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abstract

The canonical quantization of General Relativity is summarized. Its application to quan-
tum cosmology is described. The interpretation and time issues, and the problem of initial
conditions are discussed. Some possible solutions to these problems are proposed.
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1 Introduction

The singularity theorems [1] show that, under reasonable physical assumptions, the uni-
verse has developed an initial singularity, which is called the big bang, and will develop
future singularities in the form of black holes and, perhaps, of a big crunch. Until now,
singularities are out of the scope of any physical theory. If we take the pretentious atti-
tude that a physical theory can describe the whole universe at every instant, even at its
moment of creation if it has had one, (which is the best attitude because it is the only
way to seek the limits of physical science), we must assume that the `reasonable physical
assumptions' of the theorems are not valid under extreme situations of very high energy
density and curvature, which is very plausible. We may say that general relativity or any
other matter �eld theory must be changed under these extreme conditions. One good
point of view (which is not the only one) is to think that quantum gravitational e�ects
become important. We should then construct a quantum theory of gravitation and apply
it to cosmology. It is a good point of view because, besides the possibility of obtaining
from quantum gravity a solution to the singularity problem, we gain from quantum theory
the possibility of constructing a theory of initial conditions for the universe. This theory
could then explain why the universe is remarkably homogeneous and isotropic and even
why the constants of nature have the values we observe they have. Moreover, it could
give the spectrum of quantum 
uctuations of geometry and matter of primordial origin
and provide us with a complete theory of galaxy formation.

We call quantum cosmology [2, 3, 4] as this attempt to apply quantum gravity ideas
to the universe as a whole. As we have seen, the goals of quantum cosmology are rather
ambitious. However, its problems are pairwise with its ambition. This is because it tries to
put together three of the major and revolutionary achievements of physical science in the
twentieth century. One, general relativity, which describes gravitation, has abolished the
concept of absolute spacetime by treating its metric as a dynamical variable in interaction
with matter and with itself. Other, quantum mechanics, which is the correct description
of matter at atomic scales or below, has put serious objections to the existence of a
very natural and basic concept: objective reality. Finally, cosmology, is a theory of a
single system, the universe as a whole, including us, observers, a situation which is very
unfamiliar to natural science. That is why so much time was needed for scientists to insert
cosmology in the domain of natural science. Hence, needless to say how hard it is to put
these three theories together.

The most exciting feature of this union is that all the di�culties of particular theories
that once were forgotten because they were not important for all pratical purposes, become
crucial in quantum cosmology. Let us begin with the marriage of quantummechanics with
general relativity (or some gravity theory which contains it). No quantum gravity theory
was proved to be renormalizable. One good candidate is string theory, which has also the
ambition of being a theory of everything. However, even if one of such theories is proven
to be renormalizable, it must also be shown that the perturbation series of the theory
does not diverge when summed over. In other quantum �eld theories, like in quantum
electrodynamics, it is argued that such divergence involves very high energies that cannot
be probed now and at Planckian scales some more fundamental theory must be used.
This reasoning cannot be applied to quantum gravity; after all, quantum gravity is the
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theory to be applied at Planckian scales. Nonperturbative quantum gravity has also a lot
of unresolved problems (complicate constraint equations, lack of unitary evolution, etc).

The application of quantum gravity to cosmology adds new problems. How can we
apply the standard Copenhaguen interpretation to a single system? What happens with
its probabilistic interpretation? Who are the observers of the whole universe? Where in
a quantum universe can we �nd a classical domain where we could construct our classical
apparatus, and test the theory? This is not a problem of quantum gravity alone because
there is no problem with the concept of an ensemble of black holes and a classical domain
outside it. Finally, in quantum mechanics, time, in spite of seeming to be a measurable
physical quantity, is not treated as an observable (hermitean operator) but as an external
evolution parameter (c-number). In the quantum cosmology of a closed universe, there
is no place for an external parameter. So, what happens with time; does it become an
operator? These are some of the di�cult issues which the subject of quantum cosmology
has to give an answer in order to have a meaning.

