error function by unity only in the central region (between

the vertical lines through QI = �l=2 + pn=�
2 and QII = l=2 � pn=�

2 in FIG.2(c)) and

hence recover (30). Therefore, we also recover the position of the k'th zero along the axis,

Qk = (2k + 1)
��h

2pn
; (34)

according to (31), provided that QI < Qk < QII. In FIG.3 we compare, on the Q-axis, the

numerical computation of the Husimi function (28), the asymptotic approximation based

on (28) with (29) and our approximation based on the simpli�ed Wigner function (33).

The form of (30) indicates why the Husimi zeroes are lineary distributed inside the

energy curve (in this case, the phase space box with jpnj =
p
2mE). Indeed, the term

with the hyperbolic cosine takes its lowest value along the Q-axis, which coincides with

the amplitude of the oscillatory cosine term. Away from P = 0, the hyperbolic cosine
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dominates the sum, descending to a valley along this axis. The zeroes along the valley

are determined by the minimum value of the cosine. The valley is very shallow because

the Husimi function decays exponentially away from the classical region, but we can still

evaluate its local minima. The order for the spacing of zeroes is O(�h), given by the phase

of the cosine term.

As autonomous 1-D systems always have integrable classical dynamics, the zeroes of

the Husimi functions lie over lines, as suggested in [16]. That these lines, inside the energy

curve, are valleys of the Husimi function is a general characteristic of these systems, as we

will see in the following sections. It also seems to be a general characteristic that, when

the number of zeroes is great, these valleys bifurcate for bounded states in systems where

the curve of constant energy is closed. For �xed energy, in systems with bounded states, it

is expected that the semiclassical approximations works well for large quantum numbers.

As the number of zeroes of the Husimi function grows with the quantum number [9], these

bifurcations should typically appear in the semiclassical regime. These bifurcations seem

also to appear close to the energy curve.

For the box, the valley bifurcates close to the points QI and QII of the Q-axis (FIG.2).

Our approximation (33) describes these bifurcating valleys , althought without any oscil-

lations to indicate the presence of zeroes (see plot (c) of FIG.2). The absence of zeroes

in these valleys shows that the expression (32) for the Wigner function close to the edges

of the box is not valid. In fact, the Wigner function (27) decreases to zero close to the

edges of the box and is strictly zero over them. In constrast, the expression (32) does not

decrease in the direction of the Q-axis and does not vanish over the edges.

We stress that the only approximation used to obtain (33) is to take (32) as the Wigner

function. Moreover, by extending the limits of integration to in�nity, in the smoothing

of the Wigner function, we obtain the expression (30) for all points inside the box. This

approximation has no bifurcating valleys at all. But, as we knew, this approximation

is not valid close to the edges, because making the limits of integration go to in�nity is

equivalent to making the error functions in (33) approach unity, which is not valid in the

region where the bifurcations occur.
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IV. GEOMETRICAL APPROACH.

In the last example we obtained an approximation to the Husimi function by perform-

ing the Gaussian smoothing over an expression that represents the skeleton of the Wigner

function in the semiclassical limit (32). It was shown that this provides the general behav-

ior inside the energy curve and allows us to obtain the distribution of the Husimi zeroes,

although not close to the edges of the box. Here we implement a similar approach for the

Husimi function of energy eigenstates in systems where Berry's semiclassical approxima-

tions for the Wigner function are valid (see Section II).

The ideal semiclassical approximation to the Wigner function used in the smoothing

should be Berry's uniform approximation, that represents the oscillations inside the energy

curve E, and is uniformily valid along it. However, the integration would be very di�cult

to handle. The skeleton of the uniform approximation essentially consists of an Airy peak

close to the curve E, that in the classical limit turns out to be a delta function (11) along

it, and oscillations inside that are well represented for the Berry's simple approximation

(4) away from E. Semiclassically, as far as integration is concerned the Airy peak is

equivalent to the delta function. So, for evaluation points, X, close to the energy curve,

the Husimi function is well represented by the integral,

I(X) =
1

2�2�h(!�1)

Z
dx �[H(x)� E] exp

�
�1

�h
k(x�X)k2�

�
: (35)

This integral is everywhere positive, smooth, and peaked along the energy curve E. Ev-
idently, this integral is dominated by the region where k(x � X)k2� is a minimum: ap-

proximately Dp
2��h

exp
�� 1

�h
k(xc(�)�X)k2�

	
, where xc(�) is the point on E closest to the

point X in the sense of the norm k(: : :)k�. Thus, close to the energy curve, this integral is
essentially the Gaussian semiclassical approximation around the torus, �rst encountered

by Takahashi [14] in a geometrical approach, and rederived by Kurchan et. al. [15] in the

context of the Bargmann representation. These approximations have no oscillations to

indicate the presence of zeroes. So, placing the evaluation point far from E, we add to the

integral of the delta function, a local integral over the simple approximation. This is in the

spirit of expression (32) for the problem of a particle in a box. Indeed, the only di�erence

is that the cosine oscillations are now spread within the interior instead of concentrated
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as a delta function along the q-axis because of the particular torus geometry.

