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ABSTRACT

We study bosonization ambiguities in two dimensional quantum eletrodynamics in the
presence and in the absence of topologically charged gauge fields. The computation of
fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial
topologies, provided that we do not allow changes of sector as we evaluate functional
integrals. This removes an infinite arbitrariness from the theory. In the case of trivial
topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corre-
sponding to the limiting cases of regularizations which preserve gauge or chiral symmetry.
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1 Introduction

The study of models in dimensions other than four frequently brings out features that
give insights about what happens in higher dimensions. In two dimensions, the procedure
known as bosonization [1][2] sometimes gives a gaussian expression to the functional in-
tegral, making it possible to obtain the exact solution and then to compare the results
with those given by perturbative techniques. This allows the explicit study of character-
istics such as charge screening and vacuum structure [3][4][5] which are very important
for theories like QCD,.

A quite intriguing feature of some of these models is the appearance of ambiguities
during the regularization of some ill defined quantities. This is the case of QED,, with or
without chiral fermions [6][7] and of the Thirring model [8], where bosonization introduces
an arbitrary parameter a which shifts the position of the pole in the photon propagator.
This position is a physical observable [9], the mass of the gauge boson, dynamically
generated. On the other hand, in the input lagrangean, we have only one parameter
to be fixed by ”experimental data”, the charge e of the fermion. The new parameter
is thus completely arbitrary, giving us the impression that we ended up with ill defined
predictions after the end of the quantization procedure.

Thus, we see ourselves facing this question: are there physical parameters of a quantum
field theory to which we have no classical access? In the case of QED, with Dirac fermions
(the so called Schwinger model) this question is not usually asked because the value a = 1
preserves gauge invariance at quantum level, providing the easiest approach to this model.
However, if we consider chiral fermions, there is no value for a that does this job, and so
the question arises. Considering again the Schwinger model, we can see that there is no
intrinsic (physical) reason to consider the particular value a = 1. We should study this
theory for other values of a in order to decide if different values give different physical
implications or not.

In a previous work [10], we have noticed that the computation of correlation functions
in nontrivial topology sectors could give a mathematical criterium to fix the value of a
for each given sector (except the trivial one). This has raisen the hope that, perhaps
with a mix between physical requirements and mathematical skill, one could decide in
favour of a fixed value for a. So, we decided to face this question in the context of the
Schwinger model, which is very well known for a = 1, and to see if this value is favoured
by arguments other than gauge invariance.

The paper is organized as follows: in section 1 we briefly review QED, in the general
case where the gauge field can be given a topological charge; in section 2 we compute the
contributions of these nontrivial sectors to correlation functions with general a and give
an argument to fix its value in all these sectors; in section 3 we perform the same analysis
in the trivial topology sector and find restrictions, based on physical requirements, in the
range of values that a can assume. Finally, in section 4, we present our conclusions and
some remarks.



~-2- CBPF-NF-007/96

2 The model

We will study quantum electrodynamics in two dimensional euclidean space described by
the action functional

_ 1 —
§= [dac(anBv) = [ e g oy, 1)
where D is the Dirac operator
D =~"(10,+€eA,). (2)
Our v matrices satisfy

Vst } =280, =107 =%

which implies, in two dimensions,

YuVs = 1€u Vo,

where €p; = —€19 = 1.
The generating functional of correlation functions for the Schwinger model is given by

Z[J*7,n] = / [dA,] [d] [dy] exp (=S + (J*Au) + () + (4n)) , (3)

where J#, 7 and 7 are the external sources associated with the fields A, and %, respec-
tively. In order to define the functional measure in (3), we write the fermionic fields as
linear combinations

P (z) = Zangon(w)-}-z:aow?m(m), (4)

n

P = Yael @)+ Y ol (@), 9

of the eigenfunctions of D
D(A)¢n(z) = Auga (@), (6)
D (Ay)poi(2) = 0, (7)

with a,, @, and ag;, Go; being grassmanian coeficients. Now, the fermionic functional
measure is simply
[d] [dy)] = Hd- daanamdaO,,

such that, after an integration over ferml fields, the fermionic part of the generating
functional can be written as

Zr[7,n] o< det'D.