In these lectures we will try to explain some ideas on how can quantum cosmology
achieve its ambitious goals and what are the attemps to answer some of the profound and
di�cult issues it has raised.

In the following section we will set the problem of the initial cosmological singularity
and motivate the study of quantum cosmology. After, we will show that the Copenhaguen
interpretation of quantum mechanics cannot be used in quantum cosmology and we will
present some of the alternative interpretations that can be consistent with a theory of the
whole universe.

In the third section the canonical quantization of general relativity will be developed
and the Wheeler-DeWitt equation obtained. The issue of time will be discussed and we
will advocate the idea that time has no meaning at Planckian scales. It can be recovered
only at the semi-classical limit.

In the fourh section we will begin to present quantum cosmology as a theory of initial
conditions of the universe by using a modi�ed version of the many-worldss interpretation
of quantum mechanics. The idea is to �nd peaks of the semi-classical Wigner function
in order to �nd the most probable cosmological classical solution. After introducing the
notion of minisuperspace, we will present a particular example where this idea can be
applied. Unfortunately, it will be shown that this program can not be implemented in
general. Also, from the study of the minisuperspace model introduced in this section, it
will be evident the need of having boundary conditions to the Wheeler-DeWitt equation,
which yields the motivation for the next section.

In section 5, the no-boundary boundary condition to the Wheeler-DeWitt equation
will be presented. It will be applied to the example of the preceeding section and to
other models. Here, quantum cosmology as a theory of initial conditions exhibits all its
potentiality. In particular, we will indicate how the conditions of having in
ation might
be obtained, and how the spectrum of quantum mechanical perturbations responsible for
galaxy formation might be attained. Of course these are not closed answers and we will
show their problems. After, we will present the notion of decoherence and show how it
can be useful in quantum cosmology. In particular, it may save the program of �nding
the most probable classical solution from the Wigner function and explain how a classical
universe can emerge from a quantum one.
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In section 6, we will introduce some other alternative interpretations of quantum
mechanics: the formulation of quantum mechanics in terms of histories elaborated by
Gri�ths, Omn�es, Hartle and Gell-Mann, and the ontological interpretation of Bohm-de
Broglie-Healey, and their relevance to quantum cosmology.

Finally, in the last section, we will conclude with a summary of the stimulating results
of quantum cosmology, the many problems that are still unresolved, and a personnal point
of view about the good directions that should be followed.

Conventions and notation

a) metric signature: (�;+;+;+)
b) greek indices vary from 0 to 3 and latin indices from 1 to 3
c) four-dimensional covariant derivative of a four-vector A�:

r�A
� � @�A

� + ����A
� (1)

where

���� �
1

2
g��(@�g�� + @�g�� � @�g��) (2)

and @� � @
@x�

d) three-dimensional covariant derivative of a three-vector Aj:

DiA
j � @iA

j +3 �jikA
k (3)

where
3�jik =

1

2
hjl(@ihkl + @khil � @lhik) (4)

where hij is a 3-dimensional metric and hij its inverse.
e) four-dimensional curvature:

R�
���A

� � r�r�A
� �r�r�A

� (5)

f) four-dimensional Ricci-tensor:

R�� = R�
��� (6)

g) Einstein's equations:

G�� � R�� � 1

2
Rg�� = 8�T�� (7)

h) three-dimensional curvature:

3Ri
jklA

j � DkDlA
i �DlDkA

i (8)
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The de�nition of the three-dimensionalRicci tensor is analogous to the four-dimensional
case. Repeated indices are summed.

i) symmetrization:

A(ij) � 1

2
(Aij +Aji) (9)

j) anti-symmetrization:

A[ij] � 1

2
(Aij �Aji) (10)

2 The incompatibility of quantum cosmology with

the Copenhaguen interpretation of quantum me-

chanics

In this section we will set the motivations to study quantum cosmology and show the
incompatibility of the Copenhaguen interpretation of quantummechanics with a quantum
theory of the universe.