The integration (21) over the simple approximation, inside E, can be performed ana-

lytically by making some further approximations (for the details see Appendix B). The

Gaussian function in (21) de�nes an e�ective area for the integration centered on X. This

e�ective area can be characterized as the area of value 2��h, enclosed by the ellipse,

1

�h
k(x�X)k2� = 2 (36)

So, inside this area we can approximate the action in (4) by

S(x) � S(X) + �(X) ^ (x�X) ; (37)

in the semiclassical limit. Since the denominator in (4) does not depend on �h, we take

the simplest approximation,

D(x) � D(X) : (38)

Then, the result for our approximation to the Husimi function is,

HSCL(X) =
2

�
p
2��h(!�1)

expf�k�(X)k2�=4�hgp
D(X)

cos

�
S(X)

�h
� �

4

�
+ I(X) : (39)

As we found in the last section, the Husimi zeroes inside the energy curve are located on

a valley for 1-D systems. The approximation (39) contains all the geometrical ingredients

to understand the origin of this valley. This expression generally has minima rather than

zeroes in the valley. These minima approach the Husimi zeroes when �h ! 0. However,

some of these minima could be negative in this approximation. This problem can be �xed

if we include the second order approximation, 1
2 (x�X)H (X)(x�X)t, in the expansion

for center action in (37), where the Hessian matrix is

H(X) =

"
@2qqS = @q(�p) @2qpS = @p(�p)

@2pqS = �@q(�q) @2ppS = �@p(�q)

#
(40)

(we have applied the relations (15) for the gradient of S(x)) and t denotes the transpose.

Hence, our re�ned approximation

HSCL(X) =
2

�
p
2��h(!�1)

expf��(X)=4�hgp
D(X)jdetA(X)j �

� cos

�
S(X)

�h
� �

4
+
�(X)

4�h
� arg[detA(X)]

2

�
+ I(X) : (41)
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Here, A(X) is the complex matrix,

A(X) = �
"
�2 0

0 1=�2

#
+
i

2
H(X) ; (42)

the argument of the exponential is

�(X) =
k�(X)k2� (1� detH(X)=4) + 1

2
�(X)H(X) �t(X) (@q(�p)=2�2 � �2@p(�q)=2)

jdetA(X)j2 ;

(43)

and the phase in the cosine is

�(X) =
�k�(X)k2� (@q(�p)=2�2 � �2@p(�q)=2) +

1
2 �(X)H(X) �t(X) (1� detH(X)=4)

jdetA(X)j2 :

(44)

If we only use the approximation to �rst order for the center action in (37), the Hessian

matrix is zero, so, detA(X) = �1, �(X) = k�(X)k2� and �(X) = 0 and we recover the

approximation (39). For the cases of non-normalizable states the prefactors in (35), (39)

and (41), change according to the de�nition of the normalization of this type of states

(see Section II and Section V for an example).

The expressions (39) and (41) are valid only inside the energy curve and depend only

on the properties of the curve E, like the semiclassical Wigner function. The second order

approximation to the center action, that yields our approximation (41), only provides

small corrections to the argument of the exponential and specially to the phase in the

cosine. The corrections of the phase in the cosine improve the position of the minima

over the valley and hence the approximation to the zeroes.

The fact that the denominator in (39) vanishes on the curve E is not a major prob-

lem, because only the tips of the valley are close to the energy curve, where the simple

approximation plus the delta function (11) is not a good representation of the behavior

of the Wigner function. So, our approximations (39) and (41) do not hold close to the

curve E. The evaluation points x, of the Wigner function, that e�ectivelly contribute to

the smoothing (21), are enclosed by the ellipse (36) centered on the evaluation point, X,

of the Husimi function. We predict that the approximation based on the mimic Wigner
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function breaks down wherever the ellipse enclosing X approaches E. The shape of the el-
lipse depends on the Husimi parameter �, so that the region of validity of the geometrical

approximation will be parameter dependent.

We now discuss the fact that the geometrical approximations (39) and (41) contain

the contribution of a single chord, even though the points within the Wigner caustic L are

the centers of three chords. This is simply due to the Gaussian dependence on the chord

length, de�ned in (22), which allows us to keep only the shortest chord in the Husimi

function. Furthermore, we need not consider the caustic itself, because, as we will see,

the valley of zeroes is not a�ected by it. Even though the simple approximation breaks

down along it, by predicting a spurious singularity, the correct �nite Airy peak along

this line does not counterbalance the fact that the coalescing chords responsible for this

catastrophe are longer than the normal third chord. This is because the curve L is a

locus of maximal chords. Therefore the Husimi function will be dominated by the single

normal chord on L, which generates cosine oscilations well described by the simple theory.

Hence, the sum over the di�erents chords, centered on points on the Wigner's caustic L
and inside it, that appears in the simple approximation (4), is not necessary in (39) and

(41). We only need to consider the chord that is continuous through each of the two sides

of L that are crossing the valley. For this chord the denominator D(X) does not diverge

(see FIG.1).

In the next sections we present two examples to show how (41) and (39) operate. The

�rst example is an unbounded problem whose convex energy curve is open and without a

Wigner caustic. In this problem most of the calculations can be made analytically. The

second is a bounded problem with a closed energy curve that is smooth and convex. This

example has a Wigner caustic. In this case all the calculations were numerically.

