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Abstract

We analyze the �nite temperature chiral restoration transition of the (D = d + 1)-
dimensional Gross-Neveu model when the total fermion number is constrained to be �xed.
This leads to the study of the model with a nonzero imaginary chemical potential. In this
formulation of the theory, we have obtained that, in the transition region, the model is
described by a chiral conformal �eld theory where the concepts of dimensional reduction
and universality do apply and we have the realization of a "universal" scenario, in which
the reduced theory belongs to the same universality class of the original one exhibiting
the same symmetry breaking pattern.
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1 Introduction

Recently, Koci�c and Kogut [1] have shown that, in the limit of large number of avors
(N), the universality class of the �nite temperature chiral symmetry restoration transition
in the 3D Gross-Neveu model is mean �eld theory, in contrast to the "standard" sigma
model scenario which predicts the 2D Ising model universality class. The responsible
for the breakdown of the "standard" scenario, dimensional reduction plus universality [2],
would be the absence of canonical scalar �elds in the model, since the � auxiliary �eld has a
composite nature. Indeed, as explained in [1], both the density and the size of the � meson
increase with the temperature in such a way that close to the restoration temperature
the system is densely populated with overlapping composites. The constituent fermions
are essential degrees of freedom, even in the scaling region. Thus, we conclude that, for
this model, the e�ect of compactifying the Euclidean time direction is simply to regulate
the infrared behavior and supress uctuations. This fermionic model was �rst analyzed
in [3] and it was further shown that the results are not artifacts of the large-N limit [4].
(In addition, it was shown how the Ising point is recovered in 4D Yukawa models beyond
the leading order in the 1=N expansion and why this does not happen in Gross-Neveu
models.) Lattice simulations of this 3D model have veri�ed the predictions of the large-N
expansion at zero temperature, at nonzero temperature, and at nonzero chemical potential
separatedly [5]. The results for the critical indices have been checked and improved by
larger scale simulations enhanced by histogram methods [6]. The conclusion is that the
data are in excellent agreement with mean �eld theory and rule out the Ising model values.

In this letter we show that, despite the breakdown of the "standard" scenario, it is still
possible to make use of the concepts of dimensional reduction connected to universality in
Gross-Neveu models in what we call the "universal" scenario. According to the "standard"
scenario, if dimensional reduction plus universality arguments hold, the �nite temperature
transition of the D-dimensional model would lie in the same universality class of the
(d = D � 1)-dimensional Ising model. This is not what is found and the reason why
is easy to understand in the �nite temperature Matsubara formalism: fermions do not
have a zero frequency Matsubara mode. On the other hand, in the "universal" scenario,
the statement is slightly di�erent. It says that if dimensional reduction plus universality
arguments hold, the �nite temperature transition of the D-dimensional theory would
lie in the same universality class of the zero temperature (d = D � 1)-dimensionally
reduced model. This is not new and, indeed, it was shown already in [1] that, for the
O(N) linear � model at either zero and �nite temperature, the rotational symmetry
restoration transition is described by scalar conformal �eld theories. Similarly, we will
show that for Gross-Neveu models at �xed total fermion number at either zero and �nite
temperature, the chiral symmetry restoration transition is described by chiral conformal
�eld theories. The basic idea is to introduce a pure imaginary chemical potential in the
partition function of the model. "Physically", this is equivalent to the imposition of
a constraint which �xes the total fermion number. In this new "physical" system, we
do have a zero frequency Matsubara mode associated to fermions a�ecting the infrared
sensitiveness of thermodynamic quantities and, consequently, changing its critical indices.
We observed that the new critical exponents are exactly the same as those corresponding
to a zero temperature dimensionally reduced e�ective theory. In other words, after the
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decoupling of nonzero frequency Matsubara modes (dimensional reduction) the e�ective
theory for the light degrees of freedom has a set of critical indices identical to that of the
original zero temperature one (universality), where one simply has to replace D = d + 1
by d.

The motivation for considering an imaginary fermion density was that, on general
grounds, the (bulk) behavior of the system at a �xed (real) chemical potential � is identical
to that at a �xed fermion number B, provided B is the mean fermion number for the
system at chemical potential �. In particular, the critical behavior of the two systems is
expected to be the same [7]. This is not the �rst time one tries to relate an imaginary
chemical potential to the phase structure of a quantum �eld theory. When considering
the con�ning-decon�ning phase transition in gauge theories with fermions one concludes
that there is a relation between the order parameter of the transition (the Wilson line
< L >) and the imaginary chemical potential. The high temperature theory has a �rst
order phase transition as a function of the imaginary chemical potential [8]. Moreover, it
is expected that the study of the properties of QCD at full complex chemical potential
may shed some light on the problem of decon�ning transition at zero temperature and
high density. In this paper we use h

2� = c = 1.