2.1) The motivation for studying quantum cosmology

First, we will present the arguments indicating why a classical model for the universe
which maintains at any scale the present laws of physics has probably an initial singularity.
For details on this subject, see the book of Ellis and Hawking where it talks about the
singularity theorems [1].

Take a timelike four-vector �eld V � with V �V� = �1, which may describe the histories
of small test particles moving with this velocity or the 
ow lines of a 
uid. We can divide
the covariant derivative of this four-velocity �eld into its irreducible parts:

r�V� =
�

3
h�� + ��� + w�� + V�A� (11)

where
� = r�V

� (12)

��� = h�(�h
�
�)r�V� � 1

3
h�� (13)

w�� = h�[�h
�
�]r�V� (14)

A� = V �r�V
� � _V � (15)

and h�� � g�� + V�V� is the projector onto the surface perpendicular to V � at each
spacetime point.

These quantities can be interpreted in the following way [5]: the quantity � is the rate
of change of the volume of the 
uid represented by the �eld V �, the quantity ��� is the
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change in form of a constant volume element of the 
uid (called the shear tensor), w�� is
the 
uid's rotation, keeping its form and volume constants (called the vorticity tensor),
and A� is its acceleration.

Taking the de�nition of curvature,

R�
���V

� � r�r�V
� �r�r�V

� (16)

summing in � and �, contracting with V �, and using equation (11) we obtain, after some
manipulation,

_� = �1

3
�2 � 2�2 + 2w2 �R��V

�V � +r�A
� (17)

where
2�2 � ����

�� (18)

2w2 � w��w
�� (19)

Equation (17) is called the Raychaudhuri equation. It gives the acceleration of the
volume of the 
uid. We will assume, for simplicity, that the acceleration of the 
uid is
zero (a geodesic 
uid). For more details on this point we refer again to [1]. The rotation
of the 
uid gives a positive contribution to the acceleration, in analogy with centrifugal
force. However, rotation is linked with closed timelike curves, which violates causality.
Therefore, we will set w2 = 0. The �rst and second term of the right-hand-side (RHS) of
equation (17) give a negative contribution to the volume acceleration. The third term is,
using Einstein's equations given in the introduction,

R��V
�V � = 8�(T��V

�V � � T

2
) (20)

which is positive for usual physical 
uids. For instance, for a perfect 
uid, the RHS of
the above equation is 4�(�+3p) where � and p are the enrgy density and pressure of the

uid, respectively. When the RHS of the above equation is positive or null it is said that
the 
uid satis�es the strong energy condition [1].

Consequently, assuming the hypothesis of the nonexistence of closed timelike curves1,
supposing that Einstein's equations are valid everywhere and that the cosmological 
uid
satis�es the physically reasonable strong energy condition, equation (17) yields:

_� = �1

3
�2 � 2�2 �R��V

�V � � 0 (21)

As the volume acceleration is allways negative (an expression of the attractive nature
of gravity), and knowing that the universe is now expanding, we conclude that the con-
gruence of the timelike curves representing the cosmological 
uid has shrinked to zero
volume at some �nite time in the past. This is the initial cosmological singularity2.

1Recently, a lot of research has been done to investigate if this hypothesis can be proven. The cronology
protection conjecture advocates that the laws of physics prevents the existence of closed timelike curves
[6, 7].

2A zero volume congruence of curves does not necessarily implies a divergence in the curvature or in
the energy density. See reference [8] for a discussion of this point
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In order to avoid this patology we may suppose that, under these extreme situations,
general relativity (in a strict sense) is not valid or that the strong energy condition is
violated. Some attemps in these directions are theories with non-minimal coupling [9],
Weyl geometries [10], change of signature [11], existence of a negative energy scalar �eld
[12] or viscosity e�ects [13], among others [14].