V. PARTICLE SUBJECT TO A CONSTANT FORCE.

Let us apply the approach described in the last section to the problem of a par-

ticle under the action of a constant force, F , that is to say with the classical Hamil-

tonian H(x) = p2=2m � Fq. This is an unbounded problem with continuous energy

spectrum where the eigenfunctions can be normalized to a delta function in E (i.e.,
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R h E0 jqihqj Eidq = �(E
0 � E)) [6],

hqj Ei = 1

jF j1=2
�
2mjF j
�h2

�1=3
Ai

(
�(q � qr)

�
2mF

�h2

�1=3)
; (45)

qr = �E=F is the turning point of the classical trajectory for an energy E. The Wigner

function is in this case [5,6]

W (x) =

�
8m

�h2F 2

�1=3
Ai

(�
8m

�h2F 2

�1=3
(H(x)�E)

)
: (46)

It is easy to see that this expression coincides with (8) (the prefactor equal to unity in this

unbounded problem, according to the normalization choosen above). So, the Transitional

approximation to the Wigner function is exact in this case.

The Husimi function for this problem can be caculated analytically (Appendix C), the

result is,

H(X) = jBj2 exp
�
�1

�h

�
P 2

�2
+
2mF

�2
Q

��
�

�
�����Ai

(
� �Q�Q� � iP=�2

� �2mF
�h2

�1=3)�����
2

; (47)

where Q� = qr + mF=2�4 and jBj2 is the normalization constant. The distribution of

zeroes, in the concave side of the curve E, of constant energy, is shown in FIG.4. Since

the zeroes are those of the Airy function in (47), which only occur for a negative real

argument, their distribution is along the Q-axis for any �h value. For an energy E the

classical turning point is �xed and so is Q�. Thus, we only have to change the scale

for the X coordinates to make the Airy function in (47) invariant with �h. Due to this

scaling property, we can analyze semiclassically the distribution of zeroes by �xing �h and

by looking at the behavior of the Airy function for values of Q far away from Q� on

the concave side of E. In this region we can replace the Airy function in (47) by its

asymptotic form (7), where now the argument is complex. The result is the same if we

construct the Husimi function in (23), with the approximation to the Bargmann function

(D10), obtained in Appendix D by the complex WKB method. Therefore, the direct

semiclassical analysis of expression (47), or the application of the complex WKB method,

bring about the same distribution of the zeroes in the concave side of E. This distribution
is given by the zeroes of the cosine in (D10) over the real axis,
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Qk =
[3��h(2k + 3=2)]2=3

25=3(mF )1=3
+Q� k = 0; 1; 2; : : : ; (48)

where now F > 0. The order for the spacing between the k'th and the (k + 1)'th zero

is O(�h2=3). However, these zeroes accumulate on Q� as �h ! 0, so it is more relevant to

derive the asymptotic spacing near a �xed position Q. Approximating the Airy function

in (47) by its large argument from (7), we then obtain the spacing of minima as O(�h) in

agreement with Leboeuf and Voros [16].

To compare these results with the geometrical approximation, we note that for the

particle subject to a constant force, the centre action is

S(X) =
2

3

�
8m

F 2

�1=2

[�(H(X)�E)]3=2 (49)

and the denominator in (4) is

D(X) =
F

m
�p =

�
8F 2

m

�1=2

[�(H(X)� E)]1=2 : (50)

Hence, in our approximations (39) and (41) the �rst term can be calculated analytically,

where now the prefactor is (8=��h)1=2. The classical limit (11) can be obtained by applying

formula (10) to the Wigner function (46). The integral (35) over E becomes,

I(X) =
1

��hjF j
Z
dp exp

�
�1

�h
[�2(qE(p)�Q)2 + (p� P )=�2]

�
(51)

where qE(p) = p2=2mF + qr. This is a non-oscillatory smooth function, peaked on E, that
decreases monotonically away from the energy curve.

The geometrical origin of the valley of zeroes along the axis P = 0, in the concave side

of E, can now be understood with the help of our approximation (39). In fact, from the

argument of the exponential, we see that for values of � allowed by our approximations

(see Section IV), k�(X)k2� is essentially equal to the square of the chord's length. Along

the Q-axis, FIG.5 shows that the prefactor of the cosine in (39) has almost the same

value as the integral (51). Away from this axis, the length of the chord grows, making

the oscillatory term so small that the second term dominates the sum, creating in this

way a valley. Along this valley the oscillations of the cosine generate a sequence of local

minima. However, the position of these local minima are shifted, relative to the position
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of the Husimi zeroes, approximately by the distance (Q� � qr) (FIG.6). Moreover, for

points Q far away from Q�, these local minima become negative because the prefactor of

the cosine becomes greater than the integral (see FIG.5).

The corrections given by our second order approximation (41) �x these problems. In

fact, the corrections to the argument of the exponential, given by (43), ensure that the

local minima are positive on the axis and the corrections to the phase in the cosine, given

by (44), improve the position of the minima relative to the Husimi zeroes (see FIG.5 and

FIG.6). We also compare, in FIG.6, the general behavior of (41) and the Husimi function

calculated numerically on P = 0. One observes a general agreement that improves as Q

recedes from Q� (equivalent to the limit �h ! 0, in this problem). In this semiclassical

limit, the same �gure shows that the minima become zeroes. FIG.7 shows the relative

error between the position of the Husimi zeroes (calculated numerically), the position

being given by the minima of (41) and (39) (shifted by the distance (Q� � qr)) and the

zeroes (48). As expected, our approximation (41) does not work well close to the energy

curve where the mimic of the Wigner function used for the smoothing is not a good

approximation.

