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I. INTRODUCTION

The study of strongly correlated electrons continues to receive a lot of interest due to applications in

condensed matter physics.

Some of the well known models are the Hubbard and t-J models [1] and generalizations such as the

EKS model [2].

Another example of a model describing strongly correlated electrons is the the supersymmetric U

model. This model was �rst introduced in [3] and was shown to be integrable via the Quantum Inverse

Scattering Method (QISM) [4] by demonstrating that the model could be obtained from an R-matrix

which is invariant with respect to the Lie superalgebra gl(2j1). The Bethe-ansatz equations for the

model were obtained in [5{8]. Subsequently, an anisotropic generalization was presented in [9] which was

also shown to be integrable through use of an R-matrix derived from a representation of the quantum

superalgebra Uq(gl(2j1)) [10].

The anisotropic supersymmetric U model describes a system of correlated electrons and generalizes the

Hubbard model in the sense that as well as the presence of the Hubbard on site (Coulomb) interaction

there are additional correlated hopping and pair hopping terms. The model acts on the unrestricted

4k-dimensional electronic Hilbert space 
k
n=1C

4 where k is the lattice length. This means that double

occupancy of sites is allowed and distinguishes this model from the anisotropic t � J model [11] which

shares the same supersymmetry algebra Uq(gl(2j1)). The model contains one free parameter U , (the

Hubbard interaction parameter) which arises from the one-parameter family of inequivalent typical four-

dimensional irreducible representations of the Uq [gl(2j1)], and another which arises from the deformation

parameter q.

Bethe ansatz solutions for the anisotropic model with periodic boundary conditions have been studied

[9,12,13], however for this case there is no quantum superalgebra symmetry. In [14{18] some quantum

algebra invariant integrable closed chains derived from an R-matrix associated with the Hecke algebra

were introduced and investigated. It was subsequently shown [19] that a general prescription for the

construction of integrable systems with periodic boundary conditions and quantum algebra invariance

existed which could then be applied to higher spin models such as the spin 1 XXZ Heisenberg chain [20].

In the present article we further develop this method by considering the graded case to derive the

Hamiltonian of the anisotropic supersymmetric U model with quantum supersymmetry on the closed

chain. We will adopt a nested algebraic Bethe ansatz to solve the model and this will be presented in

detail in Section 3. Also the energy of the Hamiltonian will be given.



CBPF-NF-006/99 2

II. QUANTUM ALGEBRA INVARIANT HAMILTONIAN FOR THE SUPERSYMMETRIC U

MODEL

The following notation will be adopted. Electrons on a lattice are described by canonical Fermi

operators ci;� and cyi;� satisfying the anti-commutation relations given by fcyi;�; cj;�g = �ij��� , where

i; j = 1; 2; ::; k and �; � ="; # : The operator ci;� (cyi;�) annihilates (creates) an electron of spin � at site

i, which implies that the Fock vacuum j0 > satis�es ci;�j0 >= 0. At a given lattice site i there are four

possible electronic states:

j0 >; j ">i= cyi;"j0 >; j #>i= cyi;#j0 >; j "#>i= cyi;#c
y
i;"j0 > :

By ni;� = cyi;�ci;� we denote the number operator for electrons with spin � on site i, and we write

ni = ni;" + ni;#. The local Hamiltonian for this model is [9]

Hi(i+1) = �
X
�

(cyi�ci+1� + h:c:)exp

�
�
1

2
(� � �)ni;�� �

1

2
(� + �)ni+1;��

�

+
h
Uni"ni# + Uni+1"ni+1# + U (cyi"c

y
i#ci+1#ci+1" + h:c:)

i
; (1)

where i labels the sites and

U = �[2e��cosh � � cosh )]
1

2 ; � = �1:

This Hamiltonian may be obtained from the R-matrix of a one-parameter family of four-dimensional

representations of Uq[gl(2j1)], which is a�orded by the module W with highest weight (0; 0j�). The

details of this construction may be found in [10].