In the above expression, det’D stands for the product of all nonvanishing eigenvalues of

D.
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As it is well known [11], the appearance of N zero eigenvalues associated to the Dirac
operator, the zero modes, is closely related to the existence of classical configurations, in
the gauge field sector, which can be written as [12][13]

eAELN) = _5#fa
where the function f (z) behaves, at infinity, as

lim f(z)~ —Nln|z|.

r—00

These configurations carry a topological charge @ = IV, where @ is given by

1
Q = E/dzmem,Fm,.

For future purposes, we will define
o N
A# = A£ ) 4 aa,,

where « is an interpolating parameter [10] between the fixed configuration AE,N) (a =0)
and a general configuration with topological charge N (a = 1). In two dimensions we can
always write any configuration of charge IV linearly in terms of a fixed one, due to the
additive property of the topological charge. The field a, has vanishing topological charge
and can always be written as

ea, = 0up — €,,0,9. (8)

The Dirac operator

Dy =+* (i@u +e (ALN) + aau)) ,

has an inverse only if we add a small mass € >0,
- e 1 o
(Da+61) 1(w,y)=S€ (xay)+EP0 (may)7

where F§ (z,y) is the projector on the subspace generated by the zero modes of D,

IN|

Z%, )l (y), (9)

and S% (z,y) inverts D, + €l in the rest of the space and is formally given by

Sa SC y Z‘Pn Aa n
n#0

In the limit e— 0, S¢ is regular and can be expressed as [14],

S* (2,y) = G* (2,y) — / #2G* (z,2) PS (2,y) - / #:P3 (2,2)G% (2,9),  (10)
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where G (z,y) is the fermionic Green function. We can see that S satisfies
Do8%(z,y) = 6 (z —y) — Pg (2,y) = 5% (2,y) Da- (11)
In the sector associated with topological charge N, we shift the fermions by
@) = 9@~ [ESEw,
@ - 3@~ [EmwS ).

<

where S (z,y) = S*=! (z,y), to obtain

21 = / (dA,] [dF)] [dy] exp (7Sn)
x exp (=S + (J*Ap) + (TPo¥) + (¥Por)) .

At this point, it must be stressed the role played by the external sources. They are
responsible for preventing Z from vanishing, by picking up the zero modes explicitly.
Now we can bosonize the theory in this sector, performing the change of variables

b - g(p(—ip+¢7s)¢,
Y — Yexp(ip+ ¢7s),

where p and ¢ were already defined in (8). Taking into account the Fujikawa jacobian,
we will end up with [15]

21770 = 3 [0S (00 A% exp ((GFwr)+raw) (2

B
xexp ((78Mn')) det' D™ [ <ﬁ’w87)> ('),
=1

where
n' = exp(ip+¢vs)m, (13)
7 = fexp(—ip+ ¢r5),

and ,
R (au,Af‘N)) = E&%.

To compute this ratio, we can make use of the formal relation
det D = expTrlnD,

where, instead of D, we use [16]

det'D, = lim w.

e—0+ €‘Nl
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Now,
d , . det (Dy + €1) 1 dD,
. det'D, = 61_1'151L T Tr [(Da + €1) T | (14)
or, in the limit e— 0%
d dD
—Indet’'D, = o I
T Indet'D, =Tr [S To ]
Writing D = Dy=; and DW) = D,_o, we do the integration in « to obtain
det’'D 1 o dDq
ln-d—m = A dOlTT' [S da :I . (15)

The computation of this trace requires the use of some regularization procedure. Using,
for example, the point-splitting regularization [7][17], we obtain

det’D X ™
In Tt D = —T'[a,] — [ N) au] + Indet <<p01 exp (267s) ®o; >’ , (16)
where
e’ 9,0,
T [a“] = Z;r- dzxau (a (N) 6,“, — %) a,, (17)

2

= e 0,0,
T [AM,q,] = o d’za, (a(N)&,“,— = >A<N>

and we have written the zero modes of D, in terms of the ones of D),

N
0% = exp(a(ip+ 6%)) Y Dijel),
=1

where the D;; are introduced to insure the orthogonality of the ;. One should notice the
presence of the parameters a (V) in the results above, that come from the path ordered
exponential, put for occasionally keep gauge invariance (a = 1). We remark that a (N)
can be chosen independently in each topological sector, what gives an infinite degree of
arbitrariness to the theory.