VI. GENERIC CASE.

In this section we apply our geometrical approach to the problem of a particle subject

to an asymmetric anharmonic potential. The classical Hamiltonian is

H(x) =
p2

2m
+
m!2

0

2
(q � q0)

2 +
�

2
q4 : (52)

This system is an example of a general system with a convex, closed energy curve E and

a Wigner caustic L. FIG.1 shows typical curves, E and L, in this system.

In this bounded problem, we �xed the classical energy curve at E � 30:8175 and we

calculated numerically the distribution of the zeroes of the Husimi functions inside it for

two energy eigenstates. The latter correspond to two values of quantized �h: the eigenstate

n = 30 for a value of �h � 0:508236, and the second is the eigenstate n = 45 for a value

of �h � 0:340691. In order to simplify the calculations, all the others parameters of the

problem (including �) were set to unity, except q0 = 4:0 and � = 0:1.
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FIG.8 shows the distribution of the Husimi zeroes for these states. The zeroes are

distributed along lines, as expected for a system with integrable classical dynamics [16].

These lines are very shallow valleys of the Husimi function. Since the energy curve

is symmetric with respect to the Q-axis, the distribution of zeroes also mantains this

characteristic. In Section III we anticipated, as a general charcteristic, the bifurcation of

the valleys in the semiclassical regime for bounded states in systems with a closed energy

curve. Here, we have a generic example where a principal valley bifurcates in each half

plane (FIG.8). The asymmetry in the lengths of these bifurcating valleys re
ects the

asymmetry of the curve E with respect to the P -axis. For each quantum number n, the

majority of the Husimi zeroes belong to the principal valley. For the parameter � chosen,

the principal valley runs parallel to the vertical side of the caustic. At the middle it passes

very close on the outside of L and them crosses the cusps of the caustic (see FIG.8). This

shows that the distribution of the zeroes is not a�ected by the presence of the Wigner

caustic.

Our approximation (39) to the Husimi function inside E, supplies the geometrical

insight for the origin of the principal valley. As we saw in the example of the last section,

this valley is located where both terms of the approximation are of the same order. The

amplitude of the oscillatory term is dominated by the exponential, whose argument is

essentially equal to the square of the chord's length. If we follow the chord's length along

the level curves of the center action, that is, essentially the phase curves of the cosine in the

oscillatory term, we observe local minima of this length restricted to these curves. Away

from the valley the length of the chords grows, making the oscillatory term so small that

the smooth second term dominates the sum. This is also what happend in the problem

of the constant force (Section V) where the Q-axis is the locus of minima of the chord's

length restricted to the level curves of the center action which cross the axis orthogonally.

Along the valley, the oscillations of the cosine produce a serie of local minima of (39)

that indicate, in a �rst approximation, the position of the Husimi zeroes. The position

of these minima are very close to the points where the cosine takes its minimum value,

only slightly modi�ed when we consider the sum of the two terms. In FIG.9 (a) and

FIG.10 (a) we illustrate, for each quantum number, the geometrical method to locate
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the valley and the Husimi minima. We display the level curves of the center action for

which the cosine takes its lowest value, and the level curves of the chord's length. The

tangency of the two sets of curves determine the restricted minima of the chord's length

along the chosen level curves of the center action. These points are candidates to be,

approximately, the local minima of (39) after performing the sum of the two terms. The

valley of minima passes through all these points in this approximation. The comparison

in FIG.8 between the valley of minima of (39) and the zeroes of the Husimi function

shows that our approximation to the principal valley of zeroes holds farely well until the

bifurcation. Although this approximation to the valley continues after the bifurcation, it

does not take into account the bifurcation itself. Even this continuation, is no longer such

a good approximation of the longer valley beyond the bifurcation.

The local minima of (39) along the principal valley have almost the same spacing as

the Husimi zeroes. However, the absolute position of the predicted zeroes is not so precise

(see FIG.9 (c) and FIG.10 (c)). Furthermore, some of these minima become negative,

because the prefactor in the cosine becomes greater than the integral in the second term of

the approximation. We found the same situation when we applied (39) in the last section,

so we again make use of the re�ned approximation (41). This supplies corrections to the

chord's length in the argument of the exponential and to the center action in the phase of

the cosine. Therefore, we can use the same geometrical method to �nd the approximate

position of the local minima of (41) of the Husimi zeroes in the semiclassical regime.

Hence, FIG.9 (b) and FIG.10 (b) display the phase curves of the cosine for minimum

values, and the level curves of the argument of the exponential. The tangencies of these

two sets of curves determine the restricted minima of the argument of the exponential

in (41), along the level curves of the phase of the cosine. Clearly, these points belong

to a valley because, away from the line that passes through all the restricted minima,

the smooth second term in (41) dominates the sum exponentially. Moreover, since the

cosine takes its lowest value at these points, they are close to the local minima of (41).

The comparison of these points with the Husimi zeroes in FIG.9 (d) and FIG.10 (d),

shows that they are a good approximation to the zeroes along the principal valley until

the bifurcation.
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Our approximation (41) also fails to take account of the bifurcation. The valley of local

minima is again a very good approximation to the principal valley of the Husimi function,

but now, it also represents accurately its continuation along the longest bifurcating valley

(see FIG.8). However, along this bifurcating valley there are no local minima of (41) to

indicate the presence of zeroes, because there the prefactor of the oscillatory term is much

smaller than the integral of the second term. This can be observed in FIG.11 and FIG.12

where we display the logarithm of our approximation and the Husimi function along the

valley of local minima of (41), for each quantum number.