The Hamiltonian (1) may be modi�ed to ensure quantum superalgebra invariance by adapting the

general construction presented in [19].

We can write

H =
k�1X
i=1

Hi(i+1) +H1k;

where the boundary term is given by

H1k = GHk;1G
�1

with

G = R�
21R

�
31:::R

�
k1; k the lattice length:

Above, R� is the constant R-matrix obtained as the zero spectral parameter limit of the Yang-Baxter

equation solution associated with the model [10]. These operators act in the quantum space and the

closed boundary conditions of the model may be explained by the relations

GHi;i+1 = Hi+1;i+2G; i = 1; 2; :::; k� 2; GH1k = H12G:

The quantum supersymmetry of the Hamiltonian is a result of the intertwining properties of the matrices

R.
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III. NESTED ALGEBRAIC BETHE ANSATZ

We present the nested algebraic Bethe ansatz for the above Hamiltonian by extending the methods

presented in [19,20] to treat quantum group invariant closed higher spin chains to the graded case. We

begin with the R-matrix satisfying the Yang-Baxter equation constructed directly from a solution of the

twisted representation as given in [13].

The Yang-Baxter Equation may be written as the operator equation:

vvR
�1�2

�1�2
(x=y) vwR

�1a
1b

(x) vwR
�2b
2c

(y) = vwR
�2a
�2b

(y) vwR
�1b
�1c

(x) vvR
�1�2
12

(x=y); (2)

acting on the spaces V 
 V 
W where V is the vector module and W is the four-dimensional module

associated with the one-parameter family of minimal typical representations. Greek indices are used to

label the matrix spaces, that is the �rst two spaces and Roman indices label the quantum space, which

is the third space. The quantum space represents the Hilbert space over a site on the one-dimensional

lattice. The vvR-matrix acts in the matrix space and it is between the two matrix spaces that the graded

tensor product acts.

The vvR-matrix acts on V 
 V and has the form [21], [22]

vvR
�1�2
�1�2

(x) =
x
�2

1
�1

�1 �2

I �

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb

=

0
BBBBBBBBBBBBBBBBBBBB@

A 0 0 0 0 0 0 0 0

0 E 0 C 0 0 0 0 0

0 0 E 0 0 0 C 0 0

0 xC 0 E 0 0 0 0 0

0 0 0 0 A 0 0 0 0

0 0 0 0 0 E 0 C 0

0 0 xC 0 0 0 E 0 0

0 0 0 0 0 xC 0 E 0

0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCA

where A; E and C depend on the spectral parameter as follows A(x) = 1�xq2

x�q2 , E(x) = (1�x)q
x�q2 and

C(x) = 1�q2

x�q2 . The vvR-matrix satis�es the Yang-Baxter equation

R12(x=y)R13(x)R23(y) = R23(y)R13(x)R12(x=y):

By construction, these R-matrices also satisfy the generalized Cherednik reection property [23]

R��
�0�0 (x)R

�1�
0�0

� (1=y) = R��
�0�0 (y)R�1�

0�0

� (1=x); (3)

and crossing unitarity [24]

Rst1��
�0�0(x�)K

�0

�00 (R�1)st1�
00�0

0� (x)K�10

 = �� �
�
� ; (4)

where st1 denotes matrix supertransposition in the �rst space and K is the crossing matrix given below.
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It will be necessary to rewrite the vvR-matrix in terms of constant matrices vvR
+ and vvR

� that is,

vvR(x) =

�
�1

x� q2

�
(x vvR

+ � vvR
�);

where vvR
+ (vvR�) corresponds to the leading term in the limit as x!1 (x! 0).