Actually, it is more convenient to express the generating functional in terms of the
original (non orthonormal) set of eingenfunctions of DW) obtained by directly solving

DM = o,
where the <I>§,’1.V) , in terms of the light-cone variables, is given by [12][13]

q,(N)_{ 7 lexpf(}), i=1,...,N,N>0
[0 — =t

“lexp(—f) (3), i=1,...,—N,N <. (18)

The next step for obtaining the generating functional (12) is the computation of
det’ D). This can be done if we use the method presented in [10], where a functional
differential equation for det’D®)

§
6f (z)

et’ D) = det’ D) [ 1) o (z) + 2tr (PSN)(w,w)vs)]»
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can be solved to give
det'D™) = exp (—I") det <<<I>(()1iv)1<1>(()]]y)>) , (19)
where
' [A] = / d*zfoOf.
Finally, if we observe that
SM (z,4) = GM (z,y) - /d2zG(N) (z,2) P(()N) (z,y) — /d2ngN) (z,2) GM) (2,y),
where
G™ (z,y) = {exp (f (z) = f (y)) P+ +exp (= (f (z) — f ())) P~} Gr (z,9),

we conclude, due to the anti-commuting nature of <ﬁ'<I>(()Ily)> and <<I)(()Izy)tn'>, that we can

write
al N nt Al N Nt
exp (7S™n") ] <ﬁ’¢>fn )> <(I>(()i : 17'> =exp (WG) ] <n ) )> <®(()i : 77’> ,
=1 =1

giving for Z the expression
IN|
Z[J*,7,m) = Z/[dau] exp (=S + (J*Ap) + (MG ] <ﬁ"1>gf)> <<1>((f,-v)tn’> ,
N

= (20)

where

— 1 —
S = <ZF,“,F’“’> +T(a,]+T [a,, AM] + T/ [AD].

It is important to stress here that this formula for the generating functional is inde-
pendent of the choice of the representative f(z), that is

YA

@

3 Non Trivial Contributions to Correlation Func-
tions

Being directly proportional to fermionic sources, it is not difficult to see that there are
no contributions to bosonic correlation functions and that bosonic-fermionic ones do not
give different information (concerning the ambiguities) than that given by the fermionic
functions alone. We have non vanishing contributions from non trivial topologies to
fermionic correlation functions of the type

k k _ ) s s )
<ZI=11¢ 1;‘[1/} vi) >: Z[0] 87, (1) Sng, (yr) Z[0,7,7]l52 =0 -

5ﬂﬁk Yy
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It can be easily shown, by induction, that

<H¢(%)H¥(y;)> = Z /[da#]exp (—5’) det

i=1

M g
G/(N) PN |’

where &™) is a N x k matrix given by

t t
o (y1) - @5 (y)

<I,/(N)1 —
t t
ooy (y1) - Pon (ve)
&M is k x N,
o) (1) -+ BN (1)
&) = . :
o5 (k) - BN (i)
and
G,(N) ($1, yl) e GI(N) (:Ela yk)
G_I(N) — .

G (2, 1) - G'W) (g, yx)

and § (the null matrix) are square matrices k£ x k and N x N respectively, and

G M (zi,y;) = exp(—ip+ ¢v5) G™ (zi,95) (ip + ¢75)
o (2;) = exp(—ip+ ) BY (),
' t t .
oM (y;) = O (y;)exp (ip+ é7s) -
If we define i1
Xij = { (Zj)’—l (8)’ N>0
(21‘) (1), N <0

and use the expressions for the zero modes (18) we can show that

det (@’(1‘”) -

det (@’(N)‘)