We saw that the valley of zeroes of the Husimi function is not a�ected by the Wigner

caustic. The principal valley, that runs parallel to the vertical side of the caustic on the

outside of L , crosses the cusps of the caustic at the tips of this side. This is re
ected

in our approximations (39) and (41) since only the contribution of a single chord inside

the Wigner caustic is needed. Because of the dependence on the chord's length in our

approximations, we showed that we only need to consider the shortest chord that is

continuous through L, irrespective of the two chords that coalesce along this caustic.

This shortest chord generates the valley that runs parallel and very close to the principal

valley of the Husimi function una�ected by the close lying Wigner caustic (see FIG.8).

To end this section, we note that the consideration of states corresponding to a �xed

energy, that are quantized by varying �h, leads to a spacing of the Husimi zeroes of O(�h).

This is easily seen in our simple approximation (39), for a �xed location along the valley

that is classically determined. The wavelength of the oscillations that determine the

minima is proportional to �h, whereas S(x) is a classical action.

VII. CONCLUSIONS.

The semiclassical approximation of the Husimi function has been derived by integrat-

ing the semiclassical Wigner function with a Gaussian window. This is not fundamentally

di�erent from the calculation of probability densities of position or momenta as projec-

tions of the Wigner function, except that now we project onto coherent states. In each

projection, we obtain a classical approximation by substituting the Wigner function by

a delta-function along the classically allowed region. Here, this leads to a narrow ridge
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along the classical region, which is supplemented by an oscillatory term derived from the

centre and chord structure within the energy curve. The oscillations of the latter along

the classical shallow valleys combine to form local minima, that indicate the positions

of the Husimi zeroes inside the energy curve. This geometrical explanation of the linear

distribution of minima cannot be pushed to the point of predicting absolute zeroes, but

it may be nonetheless surprising that their positions are asymptotically accurate, though

obtained by subtracting two exponentially small terms.

The advantage of deriving the intermediate approximation (39) is that the location of

the valley has a simple dependence on the minimal chord along curves of constant centre

action S(x). This curve is purely classical, once the excentricity � of the coherent states

de�nes the phase space metric. The corrections added to our complete formula (41) are

also classical. They mostly alter the distribution of zeroes along the valley, so we �nd that

the valleys are basically determined by the classical structure, in agreement with Leboeuf

and Voros [16].

It is perhaps surprising that the Wigner caustic L does not a�ect the position of the

Husimi zeroes. However, this fact is in agreement with previous calculations for the pro-

jections of the Wigner function [3]. In each case the integration singles out a contributing

chord from the semiclassical Wigner function, while ignoring the other possibly singular

chords. Thus we can understand the complexity of the Wigner function as arising from

the necessity to account for diverse square integrable projections.

We have limitted our considerations to autonomous Hamiltonian systems with one

degree of freedom, which are necessarily integrable. Our approximations are equally valid

for integrable classical maps on the plane onto itself: the zeroes are always predicted to lie

along the locus of minimal chords, the minimum being evaluated along lines of constant

phase for the Wigner function.

The chord structure generalizes to tori of higher dimension [2], so our methods will

also be extendable to the study of Husimi functions of integrable systems with more than

a single degree of freedom. In particular they may help to de�ne the zero-manifolds in

this case. For chaotic systems, we know that the chord structure is also present, though

it involves individual orbits [8]. The challenge lies open, to explore the relation between
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the structure of the Husimi and the Wigner functions for nonintegrable systems.
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APPENDIX A

The Husimi function for the problem of a particle in a box with hard walls.

Here we show the fundamental steps in the derivation of (28). We start with the

expression of the Husimi function given by the formula (20),

H(X) =
1

2��h

����
Z +1

�1
h
Xjqihqj nidq

����
2

=
�

l(��h)3=2

�����
Z +l=2

�l=2
e�

�2

2�h (q�Q)2�i
Pq
�h cos(pnq=�h)

�����
2

;

(A1)

where hqj
Xi is the normalized coherent states in the position representation (see for

example [19]) and hqj ni the even eigenfunction (26). If we express the cosine in the last

integral as (1=2)(eipnq=�h + e�ipnq=�h) we have

H(X) =
�

4l(��h)3=2

�����e�
(P�pn)2
2�h�2 e�i

(P�pn)Q
�h

Z +l=2

�l=2
e
�
n

1p
2�h

[�(q�Q)+i(P�pn)=�]
o2

dq +

+ e
� (P+pn)

2

2�h�2 e�i
(P+pn)Q

�h

Z +l=2

�l=2
e
�
n

1p
2�h

[�(q�Q)+i(P+pn)=�]
o2

dq

�����
2

: (A2)

Making a change of variables in the expression between braces in each integral and using

the de�nition of the error function

�(w) =
2p
�

Z w

0

e�y
2
dy ; (A3)

the Husimi function becomes
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H(X) =
1

8l�
p
��h

����e� (P�pn)2
2�h�2 e�i

(P�pn)Q
�h �(

z1p
2�h

) + �(
z2p
2�h

)

+ e
� (P+pn)

2

2�h�2 e�i
(P+pn)Q

�h �(
z3p
2�h

) + �(
z4p
2�h

)

����
2

: (A4)

With the help of the identity jw1 + w2j2 = jw1j2 + jw2j2 + 2<e(w1w2) of the complex

numbers we arrive to the expression (28) for the Husimi function in this problem.

