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Abstract
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1 Introduction

It is well-known that boundary conditions imposed upon quantum �elds may lead to diver-
gent expectation values for local observables. A simple example is a massless, minimally
coupled scalar �eld '(t;x) which vanishes on the z = 0 plane;

'
���
z=0

= 0 : (1)

One �nds [1] that the renormalized expectation values of both '2 and of the energy density
Ttt diverge as z! 0. Speci�cally,

h'2i = � 1

16�2 z2
(2)

and

hTtti = � 1

16�2 z4
: (3)

(Units in which �h = c = will be used throughout this paper. The metric tensor is taken
to be ��� = diag(1;�1;�1;�1).) The stress energy tensor of the massless minimally
coupled scalar �eld is given by

T�� = @�'@�'� 1

2
��� @

�'@�' : (4)

Similar divergences occur in the expectation values of the squared electric or magnetic
�elds, hE2i or hB2i near a perfectly conducting plane, although in this case the local
energy density remains �nite. When the conducting boundary is curved, then the energy
density diverges on the boundary [2].

Furthermore, there is a puzzling discrepancy between the Casimir energy for a minimal
scalar �eld computed as the renormalized expectation value of the Hamiltonian and as
a spatial integral of hTtti. Consider the case of two parallel plates with separation L on
which the �eld vanishes. If we �rst form the Hamiltonian operator H =

R
Ttt d

3x, the
result is the same for both the minimal and conformally coupled �elds. This follows from
the fact that the stress tensor for the conformal �eld,

��� = @�'@�'� 1

2
��� @

� '@�'� 1

6

h
@�('@�') + @�('@�')� 2��� @

�('@�')
i
; (5)

di�ers from that for the minimal �eld, Eq. (4), by a total derivative term which integrates
to zero. If we �nd the renormalized expectation value of H, the energy per unit area
is found to be ��2=(1440L3). However, if we attempt to compute this energy per unit

area as
R L

0 hTtti dz, the result is divergent. This discrepancy has led some authors [3]
to postulate the existence of a singular surface energy density, which would render the
latter expression �nite and equal to the former result. (Note that the surface energy
densities which are of concern here are distinct from the surface-area-dependent terms
in the regularized Casimir energy which can arise in particular regularization methods
[4, 5].)

In curved or topologically nontrivial spacetimes, it is also possible for the renormalized
expectation value of the stress tensor to diverge on particular boundaries. An example
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is the Boulware vacuum state in Schwarzschild spacetime, for which the stress tensor
diverges on the event horizon [6]. This divergence is usually interpreted as indicating that
this is not a physically realizable state. Other examples of divergent stress tensors include
Misner space, where the divergence occurs on the Cauchy horizon [7]. In this and similar
examples, one is tempted to resolve the problem by regarding the spacetime itself to
be unphysical. Indeed, this philosophy is the basis of Hawking's Chronology Protection
Conjecture [9], which argues that closed timelike curves are prohibited by the e�ects
of divergent energy densities which would otherwise appear on the chronology horizon
(the boundary between a region containing closed timelike curves and one without such
curves).

One may understand why the imposition of a boundary condition such as Eq. (1)
on a quantum �eld can result in in�nities. In the case of h'2i, renormalization means
taking the di�erence of the expectation value in the presence of the boundary and in its
absence. Normally, this removes the in�nite part and leaves a �nite remainder. However,
on the boundary the formal expectation value of h'2i is �nite, so the subtraction results
in an in�nite di�erence. We can also understand why quantities such as h _'2i and hTtti
become in�nite on the boundary. The �eld ' and its time derivative _' are conjugate
variables which satisfy an uncertainty relation. If ' is precisely speci�ed, _' is completely
indeterminate, and h _'2i and thus hTtti = 1

2h _'2+(r')2i are in�nite. A state in which ' is
precisely determined at a point has in�nite energy density at that point for essentially the
same reason that a position eigenstate in single particle quantum mechanics has in�nite
energy.

In the case of material boundaries, such metal plates, in�nite values of hE2i or other
observables are presumably avoided because such boundaries are not perfect re
ectors at
all frequencies. A metal plate is a good re
ector of electromagnetic waves at frequencies
below the plasma frequency, but becomes relatively transparent at higher frequencies.
Such a high frequency cuto� seems not to be available when the \boundary" is a feature
of the spacetime structure.