We will adopt here the position that near strong gravitational �elds quantum e�ects
of gravitation become important. We do that for two reasons. First because this is a
natural thing to do. Historically, theories that developped singularities were cured by
quantum mechanichs (like electrodynamics). Also, a world of quantized �elds (quantum
electro-weak dynamics and quantum chromodynamics) in interaction with an hypothetical
fundamental classical gravitational �eld is inconsistent [8, 15]. Furthermore, the funda-
mental constants G (Newton's constant), �h (Planck's constant) and c (speed of light)
yield the fundamental scales where some quantum theory of gravity might be relevant:
the Planck scale. They are:

Lpl =

s
�hG

c3
� 10�33cm

Tpl =

s
�hG

c5
� 10�45s

Mpl =

s
�hc

G
� 10�5g

�pl =
c5

�hG2
� 1094g=cm3 (22)

which are, respectively, the Planck length, the Planck time, the Planck mass and the
Planck density.

The second reason for adopting this position is that a theory of quantum gravity when
applied to cosmology may also be a theory of initial conditions for the universe. But why
is important to have a theory of initial conditions for the universe? This is because the
universe we live in is remarkably homogeneous and isotropic, with very small deviations
from this highly symmetric state, which are enhanced, in the course of time, by the
gravitational interaction (see in this volume the companion article of R. Brandenberger).
Clearly, solutions of Einstein's equations with this symmetry are of measure zero; so, why
is not the universe inhomogeneous and/or anisotropic? The reader may object by saying
that someone who lived in an asymmetric universe could also ask why the universe has this
speci�c kind of inhomogeneity and not another. However, this is a quite di�erent situation.
Let us make the following analogy. Suppose there is a couple with 5 children, all born in
di�erent years. They can try to calculate the probability of having these speci�c children
out of the totality of genetic possibilities. They will be amazed with the very small result
but will correctly reason that this would be the case for every other ensemble of children.
Suppose now that these 5 children, without being born in the same gestation (they are not
twins), are genetic equal. Five children, born in di�erent gestations, but all genetically
identical and, consequently, apart of age, physically identical. The probability for this to
happen is as small as any other speci�c con�guration of children. However, the parents
will be certainly amazed with such an odd thing and will correctly try to �nd a doctor



{ 7 { CBPF-NF-006/97

that could explain them why such a bizarre occurrence has happened. In other words,
they will naturally suppose, and the doctor too, that there is some deep reason that could
explain this phenomenon, some kind of strange behaviour of their reproductive system.
The situation is the same in cosmology, and quantum cosmology may be the theory that
could explain us the remarkable coincidence that the universe looks like the same in every
direction and from every point.

In
ation [16, 17] is an idea that try to explain this coincidence. However, in order
for in
ation to happen, some special initial conditions are still necessary. As Penrose has
pointed out, if we take any inhomogeneous cosmological solution of Einstein's equation
and turn it back in time, we will arrive at some initial con�guration which is certainly
not an initial condition for in
ation. Also, the universe may recolapse before in
ation
takes place. Hence, in
ation ameliorate but does not solve the problem. An approach
followed by some researchers is to apply quantum cosmology arguments in order to obtain
the initial conditions for having in
ation.

These are the motivations for studying quantum cosmology, which is the application
of quantum gravity to cosmology. However, apart from the problems of quantum gravity
itself, which will be discussed in the next section, there is the problem of applying quantum
mechanical ideas to a single system as is the universe. In particular, we will now show
that the Copenhaguen interpretation is not appropriate to quantum cosmology. Let us
then make a brief review of this interpretation in the context of non-relativistic quantum
mechanics.