Finally, we give the asymptotic expansion of the error function �(w), used in Section

III, in view of the confused and even incomplete form that it appears in the usual references

[17,18],

�(w) �
(

1� e�w
2

p
�w

[Fn(w) +O(jwj�2(n+1))] <e(w) > 0

�1� e�w
2

p
�w

[Fn(w) +O(jwj�2(n+1))] <e(w) < 0
jwj large (A5)

where Fn(w) =
Pn

k=0
(�1)k(2k�1)!!

(2z2)k .

APPENDIX B

Details of the geometrical approximation to the Husimi function within the energy

curve.

Here we derive the oscillatory term of our expression (41). We start with the Gaus-

sian smoothing (21) over the simple approximation (4) within the energy curve. If

we apply the approximation (37) to the center action, incluing the second order term

1
2
(x�X)H (X)(x �X)t (with H (X) the Hessian matrix (40)), and the approximation

(38) for the denominator, we have

2

�
p
2��h(!�1)��h

p
D(X)

<e
�
exp

�
i

�
S(X)

�h
� �

4

��
I(X)

�
; (B1)

where I(X) is the integral,

I(X) =

Z +1

�1
dq

Z +1

�1
dp e

1
�h [�a1(q�Q)2�a2(p�P )2+a3(q�Q)(p�P )+a4(q�Q)+a5(p�P )] ; (B2)

with the complex coe�cients: a1(X) = �2�i @q(�p)=2, a2(X) = 1=�2+ i @p(�q)=2, a3(X) =

i @p(�p), a4(X) = i �P and a5(X) = �i �Q. This double Gaussian integral can be

performed:
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I(X) =
��hp

ja1(a2 � a23=4a1)j
exp

�
1

4�h

�
a24
a1

+
(a5 + a3a4=2a1)2

(a2 � a23=4a1)

�
� i

(�1 + �2)

2

�
; (B3)

where �1 = arg(a1) and �2 = arg(a2 � a23=4a1) with �=2 < �1; �2 < �=2. This result can

be written in a more elegant way with the help of the complex matrix, A(X), de�ned in

(42),

I(X) =
��hp

jdetA(X)j exp
�

1

4�h

�(X) A(X) �t(X)

detA(X)
� i

arg(detA(X))

2

�
: (B4)

Replacing (B4) in (B1) and solving the real part we �nd the oscillatoty term in (41).

APPENDIX C

The Husimi function for the problem of a particle subject to a constant force.

The idea is to solve the Schr�odinger equation for the eigenstate j Ei, written in the

Bargmann representation, to �nd the Bargmann function in (23) for this problem. To

write the equation in the Bargmann representation, we proceed in the standard form: we

write the quantum Hamiltonian as a function of the creation and destruction operators

(17) in normal order (i.e. the ây operators to the right of the â operators) and then using,

hzjâj i = �h @zhzj i hzjâyj i = zhzj i ; (C1)

(where the jzi are the unnormalized coherent states de�ned in Section II) we get�
� �2

4m
[�h2@2z � 2�hz@z + z2 � �h]� Fp

2�
z � F�hp

2�
@z � E

�
hzj Ei = 0 : (C2)

This equation can be put in the form

f[@z � f(z)]2 + c(z � z�)ghzj Ei = 0 ; (C3)

where c = (1=�h2)8mF=�3
p
2, z� = (�=

p
2)(qr + mF=2�4) (with qr = �E=F the turn-

ing point of the classical trajectory of energy E), and the function f(z) = (1=�h)(z �
(2mF=�3

p
2)). The general solution of (C3) is

hzj Ei = expfg(z)g Aif�(z � z�)[c]
1=3g with @zg(z) = f(z) : (C4)
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Therefore, the Bargmann function for an eigenstate of the problem of a particle subject

to a constant force is

hzj Ei = B exp

�
1

�h

�
z2

2
� 2mFp

2�3
z

��
Ai

(
� (z � z�)

�
8mF

�h2
p
2�3

�1=3)
; (C5)

where B is a complex constant. Replacing (C5) in (23) we obtain the Husimi function

(47).

APPENDIX D

A semiclassical approximation to the Husimi function for the problem of a particle

subject to a constant force through the WKB method in the Bargmann representation.

Here we follow the WKB construction in the Bargmann representation given by Voros

[9] to obtain a semiclassical approximation to the Bargmann function hzj Ei and then,

through (23), a semiclassical approximation to the Husimi function.

We use the WKB construction based on the Weyl symbol HW (x), of the quantum

Hamiltonian Ĥ, for the cases where it does not depend on �h (i.e that it coincides with

the classical Hamiltonian, H). It is easy to verify, through (1), that HW � H when the

classical Hamiltonian is of the form (3). As this is the case for this problem, we write H

instead of HW .