The purpose of the present paper is to explore an alternative mechanism for introduc-
ing a cuto� which removes singular behavior on boundaries. This is to allow the position
of the boundary to undergo quantum 
uctuations. One might expect that such 
uctua-
tions will smear out the contributions of the high frequency modes without the need to
introduce an explicit high frequency cuto�.

2 h'2i near a Single Plate

Let us consider a plane boundary located at z = q. If we impose the boundary condition
on a massless quantized scalar �eld ' that it vanish on this boundary, the appropriate
two-point function may be constructed as an image sum. The result is

h'(x)'(x0)i = G(x; x0) = G0(x; x
0) +GR(x; x

0) ; (6)

where

G0(x; x
0) = � 1

4�2(�t2 ��x2)
(7)
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is the empty space two-point function, with �t = t� t0, �x2 = x� x0, and

GR(x; x
0) =

1

4�2
�
�t2 ��x2 ��y2 � (z + z0 � 2q)2

� : (8)

The full two-point function, G(x; x0), vanishes whenever z = q or z = q0. The renormalized
expectation value of '2 is given by the coincidence limit of the renormalized two-point
function, GR(x; x0),

h'2i = GR(x; x) = � 1

16�2 (z � q)2 (9)

and is singular at z = q.
We now wish to allow the position variable q to 
uctuate. This will occur if the mirror

is treated as a quantum object with a wavefunction  (q), and hence a position probability
distribution of

f(q) = j (q)j2 ; (10)

where Z 1

�1

f(q) dq = 1 : (11)

The average over position of a function H(q) becomes

hHi =
Z 1

�1

H(q) f(q) dq : (12)

Thus to �nd the mean value of '2, we need to calculate hGRi. This is most easily done
by expressing GR in a Fourier representation, and then averaging the q-dependence of the
mode functions:

hGR(x; x
0)i = � 1

2(2�)3
Re

Z
d3k

!
eikt�(xt�x0t) e�i!(t�t

0) eikz(z+z
0) he�2ikzqi ; (13)

where kt and xt denote the components of k and x, respectively, in directions parallel to
the plate.

To proceed further, we must specify the probability distribution, f(q). A convenient
choice is a Gaussian peaked about q = 0,

f(q) =

r
�

�
e��q

2

; (14)

which leads to
he�2ikzqi = e�2k

2

z
hq2i ; (15)

with

hq2i = 1

2�
: (16)

This probability distribution is the appropriate one to describe, for example, a plate in
the ground state of a harmonic potential. Note that Eq. (15) is equivalent to the result
which one obtains when taking the vacuum expectation value of the complex exponential
of a free quantum �eld. (See, for example, Eq. (8) of Ref. [8].) This is to be expected, as
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a free quantum �eld in the vacuum state is equivalent to an in�nite collection of harmonic
oscillators in their ground states.

If we use Eq. (15) in Eq. (13), set x0 = x, and useZ
d3k = 2�

Z 1

�1

dkz

Z 1

jkz j

d!! ; (17)

for integrands independent of the azimuthal angle, the result is

hGR(t; t
0)i = 1

2(2�)2(t� t0)
Re

�
i

Z 1

�1

dkz e
i(2zkz+(t�t0)jkzj) e�2k

2
z
�2

�
; (18)

where
� =

p
hq2i (19)

is the root-mean-squared displacement of the mirror. This integral may be performed in
terms of the error function � to be

hGR(t; t
0)i = � i

p
2�

8(2�)2(t� t0)�

�
e�(2z�t+t

0)2=(8�2)�

�
i
t� t0 � 2z

2
p
2�

�

+ e�(2z+t�t
0)2=(8�2)�

�
i
t� t0 + 2z

2
p
2�

��
: (20)

(Here and at many other places in this paper, the calculations were performed with the
aid of the symbolic algebra program MACSYMA.) This quantity is �nite in the limit that
t0 ! t :

hGRi =
p
2 z

32
p
�3�3

e�z
2=(2�2) i�

�
i
zp
2�

�
+

1

16�2�2
: (21)

Note that this expression is real, as may be seen from the fact that

�(ix) = ��(�ix) = 2ip
�

Z x

0

eu
2

du : (22)