The vwR-matrix was constructed in [13] in the V 
W space and has the following form

vwR
�j
�i(x) =

x

i
1

�

� j

I �

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb

�
�
�

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

J 0 0 0 0 0 0 0 0 0 0 0

0 J 0 0 0 0 0 0 0 0 0 0

0 0 Y 0 0 Q0 0 0 �S0 0 0 0

0 0 0 L 0 0 0 0 0 �T 0 0 0

0 0 0 0 J 0 0 0 0 0 0 0

0 0 Q 0 0 Y 0 0 �P 0 0 0 0

0 0 0 0 0 0 J 0 0 0 0 0

0 0 0 0 0 0 0 L 0 0 �T 0 0

0 0 S 0 0 P 0 0 M 0 0 0

0 0 0 �T 0 0 0 0 0 �N 0 0

0 0 0 0 0 0 0 �T 0 0 �N 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where the dependence of these elements on the spectral parameter is given by

J(x) =
(x� q���2)

(xq���2 � 1)
; Y (x) = J(x)(D +B) +

1

[�+ 2]
;

L(x) =
1

[�+ 2]
([�+ 1]J(x) + 1); M (x) = F 2DJ(x) +

[�]

[�+ 2]
; N (x) =

1

[�+ 2]
(J(x) + [�+ 1]);

Q(x) = (qB �Dq�1)J(x) �
q�1

[�+ 2]
; Q0(x) = (q�1B � qD)J(x) �

q

[�+ 2]
;

S(x) =

p
[�]

[�+ 2]
q�(�+3)=2 � q(�+1)=2FDJ(x); S0(x) = �

p
[�]

[�+ 2]
q(�+3)=2 + q�(�+1)=2FDJ(x);

T (x) =

p
[�+ 1]

[�+ 2]
(q(�+2)=2J(x)� q�(�+2)=2); T 0(x) =

p
[�+ 1]

[�+ 2]
(q(�+2)=2 � q�(�+2)=2J(x));

P (x) = q(�+3)=2FDJ(x)�

p
[�]

[�+ 2]
q�(�+1)=2; P 0(x) = �q�(�+3)=2FDJ(x) +

p
[�]

[�+ 2]
q(�+1)=2;

with constants

D =
[�]

[�+ 2](q + q�1)
; F =

(q + q�1)p
[�]

; B = 1=(q + q�1); and [�] =
q� � q��

q � q�1
:

The vwR-matrix as well as satisfying the Yang Baxter relation (2), also satis�es the generalized Chered-

nick reection property (3) and crossing unitarity (4).

We now introduce an auxiliary doubled monodromy matrix

vwU (x)
�fjg
�fig =

� � �

i1 i2 ik

j1 j2 jk

�

666 -bbbbbbbbbbbb bbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbb

� � � �

bbbbbbbbbbbbbbbbbbbbbbb

bbbb bbbbb- bbbbbb-
sbb
bb
bb
bb
bb
b

bbbbbbbbbbb
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= vwR+
�2j1
�0j0

1

vwR+
�3j2
�2j0

2

: : :vwR+
�jk
�kj0

k

vwR
�0j0

1

�2i1
(1=x) vwR

�2j
0

2

�3i2
(1=x) : : :vwR

�kj
0

k

�il
(1=x);

acting on V 
W
k. Above vwR+ represents the leading term in the matrix vwR
�1(x) for the limit as

x!1.

Represent the doubled monodromy matrix in the following way:

vwU

�(x) =

0
BB@

vwU
1
1 (x) vwU

1
2 (x) vwU

1
3 (x)

vwU
2
1 (x) vwU

2
2 (x) vwU

3
2 (x)

vwU
3
1 (x) vwU

3
2 (x) vwU

3
3 (x)

1
CCA : (5)

It may be shown that this monodromy matrix satis�es the following Yang-Baxter relation

vvR
�1�1
�2�2

(y=x) vwU
�2a
2b

(x) vvR+
2�2

1�2 vwU
�2b
�1c

(y) = vwU
�1a
�2b

(y) vvR+
�2�1
�2�2 vwU

�2b
2c (x) vvR

2�2
1�1

(y=x); (6)

depicted graphically below.