=1

and

V|
exp (Zip(yi)) exp (

| V]
exp (— ) iP(wi)) exp (iZf (zi) + ¢($i)) det, (x')

IN|
+ Z fly)+ ¢ (yi)) det (x),

=1
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where, according to the positiveness or not of NV,

det (x) = '11_\]['|z,—zjl®(> N>0

t,9=1
1>7

|N|

det (x") = J]la-zl®(10), N>0
1,7=1
t>)

or

det (x) = l]]'V[l|zl—zJ;®<) N<0

2,7=1
i>7

|N|

det (x") = H|z,-—zj|®(0 1), N <.
7,7=1
1>]

Collecting these results, we arrive at

<H Y (z H ¥ (y;) > / [da,] exp (—Ssources) det

=1

x' 0
Gr

where _ B
Ssources = 8 — (i (o +4,) p) F (G +3") (f + ¢))
and j,, j,, j and j' are defined by

[N]
Jo = 25(%—2)—5(%—2),
Bo= ) Syi—2)—8(zi—2),

i=|N|+1

io= Y 6(yi—2)+6(zi—2),

i=1

k

Q=) fi—2) —é(mi—2),

i=|N|+1

with () representing integration over z.
There is still a last integration over the scalar fields p and ¢ in terms of which the
gauge field is written. So we write the effective action S in terms of these fields

5= <(¢+f)( eza,fN))(¢+f>>+w<”D”>’
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and do the following change of variables using the sources j,, j7, j and j"

o=p— §<AF (Go+172)) (23)
and
p=¢+fFe(A(mz—y)(+5)) (24)
where
Ap(z=y) =07 (& -y)=——lnfe—y
and

A(myz—y)= [D(D—mz)]_l(x_y):_

and we have defined A = (1 — a (N)) /27 and m? = (e?a (N)) /7. Now we have for S plus

the sources the expression

S = 57 (#0 (0= L) o)+ S G+ A G+ +

(1—a(N))
27

As we have already said, the scalar fields p and ¢ are such that a, does not carry
a topological charge in the limit || — oo. So it is desirable that the new fields ¢ and
¢ behave like the old ones, going to zero at infinity. If this would not be the case, it
would be equivalent to perform transformations that change the topological sector, which
would lead us to compute jacobians over noncompact spaces, what is very difficult to
obtain [18][19]. So, altough keeping in mind the general case, we will restrict ourselves to
transformations which do not change the topological sector.

In the case of the o field we have

[m ]z —yll+Inl|z —yl}

(0830) = 55 (o +33) Br (i + 7))

: . 1 ‘ y
i, (@) = Jim pe) =3 lim (A (2 =2) (4o +4,))
1 k
= mdﬂinoo{;Unlw—xil—lnim—yil)}
= (),

once limyz| p (z) = 0, in agreement with the conditions imposed.
For the field ¢, we have

Illlm e(z) = hm f(z )+|11m é(z)F lllm e (A (myz —2) (G + 7))
o2
= ~Ninfel £ 2= lim ((Kolmle — 21+ Inje — #1) (5 + )
1
= —Nlnj|z|+ 2|N|lnlz
ol 52 N 1o
|

= —<N¢%>lnlw|,
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once Ky is well behaved in the limit considered and limj;|—,, ¢ (z) = 0. Here, the F sign
corresponds to sectors with topological charge N and — N, respectivelly. The assymptotic
behavior of ¢ is then

lim ¢(z) =

|z|— o0

— (N =5 ) Inlzl,  N>o0,
N—% In|z|, N <.

which is singular unless we have

a(N)=1, V¥ N#£O0.