The quantity hGRi is h'2i in the presence of position 
uctuations, and is �nite for all
z. For large z, we have

hGRi � � 1

16�2 z2
� 3�2

16�2 z4
+ � � � ; z� � ; (23)

thus recovering the usual form far from the mirror. As z! 0,

hGRi ! 1

16�2�2
; (24)

and is hence �nite. For intermediate values of z, hGRi may be computed numerically, and
is depicted in Fig. 1.
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Figure 1:
The mean value of '2 near a mirror undergoing Gaussian position 
uctuations is shown.
The distance z from the mean position of the mirror is given in units of �, the character-
istic width of the probability distribution, and h'2i in units of ��2. For z=� large, h'2i
is approximately given by Eq. (2), but it is �nite as ! 0.
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3 The Energy Density near a Single Plate

3.1 Gaussian Fluctuations

We now wish to apply the procedure used in the previous section to �nd the energy
density in the presence of a single plate, whose position is undergoing 
uctuations with a
Gaussian probability distribution. This energy density may be expressed as

h�i = 1

2
lim
t0!t

x0!x

�
@t @

0
t +rx � rx0

�
hGR(x; x

0)i : (25)

A repetition of the procedure used for hGRi leads to

h�i = � 1

2(2�)3
lim
t0!t

x0!x

Re

Z
d3k

!
(!2 � k2z ) e

ikt�(xt�x0t) e�i!(t�t
0) eikz(z+z

0) he�2ikzqi : (26)

If we now employ the relation for Gaussian 
uctuations, Eq. (15), and perform the inte-
grations as before, we �nd

h�i =
2i

(2�)3�

r
�

2
lim
t0!t

@2

@u @v

�
1

u+ v

�
e�u

2=(8�2)�

�
i

u

2
p
2�

�

+ e�v
2=(8�2)�

�
i

v

2
p
2�

���
; (27)

where u = t� t0� 2z, and v = t� t0+2z. Explicit evaluation of the last expression leads
to

h�i = 1

192�2�7

�p
2� z (z2 � 3�2)e�z

2=(2�2) i�

�
i
zp
2�

�
+ 2�(z2 � 2�2)

�
: (28)

Far from the mirror, the energy density is that calculated without 
uctuations:

h�i � � 1

16�2 z4
+ � � � ; z� � ; (29)

and near the mirror it is �nite

h�i ! � 1

48�2�4
z ! 0 : (30)

The energy density, h�i is given as a function of z in Fig. 2.
The remaining components of the expectation value of the stress tensor, hT��i, may

be readily obtained. This must be a Lorentz tensor formed from the metric ��� and n�n� ,
where n� = (0; 0; 0; 1) is the unit normal vector to the mirror. Hence,

hT��i = F1(z) ��� + F2(z)n�n� ; (31)

where F1 and F2 are scalar functions of z. We see immediately that the transverse
components are just minus the energy density:

hTxxi = hTyyi = �h�i : (32)
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Furthermore, the conservation law, @�hT��i = 0 implies that

d

dz

�
F1(z) + F2(z)

�
= 0 : (33)

We de�ne the renormalized stress tensor so that hT��i ! 0 as z ! 1, which implies
F1(z) = �F2(z), and hence

hT��i = h�i
�
��� � n�n�

�
: (34)

As a consequence, the pressure normal to the mirror vanishes:

hTzzi = 0 : (35)

Finally, we note that one may calculate the integral of the right-hand-side of Eq. (28)
explicitly and verify that Z 1

0

h�i dz = 0 : (36)

This con�rms that the boundary 
uctuations remove the apparent discrepancy between
the Casimir energies of the minimal and conformal scalar �elds. Note that although h�i
is negative both at large distances and at the mean position of the mirror, it is positive in
a region near z = 0, as illustrated in Fig. 2. The positive energy region can be regarded
as the concrete realization of the positive surface energy density conjectured by Kennedy,
et al [3].

3.2 A General Probability Distribution

Now we wish to generalize our discussion to an arbitrary probability distribution. For later
use, we will momentarily assume that the distribution function f is peaked symmetrically
around an arbitrary value of hqi, and write f = f(s), where s = q � hqi. The average of
a complex exponential function of q then becomes

hei�qi = ei�hqi f̂ (�) ; (37)

where f̂ denotes the Fourier transform of f :

f̂ (�) =

Z 1

�1

ei�s f(s) ds : (38)