=

6 66 6 66- �1

�1

1

�1

�1

�1

1

�1

rb
bb
bb
bb
bb
b

rbbbbbbbbb

-bbbb bbbb- bbbb-::: bbbbb bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbb -bbbbbb-bbbb bbb bbbb bbbbbbbb-

bbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbb

:::

:::

:::

rb
bb
bb
bb
bb
b

bbbbbbbbbbb

rb
bb
bb
bb
bb
b

bbbbbbbbbbb

rb
bb
bb
bb
bb
b

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb::: bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb ::: bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbb bbbb- bbb-::: bbbbb bbbbbbbb
bb
bb
bb

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bbbbbbbbbbbbbbb

::: bbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bb bbbb- bbbb-::: bbb bbbbbbbbbbbbbbbbb-

The occurance of the constant matrices vvR+ will greatly simplify the calculations of the algebraic

Bethe ansatz.

In order to perform the nested algebraic Bethe ansatz (NABA) we de�ne an auxiliary transfer matrix

as the (super) Markov trace of the monodromy matrix, that is,

vw�
fjg
fig (y) =

X
i

vK
�
� vwU

�fjg
�fig (y) =

� � �

i1 i2 ik

j1 j2 jk

666 -bbbbbbbbbbbb bbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbb

� � �

bbbbbbbbbbbbbbbbbbbbbbb

bbbb bbbbb- bbbbbb-
sbb
bb
bb
bb
bb
b

bbbbbbbbbbb

bb
bb
bb

bbbbbb

bbbbbbbbbbbbbbbb

bb
bb
bb
bb
bb
bb
bb
bb; (7)

where

vK =

0
BB@

1 0 0

0 q2 0

0 0 �q2

1
CCA : (8)

Therefore the vw� (y) form a one-parameter family of commuting operators and it may be shown that

they commute with the transfer matrix, ww� (y) of the Hamiltonian (1). This means that they have a

common set of eigenvectors. We �nd that
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vw� (y) = vwU
1
1 (y) + q2 vwU

2
2 (y) � q2 vwU

3
3 (y): (9)

Take the lowest weight state as a reference state (pseudo-vacuum) in W , which we denote as j0 >i.

Then j0 >= 
k
i=1j0 >i and we �nd the action of the doubled monodromymatrix on this reference state

to be given by

vwU (x)kj0 >=

0
BB@

I(x)k 0 0

0 I(x)k 0

vwU
3
1 (x) vwU

3
2 (x) 1

1
CCA j0 >; (10)

where

I(x) =
(1 � xq�)

(1� xq���2)
:

We construct a set of eigenstates of the transfer matrix using the technique of the NABA.

The creation operators are vwU
3
1 (x), vwU

3
2 (x) due to the choice of reference state. Thus we use the

following for the ansatz for the eigenstates of vw� (y):

	 = vwU
3
a1 (x1) vwU

3
a2(x2):::vwU

3
ar (xr) 	

(1)
fagj0 >; (11)

where indices ai have values 1 or 2. We seek a solution of the eigenvalue equation

vw� (y)	 = vw�(y)	: (12)

The action of these states is determined by the monodromymatrix and the relations (6). The relations

necessary for the construction of the NABA are

vwU
3
3 (y) vwU

3
�(x) = �

1

q E(y=x)
vwU

3
�(x) vwU

3
3 (y) �

y C(y=x)

x q E(y=x)
vwU

3
�(y) vwU

3
3 (x)

�

�
q � q�1

q

�X
�

vwU
3
�(y) vwU

�
� (x); (13)

vwU

� (y) vwU

3
�(x) =

r+
�0

�00 r�
00

�� (x=y)

q E(x=y)
vwU

3
�0 (x) vwU

�0

�0 (y) �
x r+

�0

�0� C(x=y)

y q E(x=y)
vwU

3
�0(y) vwU

�0

� (x); (14)

with the indices taking values of 1 and 2. It can be seen that this R-matrix r(y) also ful�lls a Yang-Baxter

equation and can be identi�ed with the R-matrix of the quantum spin 1
2 Heisenberg (XXZ) model.

The action of the ansatz (11) on the diagonal elements of the monodromy matrix (5) is given by

vwU
3
3 (y)	 =

(�1)r

qr

rY
i=1

1

E(y=xi)
	 + u.t.