2 Introducing the imaginary chemical potential

We start by considering a (D = d + 1)-dimensional fermionic model with �xed total
fermion number B described by the canonical partition function

ZB = Tr
n
e��H�(N̂ �B)

o
; (1)

where � is the inverse of the temperature, H is some Hermitian Hamiltonian and

N̂ =

Z
ddx( y ) (2)

is the fermion number operator. Due to the discreteness of the baryon number B, we can
use a periodic Fourier representation to the �-function and rewrite eq. (1) as

ZB =

Z 2�

0

d�

2�
e�i�B Tr

n
e��H+i�N̂

o
: (3)

This is equivalent to introducting an imaginary chemical potential � into the system. ZB

can be realized as an "integral" over systems with nonzero imaginary chemical potential
�

ZB =

Z 2�

0

d�

2�
e�i�BZ(�); (4)

where
Z(�) = Tr

n
e��H+i�N̂

o
; (5)

is the grand canonical partition function for a system with unstable baryon number. It is
remarkable that all thermodynamic properties of Z(�) should, in the in�nite volume limit,
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be the same as those obtained at a �xed (real) chemical potential which is chosen so that
the mean fermion number is B. Thus, the properties of the theory at imaginary chemical
potential � determines its properties at non zero fermion density. Although this reasoning
seems to be quite natural it has, as it will become clear soon, severe consequences like
making possible a zero frequency Matsubara mode to appear.

3 Scaling properties at �xed total fermion number

We have chosen to develop our ideas using the Gross-Neveu model [9] because it is the
simplest four-fermi model which concentrates all the features we want to analyze. The
functional integral representation for Z(�) in the case of the Gross-Neveu model is given
by

Z(�) =

Z
B:C:

D�D D y e�SE( ; 
y;�;�); (6)

where the (D = d+ 1)-dimensional Euclidean functional action is

SE( ; 
y; �; �) =

Z �

0

d�

Z
ddx

�
� 

�
�0

@

@�
+ i:5+m+ g� + i

�

�
0
�
 +

1

2
�2
�
; (7)

and, as usual, the compact time interval runs from � = 0 to � = � and we impose anti-
periodic boundary conditions (B.C.) for the fermionic �elds  (x; � ) = � (x; � � �). For
convenience, we use the Dirac representation of the  matrices where, for odd dimensions,
the role of s is played by �I, the identity matrix.

For bare fermion massm = 0, there is a discrete chiral symmetry  ! s , � !� � s
which is spontaneously broken whenever a non-vanishing condensate < �  > is generated.
The condensate



� (x) (x)

�
/

Z
D�D � D 

�
� (x) (x)

�
eSE( ; 

y;�;�); (8)

serves as an order parameter of the transition. It is well known that this is the role
played by the auxiliary �eld in (7). (Simply solve the equations of motion obtained from
the original action). Thus, we will study the phase structure of the chiral symmetry
restoration transition with the aid of the order parameter �. The 1=N expansion can be
conveniently developed by integrating over the  �eld using the path integral formalism
[10]. At �nite temperature the integration over the time direction is replaced by a sum
over Matsubara frequencies. The lowest order in the 1=N expansion is simply the steepest
descent approximation to the exponential. As usual, this involves an expansion of the
action about its extremumwhich is itself determined by a gap equation. If, for simplicity,
we de�ne � = �=� the gap equation reads

� = m+
4g2

�

1X
n=�1

Z � ddq

(2�)d
�

q2 + (�� �!n)2 + �2
; (9)

where �!n =
2�
�
(n+ 1

2), and we have used the fact that, to the leading order, the fermion

self-energy � comes from the � auxiliary �eld tadpole: � = m � g2 < �  >. Here � is
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an ultraviolet cuto�. To �nd the temperature dependence of the order parameter � one
has to solve the gap equation near criticality. The critical temperature is determined by