4 Correlation functions in sectors with trivial topol-
ogy

In this case, bosonization gives us

20 = [T (A exp (= ({EaP™) + 4+ (7 4007 ) ), (29

where 7' and 7’ are the transformed fermionic sources (13), and

det D
Cx —
Sl = det iy~d,’

can be written as an effective term to be added to the action

_ 1 v e? J 0,
5= (L) - (o~ 32V 1),

To compute the photon self-energy we consider the fermionic external sources to be
absent 7 = n = 0, and write

(J,AY) = <J,, (3“p+5“¢)>

= —(@.1)p+(8.%) 6)
= —(Jp+Jr9),

where J;, and Jr are the sources associated to the longitudinal and transverse terms,
respectivelly. Now the action goes into

S —(JA*) = /dzm {%cﬁﬂ (0—m?) ¢ - %pr + Jrp + JT¢} . (26)

We perform a change of variables on the scalar fields ¢ and p to obtain the following
gaussian expression for Z [J#] :

2
Z[J,) = exp <%JT [D (D — m2)]—1 JT> exp <~%JLD—1JL> .
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In momentum space, this is simply

A’k - e? k26" — krkY 1 kuk, | -
21 = exp{ [ 200 |y — 3] S ).

which gives to the photon self-energy the expression

d’p : e? p?6" —ptp” 1 pup
WY () = — — S R S S it il
G (3; y) /(27{')2 exp( ZP(EU y)) [2 p? (pz +m2) 2\ p? ] .

We see that the use of the point-splitting regularization in the computation of the
fermionic determinant introduced the Jackiw parameter explicitly at the pole of the prop-
agator. This implies that the ambiguity will be present in any physical quantity we
compute, which depends on this pole.

One can easily see, through the expression above or the next

G () = (B8 — 9"0") [2r Ko (m |o — )] + 700" —-2-1;ln (mz —y))

that G* is free of ultraviolet and infrared divergences.
In the case of the fermionic self-energy, we can consider the bosonic external source
to be absent instead, J* = 0. We define

Sfﬁ (T =)y = ((i’y“aﬂ)_l Pi)aﬁ

[ dAuexp (=8)exp (o (@)~ p (1)) F (8(2) - $0))),
which allow us to write

Sep(z—y) =St (z—y)+ S, (z—y).

Similar calculations as before give
+ - W -1 e? . 2n1—1 . 1. -1 -
Saﬂ (z — y)J“:O = ((W Ou) Pi)a,g €xp —2'] [D (D —m )] J+ ﬁ]m J )

Remembering that P, + P_ =1, we find

e2

. N G
Son(o =) = exp (5 [0 (@ = m?)] ™3+ 223075 ) S5y (2 —),

where SE; (z — y) is the two point function of free fermions.
About the ultraviolet behavior we see that, being Sfﬁ finite, the expression

(SileE-m) i) = & [ Thizemiie ) o)

= €2 (21K (0)) — €* (2n Ko (m |z — y|)),
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is free of singularities, while
I .. 1 d’k 1 —exp (ik(z — y))
— 0! - __
<2A] ]> A / (2r)° k2 28)

= 1im—l/d2kexP (ika) —e;p(zk(w ~9))

a—0

= lim —%}\- [In (ma) —In(m |z — y])]

a—0

= lim— ! ln( @ )
a—=0 27 |z —y|
—00, if A >0
- {+oo, if A <0

give us
0, i fA>0
Saﬁ(x‘y)‘{ o0, if A <0

which, in the case A < 0, has a divergence that depends explicitly on the ambiguity.

In obtaining this result we have used both infrared (m) and ultraviolet (o) regulators.
The infrared divergence cancels but the ultraviolet one remains. It is important to stress
the fact that for A = 0, we do not have any divergences.

For A < 0, we can perform a wave function renormalization

b = Z3, (29)

—_ %_,
d) Zalp bl

which gives

S5 (2 = 1) = 2525505 (2 = 1)

[sop=

=7

1 . . oL " 1
= 772, we will need just one renormalization condition to fix Z2,

< 0
<

By choosing
for example,

1 1
VA :exp{—mlnoui—ﬂ},

where 3 is an additional ambiguity over the finite part of Z ? to be fixed by the requirement
of external renormalization conditions. This will lead to a finite result at the end.
To proceed, we compute the mixed four point function

) & _
GY (2,9, 2,w) = 57267, @) (T iz =yl + Top [Tz — y]},

where

T:ﬁ [z —yl= ((i'Yﬂau)—l (z—y) P:b)aﬁ / [dA,]exp (_Si) )
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and
st = ?—62—2<j ([m (m_m2)]'1+£m-l)j> + (1[0 (O—mD)] ")
75 (100 = m)] ™ ) - 57 (o074 - o (i),