We may now use Eq. (26) to express the averaged energy density for an arbitrary, sym-
metric probability distribution as

h�i = � 1

2�2
lim
t0!t

@2

@u @v
Re

�
i

u+ v

Z 1

0

dkz

h
e�ikzu f̂(�2kz) + e�ikzv f̂ (2kz)

i�
; (39)

where, as before, u = t� t0 � 2z, and v = t� t0 + 2z. We next use Eq. (38) to re-express
h�i in terms of f , and employ the relationZ 1

0

dx eiax =
i

a
+ �(a) (40)
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Figure 2:
The mean energy density, h�i, near a mirror undergoing Gaussian position 
uctuations is
shown in units of ��4 as a function of z in units of �. The integral of this function over
all positive z vanishes.

to �nd

h�i = � 1

�2
lim
t0!t

@2

@u @v

�
F (u) + F (v)

u+ v

�
; (41)

where

F (u) =

Z 1

�1

ds
f(s)

2s + u
; (42)

and the last integral is understood to be a principal value.
Thus given the probability distribution f(s), we need only calculate F (the Hilbert

transform of f), and then evaluate the derivatives and limit in Eq. (41). It is of interest to
apply this formalism to the case of a compactly-supported distribution. A simple example
is

f(s) =
315

256 s90
(s� s0)

4 (s+ s0)
4 ; �s0 � s � s0 ; (43)

and f(s) = 0 for jsj > s0. This function is chosen so that f and its �rst three derivatives
are continuous at s = �s0. Equation (41) now leads to

h�i =
1

512�2 s90

n
(2205z5 � 3150s20z

3 + 945s40z)
h
ln(z + s0)� ln jz � s0j

i
�4410s0z4 + 4830s30z

2 � 672s50
	
: (44)

This function is plotted in Fig. 3. Again, we have that at large distances from the mirror

h�i � � 1

16�2 z4
+ � � � ; z � s0 : (45)
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Figure 3:
The mean energy density, h�i, is illustrated for the compact probability distribution,
Eq. (43). The distance z is in units of the width s0 of the probability distribution, and
h�i in units of s�40 . Again, the integral of h�i over positive z vanishes.

Note that h�i has a cusp at z = s0. If we had chosen a distribution function for which any
of the �rst three derivatives are discontinuous at this point, h�i would become singular
there. Similarly, we could smooth out the cusp by matching more derivatives at this point.
We may verify directly that the total energy again vanishes:Z 1

0

h�i dz = 0 : (46)

4 The Squared Electric Field near a Single Plate

As noted in the Introduction, the squared electric and magnetic �elds diverge in the
presence of a perfectly re
ecting plate with no position 
uctuations. Speci�cally, one has

hE2i = �hB2i = 3

16�2 z4
; (47)

so the energy density vanishes:

h�i = 1

2

�
hE2i + hB2i

�
= 0 : (48)

We may now calculate the squared electric �eld in the presence of a 
uctuating boundary.
The two point function for the photon �eld is

D��(x; x0) = h0jA�(x); A�(x0)j0i : (49)
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In the presence of the re
ecting plate, this may be expressed as

D��(x; x0) = D��
0 (x� x0) +D��

R (x; x0) (50)

where D��
0 (x � x0) is the two point function in the absence of the boundary, and the

renormalized two point function, D��
R (x; x0), is the correction introduced by the presence

of the boundary. In a particular choice of gauge, we have that

D��
0 (x� x0) = ���G0(x� x0) ; (51)

and
D��

R (x; x0) = �(��� + 2n�n�)GR(x; x
0) : (52)

Here G0 and GR are the scalar two point functions given in Eqs. (7) and (8), respectively,
and n� = (0; 0; 0; 1) is the unit vector normal to the plate. The renormalized �eld strength
two point function can now be obtained by taking the four dimensional curl in x and in
x0 of Eq. (52). The electric �eld part of this function is

hEi(x)Ej(x
0)i = hF0i(x)F0j(x

0)i = @0@
0
0hAi(x)Aj(x

0)i+ @i@
0
jhA0(x)A0(x

0)i : (53)

In the presence of boundary 
uctuations, the mean squared electric �eld is now given by

hE2i = lim
t0!t

x0!x

�
@t @

0
t �rx � rx0

�
hGR(x; x

0)i = 1

3
hT �

� i ; (54)

where T �
� is the trace of the minimal scalar �eld stress tensor. From Eqs. (32) and (35),

we �nd that
hE2i = �3h�i : (55)

Thus our explicit results for the scalar �eld energy density, h�i, Eqs. (28) and (44), also
give us hE2i for the Gaussian and compact probability distributions, respectively.