1 =
4g2

�c

1X
n=�1

Z � ddq

(2�)d
1

q2 + (�c � �!nc)2
; (10)

with �!nc =
2�
�c
(n+ 1

2
) and �c = �=�c, so that the gap equation can be rewritten as

m

�
+

4g2

�c

1X
n=�1

Z � ddq

(2�)d

(q2 + (�c � �!nc)2)
�
�c
�

�
� (q2 + (�� �!n)2 + �2)

(q2 + (�c � �!nc)2) (q2 + (�� �!n)2 + �2)
= 0: (11)

This form of the gap equation is particularly well suited for extracting critical indices since
the problem reduces to the power counting of the infrared divergences in the integral over
q [11]. We see that this integral is infrared �nite in any dimension except when �c = �!nc
for some Matsubara frequency k. In this special case we do have a zero mode associated
to fermions and this is exactly

k =
1

2

�
�

�
� 1

�
: (12)

The k mode goes soft at the transition temperature and becomes the only relevant degree
of freedom in the scaling region. At low energies, all n 6= k decouple and we can split the
sum over n into two parts

m

�
�

4g2

�c

Z � ddq

(2�)d
q2t+ (�!2nct

2 + �2)

q2 (q2 + (�!nc)2t2 + �2)
+
X
n6=k

::: = 0; (13)

with (�!nc � �!n)2 = t2�!2nc and t �
�
1 � �c

�

�
being the deviation from the critical tempera-

ture. The �rst integral in eq. (13) is clearly infrared sensitive in the limit of vanishing �,
while all the other integrals in the sum over n 6= k are infrared �nite. Hence, the critical
exponents we read from it should be clearly non trivial.

The critical indices are de�ned by


�  
���
m!0

� t�,


�  
���
t!0

� m1=�, h�ijm!0 � t�

etc and, since � �< �  >, � = � to the leading order. Above four dimensions the
integral is infrared �nite and the scaling is mean �eld. Below four dimensions, however,

the �! 0 limit is singular and the integral scales as (�!2nct
2 + �2)

d�2

2 . At a critical point
t = 0 away from the chiral limit we have m � �d�1. Thus, we can easily see that, below
four dimensions the � and � exponents are

� =
1

d � 2
; � = d� 1: (14)

The remaining exponents are easily obtained aswell, � = 4 � d and  = 1, and one
can check that they obey hyperscaling. If we compare these indices with those obtained
from the zero temperature case: � = 1

D�2 ; � = D � 1; � = 4 � D;  = 1 (for a recent
review see [12]), we conclude that both sets de�ne a chiral conformal �eld theory in d and
(D = d+1) dimensions respectively. We should also note that the exponents (14) are the
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same as for a zero temperature dimensionally reduced Gross-Neveu model in which the
chiral symmetry restoration transition will occur as we approach a thermally renormalized
coupling constant obtained during the reducing procedure [13]. This is the realization of
the "universal" scenario.

Some �nal comments are in order. First, since we have been using the saddle point
method, we still have to apply a stationary condition to ZB. This will give another mean
�eld equation, which comes from the condition

@

@�

�
SE +

Z �

0

d�
i�

�
B

�
= 0: (15)

Note that the stationary condition over � is very important because it gives an equation
for the mean number of fermions (< N̂ >= B) which is the link between ZB and Z(�)
in the in�nite volume limit. Second, since the mean number of fermions < N̂ > depends,
in principle, on the temperature, we can solve eq. (15) for � and �nd a temperature
dependent �(�), or equivalently �(�) [14]. This feature also states that the in the de�nition
of the zero frequency Matsubara mode k in eq. (12) we should replace � by �c � �(�c).
This is to say, the Matsubara mode which is left as the relevant degree of freedom in
the reduced theory changes as the critical temperature changes. For each di�erent critical
temperature ��1c such that �c=� is an odd number, we will have a zero frequency fermionic
Matsubara mode associated given by eq. (12).

4 Conclusions

We have shown that, even in the absence of canonical scalar �elds, we do obtain non
mean �eld critical exponents for the �nite temperature chiral restoration transition in
a four-fermi theory provided we introduce a pure imaginary chemical potential. This
procedure gives rise to a fermionic zero frequency Matsubara mode which is interpreted,
after the limit of high temperatures, as the only relevant degree of freedom of the reduced
theory. The reduced theory is still a four-fermi theory at zero temperature and in a lower
dimension with thermally renormalized parameters [15]. It also exhibits dynamical break-
ing of discrete chiral symmetry which is restored near the critical thermally renormalized
coupling constant, in such a way that the universality class is the same as the original
model.
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