We still have to compute functional derivatives with respect to J, of the above expression,

which is in the form exp (— (JKJ) — (JL)). When taking the limit J = 0, we find

§
87,67,

€xXp (_ <’]I{J> - (']L>)JI=Jy=O = —21{1::1/ + La:Ly’

where K, stands for the bosonic two point function, already calculated and
1) = [ (25 e[ @-m)]” (0,5 () + 50007 (5, 7) ).
Putting all together, we can write
Gop (2,4,2,w) = Sap(z —w) G* (z —y) + S (2 —w) LY (z) L (y)
+555(z —w) LZ (z) LY (y)

where LY (z) = LY (z,2,w) and LY (y) = LY (y, z, w).
We see that Sfﬁ has the same ultraviolet behaviour as S,g. L4 is given by

LY (z,2,w) = Fre’e,d” [Ko(mlz —z|) + Ko (m|z —w|)] —
?
2oy Oulln(m e —2[) +1n (m |z — w])],

which is free of singularities. This shows that the four point function will be finite and
non vanishing if the fermionic two point function is. This analysis can be extended
to correlation functions with arbitrary number of legs and the same conclusion will be
reached, i.e., the only divergence to be regulated is that of the two point fermionic function.

5 Conclusion and remarks

The ambiguity in the Jackiw parameter can now be restricted, in the case of trivial
topology. We have found a renormalization for the fermionic self-energy. This means that
the theory is finite and has non vanishing fermionic correlation functions for

-1
)\<0=>(—17r—<0,

or
a<l.

For @ > 1, every correlation function involving fermions will vanish, thus giving an incon-
sistent theory in the sense that we begin considering fermionic operators and find, at the
end, that these operators are identically null.
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On the other side, we can restrict even more the values of a if we do not admit a
tachyon in the spectrum. This extra consideration puts the ambiguity in the interval

0<a<1.

We can interpret this range if we compare our results with those obtained after the
computation of the conservation of the gauge and axial currents in the Schwinger model
given by

€ v € v
(0,J¢) = —4—7;6“ F.(l4+a,) = ——ge“ F,a

and

€ €
(0uJ%) = =0uA" (1= a,) = ~8,4* (1~ )

where, a, = (14 a) /2 is the original parameter introduced by Jackiw and Johnson [7].
We see that the a parameter interpolates continuously beetwen regularization schemes
that preserve chiral (a = 0) and gauge (a = 1) invariances respectively.

At the same time, the divergence found for all values of a # 1 means that perhaps the
ambiguity is only apparent. As is well known, whenever we have to renormalize a theory,
we are forced to fix our renormalization counterterms through the use of renormalization
conditions. These conditions usually introduce an arbitrary parameter y in the correlation
functions, but for a physical quantity R one can always prove that [9]

Lpr=o.

du
This is equally valid for the physical masses of the model and simply means that once we
have fixed the experimental values of the parameters which enter into the lagrangean, it
does not matter the way one chooses to renormalize the theory. In this way, we intend
to investigate a possible dependence of @ on renormalization group parameters, through
a careful study of the renormalization conditions, in a nonperturbative setting. The main
problem that we have to face is how to express these conditions directly in configuration
space, instead of momentum space, where bosonization is rather involved. Progress in
this direction will be reported elsewhere.

Finally, we would like to remark that, in nontrivial topology sectors, the question
seems to be even more difficult to answer. As we have seen, there is an infinite amount of
ambiguity in the theory, due to arbitrary choices of a (V) for each N. A simple criterium
to choose a (IN) seems to be the one which does not allow changes in the topological sector.
It gives a value for a (V) which coincides with the one obtained through the requirement
of gauge invariance. The connection between gauge invariance and preservation of topol-
ogy is not completely clear and perhaps can only be clarified if one could compute the
correlation functions without these criteria. It is our aim to explore also this direction in
the near future.
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