[vwU
1
1 (y) + q2 vwU

2
2 (y)]	 =

I(y)k

qr

rY
j=1

1

E(xj=y)

rY
l=1

vwU
3
bl(xl)j0 > q� (1)(y)b1 :::br	(1) + u.t.

where

vw�
(1)(y) = q�1 vwU

(1)1
1(y) + q vwU

(1)2
2(y): (15)
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In order that the eigenvalue problem (12) is satis�ed, it is necessary to solve a new eigenvalue problem

for the nesting as follows:

vw�
(1)(y)	(1) = �(1)(y; fyjg)	

(1);

where

	(1) = vwU
(1)2

1(y1) vwU
(1)2

1(y2):::vwU
(1)2

1(ym)j0 >
(1) : (16)

The second level reference state is given by j0 >(1)= 
r
i=1j2 >i.

We represent the nested monodromy matrix as

vwU
(1)
m (y) =

0
@ vwU

(1)1
1(y) vwU

(1)1
2(y)

vwU
(1)2

1(y) vwU
(1)2

2(y)

1
A : (17)

The action of the nested monodromy matrix vwU
(1)
m (y) on the second level reference state is

vwU
(1)1

1(y)j0 >
(1) = qr

rY
j=1

E(xj=y)j0 >
(1);

vwU
(1)2

2(y)j0 >
(1) =

rY
j=1

A(xj=y)j0 >
(1) :

(18)

The action of vw� (1)(y) on the ansatz (16) is computed similar to the �rst level case from the relations

(6). We obtain

vwU
(1)1

1(y)	
(1) = qr�m

mY
i=1

A(yi=y)

E(yi=y)

rY
l=1

E(xl=y)	
(1) + u.t.

vwU
(1)2

2(y)	
(1) = qm

mY
i=1

A(y=yi)

E(y=yi)

rY
l=1

A(xl=y)	
(1) + u.t.

(19)

The eigenvalues for the auxilliary transfer matrix, vw� (y) are found to be

vw�(y) = q�mI(y)k
mY
i=1

A(yi=y)

E(yi=y)
+ q2+m�rI(y)k

rY
i=1

A(xi=y)

E(xi=y)

mY
j=1

A(y=yj )

E(y=yj )
� (�1)rq2�r

rY
i=1

1

E(y=xi)
; (20)

provided the \unwanted terms" cancel. The cancellation of these terms lead to the Bethe ansatz equations

obtained by eliminating the poles of the eigenvalues (20)

mY
i6=n

qyi � q�1yn
q�1yi � qyn

= q2(1+m)�r
rY

j=1

q�1yn � qxj
yn � xj

n = 1; :::;m;

qmI(xl)
k =

mY
j=1

yj � xl
q�1yj � xlq

l = 1; :::; r: (21)

Associated with these solutions, the energies of the Hamiltonian are given by

E =
X
j

�(q�+1 � q���1)2

(q�=2x
�1=2
j � q��=2x

1=2
j )(q��=2�1x

�1=2
j � q�=2+1x

1=2
j )

+ k
�
q�+1 + q���1

�
:

This expression reduces to the normal periodic case [5] in the rational limit as q ! 1.
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IV. CONCLUSION

In this work, we have constructed a quantum algebra invariant supersymmetric U model on a closed

lattice and derived the Bethe ansatz equations. Notice that in the Bethe ansatz equations (21) the

presence of \q" terms in comparison with the corresponding equations for the usual periodic boundary

conditions [13]. In fact, this feature also appeared in other models [15,16,18,25] and seems to be a

peculiarity of quantum-group-invariant closed spin chains. In the limit for q ! 1, the usual Bethe ansatz

equations for the periodic chain [6] are recovered.

An appealing direction for further study of the present closed supersymmetric U model with Uq[gl(2j1)]

invariance would be to investigate its thermodynamic properties. In particular the partition function in

the �nite size scaling limit which can be used to derive the operator content [15] of the related statistical

models.
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