Voros [9] argues that to build a WKB solution of the equation Ĥj Ei = Ej Ei in the

Bargmann representation, we should just apply the same formulae as for the Schr�odinger

representation (i.e. the common position representation), while replacing x = (q; p) !
(z; �z) and �h ! i�h. Therefore, the eigenvalue equation admits local asymptotic solutions

to leading order in �h,

hzj Ei �
�
@H

@�z

��1=2
�zE (z)

expfS(z)=�hg ; (D1)

where �zE(z) is the function de�ned implicitily by the relation that de�nes the classical

energy curve in the (z; �z) coordinates,

H(z; �z) = E ; (D2)
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and S(z) is the classical action in the complex coordinates,

S(z) =

Z z

�zE(z
0
)dz

0
: (D3)

The fact that �z and its complex conjugate z are related themself by H(z; �z) = E restricts

z to the real energy curve. This means that the function �zE(z) is a branch of (D2), de�ned

in a sheet to which the energy curve belongs, and is single valued over it. For nonanalytic

H, there is no guarantee to have an analytical continuation of �zE(z) anywhere outside.

Thus (D1) is well de�ned only for z on the real energy curve and it is globally regular,

since there is no turning point anywhere.

In order to obtain a holomorphic approximation far away from the energy curve we

use the fact that, in this problem, the classical Hamiltonian is analytic in both variables

z and �z, so the energy relation (D2) de�nes implicitily �zE as a multiply valued function of

z (i.e its domain are the sheets of some Riemannian surface). However, outside the real

energy curve �zE(z) is no longer the complex conjugate of z, so we use a less confusing

notation denoting as y the independent complex variable canonically conjugate to z,

z =
1p
2

�
�q � i

p

�

�
y =

1p
2

�
�q + i

p

�

�
; (D4)

where q and p are now complex. Then, the complex energy curve in this problem is

H(z; y) = a0y
2 + a1(z)y + a2(z) = 0 ; (D5)

with the coe�cients: a0 = ��2=4m, a1(z) = �2z=2m� F=
p
2� and a2(z) = ��2z2=4m�

Fz=
p
2� � E. This is an equation of degree two, so the explicit branches y = yE(z) are

de�ned over a two-sheet Riemannian surface. If we make the simple change of variable

w = 2a0y + a1, we obtain the equivalent equation

w2 � u(z) = 0 ; (D6)

where u(z) = a21 � 4a0a2 = �[p2�F=m](z � z�) (z� = [�=
p
2](mF=2�4 + qr) and qr =

�E=F is the turning point of the classical trajectory of energy E). The function w(z) is

de�ned over a Riemann surface with branch points z = z� and z = +1. The branches

are wI(z) = i[
p
2�F=m]1=2

p
z � z� and wII(z) = �i[p2�F=m]1=2

p
z � z�, (F > 0). Here
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we use the notation:
p
z � z� =

p
rei�=2, 0 < � < 2�; so we can also consider z in the

ordinary complex plane and wI(z) and wII(z) as two di�erent functions. Since y is a single

valued function of w, the branches yE(z), or equivalently the solutions of (D5) are,

yI(z) = �i
h
8mFp
2�3

i1=2p
z � z� + z � 2mFp

2�3

yII(z) = i
h
8mFp
2�3

i1=2p
z � z� + z � 2mFp

2�3

(F > 0) : (D7)

The WKB approximation is then a linear combination of solutions of the type (D1)

for each branch, valid away from the energy curve:

hzj Ei �
�
@H

@y

��1=2
yI(z)

expfSI(z)=�hg+
�
@H

@y

��1=2
yII(z)

expfSII(z)=�hg ; (D8)

with the complex actions for each branch

SI(z) =

Z z

yI(z
0
)dz

0
SII(z) =

Z z

yII(z
0
)dz

0
: (D9)

Hence, the semiclassical approximation to the Bargmann function in this problem is

hzj Ei � B
0
exp

�
1

�h

�
z2

2
� 2mFp

2�3
z

��
(z � z�)�1=4 �

� cos

(
2

3�h

�
8mFp
2�3

�1=2
(z � z�)

3=2 � �

4

)
: (D10)

This expression can also be obtained applying the asymptotic form (7) to the Airy function

in the Bargmann function (C5) of Appendix C. Replacing (D10) in (23) leads to a

semiclassical approximation to the Husimi function.

Since the zeroes of the Husimi function are the same of those of the Bargmann function,

the semiclassical distribution of the Husimi zeroes can be obtained from (D10). However,

besides the zeroes (48) over the real axis, (D10) predicts spurious zeroes over the straight

lines that start in z = z� and have the directions � = 2�=3 and � = 4�=3. Notwithstand-

ing, considering the region of validity for applying (7) in (C5), we see that those zeroes

are in a region where (D10) is not an approximation of the Bargmann function (C5).
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CAPTIONS

FIG.1. Semiclassical geometry of the Wigner function in 1-D systems for a typical

smooth convex curve, E, of constant energy. The full chord near the Wigner caustic L,
corresponds to a center point outside it. As the center moves through L, a bifurcation

occurs. When the center lies on L (dashed chords), a second chord is born. Notice that

the phase space velocities at the tips of this new longest chord are parallel, cancelling the

area (5), while for the shortest chord this does not happend. Finally, when the center

is inside L, there are three chords (dotted). The other elements of the geometry are

explained in the text.