It is of interest to note that the Casimir-Polder potential between a polarizable particle
with a frequency-independent polarizability � and a conducting boundary is given by

V (z) = �1

2
� hE2i : (56)

Thus Figs. 2 and 3 are also plots of 2V (z)=(3�) for the Gaussian and compact probability
distributions, respectively. In both cases, there is a minimum in V (z) at a �nite distance
from the mean position of the boundary, at which the particle could apparently become
trapped. This should probably not be taken too seriously, as in the case of Gaussian

uctuations there is a nonzero probability to �nd the mirror to the right of the minimum
of V (z). In the case of the compact probability distribution, Eq. (43), the mirror may be
found at any location to the left of the minimum of V (z).

5 The Energy Density between Two Plates

Here we will address the problem of �nding the mean energy density for a minimally
coupled, massless scalar �eld between a pair of parallel plates. As before, the �eld is
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assumed to vanish on the plates, but their positions are allowed to 
uctuate. First suppose
that the plates are �xed at z = � and z = �, respectively. The two point function may
be constructed as an image sum:

G(x; x0) = � 1

4�2

"
1X

m=�1

1

�� 2 � [z � z0 + 2m(� � �)]2

�
1X

m=�1

1

�� 2 � [z + z0 + 2m� � 2(m+ 1)�]2

#
; (57)

where �� 2 = �t2 � �x2t = �t2 � �x2 � �y2. The renormalized two point function is
obtained by subtracting G0(x; x

0), which amounts to omitting the m = 0 term in the �rst
summation. The result may be written as

GR(x; x0) =
1

2(2�)3
Re

Z
d3k

!
eikt��xt e�i!�t

�
"

1X
m=�1

0

eikz[z�z
0+2m(���)] �

1X
m=�1

eikz[z+z
0+2m��2(m+1)�]

#
; (58)

where the prime on a summation denotes that the m = 0 term is omitted.
We will assume that the positions of both plates are described by the same probability

distribution, f . We then have that

heikz[z�z0+2m(���)]i =

Z
d� f(�)

Z
d� f(�) eikz[z�z

0+2m(���)]

= eikz[z�z
0+2m(h�i�h�i)] f̂2(2mkz) ; (59)

and

heikz[z+z0+2m��2(m+1)�]i = eikz[z+z
0+2mh�i�2(m+1)h�i] f̂(2mkz) f̂

�
2(m+ 1)kz

�
: (60)

The mean energy density is given by Eq. (25). If we combine this expression with the
above results, we �nd

h�i = � 1

8�2
lim
�t!0

Re

"
@2

@t2

��i
�t

� Z 1

�1

dkz e
ijkzj�t

1X
m=�1

0

e2ijkzjma f̂2(2mkz)+

�
1

4

@2

@z2
� @2

@t2

���i
�t

� Z 1

�1

dkz e
ijkzj�t

1X
m=�1

e2ijkzj(ma+z) f̂ (2mkz) f̂
�
2(m + 1)kz

�#
;(61)

where we have set h�i = 0 and a = h�i, so a is the mean separation between the plates.
We now employ Eq. (40) and the identity [10]

1X
m=�1

1

m� a
= �� cot �a : (62)
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After the derivatives have been evaluated, our �nal result may be expressed as

h�i = h�i1 + h�i2 ; (63)

where

h�i1 = � �2

1440

Z 1

�1

ds

Z 1

�1

dr
f(s)f(r)

(s+ r + a)4
; (64)

and

h�i2 = ��
2

48

Z 1

�1

ds

Z 1

�1

dr f(s)f(r)
2 sin2

h
�(z+r)
s+r+a

i
� 3

(s+ r + a)4 sin4
h
�(z+r)
s+r+a

i : (65)

Let us �rst discuss the limit in which the position of both plates is precisely de�ned.
In this case, we take f(s) = �(s) and obtain

h�i1 = � �2

1440 a4
; (66)

and

h�i2 = �2

48

2 sin2
�
�z
a

�� 3

a4 sin4
�
�z
a

� : (67)

This is just the usual result [1]; h�i1 is now the energy density for a conformal scalar �eld,
and h�i1 diverges on the boundaries.