FIG.2. Husimi function plots (on a logarithmic density scale) for an even eigenstate

in the problem of a particle in a box with hard walls; the stress is in dark for the greatest

value and in white for the lowest one. (a) Calculated numerically from (20) with the

function h
Xj i expressed in the position representation. (b) Asymptotic approximation

for the error functions in (28) given by (29). (c) Smoothing of simpli�edWigner function,

(33). The center of the white spots represent the zeroes. The horizontal white lines are

the branches of the classical trajectory jpnj = 0:3 between the limits of the box. The

points at the tips of this branches are the \corners of the phase space box" cited in the

text. The central rectangle encloses the intersection of the region j=m(w)j < <e(w) with
<e(w) > 0, for all the error functions in (28). The vertical lines in plot (c) enclose the

intersections of the same region for the error functions in (33).

FIG.3. The Husimi functions over the axis P = 0 for the plots in FIG.2. The dotted

curve corresponds to the plot (a), the dashed curve corresponds to the plot (b) and the

full line is for the plot (c). The dashed vertical lines mark the limit of validity of the

approximation (31).

FIG.4. The Husimi function, on a logarithmic density scale, of an eigenstate for the

particle under the action of a constant force. The parabola E, is the curve of constant
energy. The center of the white spots on the axis P = 0 represent zeroes. The circle

in the bottom left corner represent the curve (36) where the Gaussian smoothing (21)

is signi�cative. The symbol (�) in P = 0 indicates the point Q�. The values of the

parameters used are: E = 10, F = 1, �h = 2, � = 1 and m = 1.
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FIG.5. Numerical camparison, along the Q-axis, of the prefactors of the cosine in

(41) (dotted line) and in (39) (dashed line) with the integral (51) (full line). Notice

that when Q increases, the prefactor in (39) is grater than the integral (51). The vertical

dashed line is at position qr and the dotted one is at Q�'s.

FIG.6. The logarithm of our approximation (41) (black curve) and of the Husimi

function for the problem of the particle under the action of a constant force (gray curve),

along the Q-axis inside the energy curve. The sharp inverted peaks indicate the position

of the Husimi zeroes in the black curve, and the minima of (41) in the gray curve. The

vertical full lines stress the position of the Husimi zeroes. The vertical dashed line is at

qr's position and the dotted one is at Q�'s. (�) indicates the Q-positions for the minima

of our approximation (39) and (�) for the minima of (41). The second line of (�) are
the minima of (39) shifted by the distance (Q� � qr). (�) are for the zeroes (48) of the
semiclassical Husimi function obtained by the WKB method in Bargmann representation.

FIG.7. Percentage relative error, (�k=�k�1;k)100% , between the positions of the

Husimi zeroes (calculated numerically) and the positions given by the approximations to

the zeroes. �k is the distance, on the Q-axis, between the k-zero of the Husimi function

and the position given by one of the approximations. �k�1;k is the distance between the

k � 1 and the k-zero of the Husimi function. The zeroes are counting from left to right.

(�) are for the case of the zeroes (48) of the semiclassical Husimi function obtained by

the WKB method in Bargmann representation, (�) for the minima of our approximation

(41) and the (�) for those of our approximation (39) shifted by the distance (Q� � qr).

FIG.8. Distribution of the zeroes of the Husimi functions of two energy eigenstates

inside the energy curve with E � 30:8175, for the problem of a particle subjet to an

asymmetric anharmonic potencial (52). The symbol (�) indicates the position of the

Husimi zeros. (a), for the eigenstate n = 30 for a value of �h � 0:508236 and, (b), for the

eigenstate n = 45 for a value of �h � 0:340691. E is the energy curve and L the Wigner

caustic. The dashed line represents the valley of the Husimi zeroes. The dotted line

represents the valley of local minima of our approximation (39) and the full line, the

minima of (41). The circle at the upper right corner of each �gure represents the curve

(36) for the range of the Gaussian smoothing (21).
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FIG.9. Geometrical method for locating the position of the local minima, along

the valley of approximations (39) (a) and (41) (b). The value of �h corresponds to the

quantum number n = 30. (a): dotted lines indicate the level curves of the center action,

while the level curves of the chord's length are given by the full lines. (b): dotted lines

indicate the level curves of the phase of the cosine in (41), while the level curves of the

argument of the exponential are given by the full lines. (c) and (d): the positions of the

Husimi zeroes for the eigenstate n = 30 (�), and the approximate position of the local

minima ((�) for (39), (�) for (41)).
FIG.10. Idem FIG.9, for a value of �h corresponding to the quantum number n = 45.

FIG.11. The logarithm of our approximation (41) (black curve) and the Husimi

function of the eigenstate n = 30 (gray curve) along the valley of local minima (full

line in FIG.8). The curves are projected onto the P-axis. The vertical lines stress the

position of the Husimi zeroes over the P-axis. The full vertical lines are for zeroes in

the principal valley of the Husimi function; the dashed vertical lines are for zeroes in the

shortest bifurcatingvalley. The symbols (�) and (�) correspond to the position on the

P-axis of the points in FIG.9 (c) and (d).

FIG.12. Idem FIG.11 for the eigenstate n = 45.
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FIGURES

FIG. 1.
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FIG. 2.
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FIG. 3.
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FIG. 4.
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FIG. 5.
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FIG. 6.
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FIG. 7.
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FIG. 8.
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FIG. 9.



CBPF-NF-007/99 44

FIG. 10.
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FIG. 11.
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FIG. 12.