Now suppose that we take f(s) to be a function with a �nite width, and whose �rst
three derivatives are �nite. The integrals in Eqs. (64) and (65) contain poles in the ranges
of integration, but the integrals are well-de�ned as principal value or generalized principal
value integrals [11]. That is, we use identities of the formZ 1

�1

ds
f(s)

(s� a)4 = �
1

3

Z 1

�1

ds
f 0(s)

(s� a)3
=

1

6

Z 1

�1

ds
f 00(s)

(s� a)2
= �1

6

Z 1

�1

ds
f 000(s)

s� a
: (68)

Thus we see that both h�i1 and h�i2 will be �nite everywhere.
We may now integrate the �nite energy density on z to obtain the mean energy per

unit area:

E =

Z a

0

h�i dz = E1 + E2 ; (69)

where
E1 = ah�i1 ; (70)

and

E2 =

Z 1

�1

ds

Z 1

�1

dr f(s)f(r)H(s; r) ; (71)

and H(s; r) is de�ned by

H(s; r) = � �

48

cos
�

�r
s+r+a

�
sin3

h
�(z+r)
s+r+a

i
� sin3

�
�r

s+r+a

�
cos

h
�(z+r)
s+r+a

i
(s+ r + a)3 sin3

�
�r

s+r+a

�
sin3

h
�(z+r)
s+r+a

i : (72)
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In order to discuss the case of plates which are highly localized in position, we need to
Taylor expand H(s; r) around s = r = 0:

H(s; r) � � 1

48�2

�
1

s3
+

1

r3

�
+
�2(s+ r)

720a4
+ � � � : (73)

Although the leading term in this expansion is singular at s = 0 or r = 0, its contribution
to E2 vanishes because of the symmetry of the probability distribution, f(s) = f(�s).
All subsequent terms in the expansion of H(s; r) vanish at s = r = 0. Thus we �nd that
if we �rst form the total energy per unit area of the plates, and then take the limit in
which f(s)! �(s), the result is the same as for the conformal scalar �eld:

E1 !� �2

1440 a3
; E2 ! 0 : (74)

In both cases, we now �nd the same, negative Casimir energy. (Note that, in general, the
sign of a Casimir energy is very di�cult to predict in advance of an explicit claculation,
and can depend upon both boundary conditions and the dimensionality of spacetime [12].)

6 Summary and Conclusions

In the previous sections, we have seen that position 
uctuations of a re
ecting boundary
are capable of removing divergences in the renormalized values of local observables, such
as h'2i and hT��i. In the case of the massless, minimally coupled scalar �eld, such 
uctua-
tions also remove the discrepancy between the spatial integral of the renormalized energy
density,

R hTtt id3x, and the renormalized expectation value of the Hamiltonian, hHi. Po-
sition 
uctuations are necessary if one is to treat the mirror as a quantum mechanical
object.

Of course, for real mirrors the mass is likely to be so large that the position uncertainty
� is very small. In this case, the cuto� in re
ectivity due to dispersion will normally be
the dominant e�ect. Dielectric materials become transparent to electromagnetic radiation
at wavelengths shorter than about the plasma wavelength, �p. So long as the position
uncertainty is small compared to this length, � � �p, dispersive e�ects are dominant,
and the position 
uctuations may be ignored. However, if one could arrange to prepare a
mirror in a quantum state in which � > �p, the position 
uctuation e�ects discussed in
this paper would become dominant.

In the area of gravitational physics, the situation is rather di�erent. Here it is also
possible to have horizons which act as boundaries for quantized �elds, and for the renor-
malized expectation value of the stress tensor to diverge on the horizon. As discussed
in the Introduction, examples include the event horizon of Schwarzschild spacetime in
the Boulware vacuum, the Cauchy horizon in Misner space, and possibly the chronology
horizon in a spacetime containing closed timelike curves. Now there is no natural cuto�
at high frequencies, and in fact higher frequency modes tend to couple more strongly to
gravity by virtue of their larger energy. It is of course possible that a more complete
quantum theory of gravity will introduce an e�ective cuto� at the Planck scale. At the
present, any discussion of Planck scale physics must be regarded as highly speculative.
Nonetheless, position 
uctuations of the horizon would seem to provide a possible way
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to avoid divergent stress tensors. It is plausible that the location of a spacetime horizon
undergoes position 
uctuations due either to the quantum nature of gravity (\active 
uc-
tuations") [13], or to 
uctuations of the stress tensor of quantum matter �elds (\passive

uctuations") [14]. This is a topic requiring further study.
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