2.2) The problem with the Copenhaguen interpretation

The postulates of quantum mechanics are3:
1) Every state of the system is �xed by a ket j 	(t0) > which belongs to a Hilbert

space.
2) Every measurable physical quantity is described by an hermitean operator (called

an observable) acting in the Hilbert space of the system.
3) The only possible results of a measurement of a physical quantity are one of the

eigenvalues of the observable associated with it.
4) The probability of �nding one of these eigenvalues (say, an) is given by:

p (an) =j Pn j 	> j2 =<	jPnj	> (23)

where Pn is the projector onto the eigensubspace of the Hilbert space with eigenvalue an.
5) After a measurement giving the eigenvalue an, the state of the system collapses to

a new state given by:

j �	>= Pn j 	>q
<	 j Pn j 	>

(24)

3The postulates involving spin and identical particles will not be presented. They are not essential for
what follows
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6) The evolution of the state of the system is governed by the Schr�odinger equation:

i�h
d j 	(t)>

dt
= Ĥ(t)j	(t)> (25)

where Ĥ(t) is the hamiltonian operator of the system.
In order to describe statistical mixtures of quantum states, we need another mathe-

matical entity, the density matrix 4. A pure state can also be entirely described by the
density matrix � � j	>< 	j. All equations of the postulates can be written solely in
terms of �. For instance, the Schr�odinger equation can be written as

i�h
d�(t)

dt
= [Ĥ(t); �(t)] (26)

and the probability given in equation (23) is, in terms of �:

p (an) = Tr(Pn �) (27)

where Tr means the trace of an operator.
A mixture state can be described by the following density matrix:

� =
nX
i=1

pi j	i><	ij (28)

where pi is the probability of �nding the state j	i> in the statistical ensemble of states
described by the density matrix of equation (27):

Pn
i=1 pi = 1. It is a classical statistical

distribution of states j	i > because there is no correlation (represented by o�-diagonal
terms) among them. In fact, if we want to calculate the probability of �nding the eigen-
value an of an observable Â we have, using equations (23) and (27):

p (an) = Tr(�Pn) =
nX
i=1

pi <	ijPnj	i> (29)

which is the sum of the probability of �nding the eigenvalue an in each state j	i >
multiplied by the probability pi of �nding this state in the statitistical ensemble. The
reader can easily verify that, if the density matrix � has had o�-diagonal terms, the
probability p (an) given above would have been modi�ed with the adition of extra terms
representing the quantum interference among the states present in the o�-diagonal terms.
Hence, a classical statistical mixture of quantum states is necessarily represented by a
diagonal density matrix in these states.

Returning to the postulates of quantum mechanics, we would like to make two impor-
tant remarks. First, we see that time, in spite of being a physical measurable quantity,
is not an hermitean operator but a c-number. It is the sole exception of postulate 2. We
will discuss this issue in the next section. Second, it seems that there are two laws of
evolution for the state vector j	>. One is the Schr�odinger equation (25) and the other is

4A statistical mixture of quantum states j 	1> and j 	2> with weights j �1j
2 and j �2j

2 cannot be
described by the state j 	>= �1 j 	1> +�2 j 	2> due to quantum interference.
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the collapse represented by equation (24) which happens when a measurement takes place.
This is certainly an odd thing because any measuring apparatus is constituted of atoms
and we should expect that its evolution and interaction with the system to be measured
should also be described by the Schr�odinger equation. Hence, a natural question to ask
is: can the Schr�odinger equation explain the collapse of the state vector? To answer this
question, we will now describe a simple model of what should be a measurement, trying
to keep all its essential features. For details, see [18, 19].

Let Ŝ be the observable that will be measured in a quantum system and js> its eigen-
states: Ŝ js>= s js>. Let jx> be the eigenstate of the position operator of some pointer
of the apparatus: X̂ jx >= xjx >. The interaction between the system and apparatus
takes place in a �nite time interval and during this interval it is much greater then other
interactions. Out of this interval, the measured system is isolated from the apparatus,
and we can write the state of the two systems as a tensor product of states belonging
to their respective Hilbert spaces: j	>= j'S > 
 j'A> The interaction (measurement)
will introduce a correlation between this states. If the initial state of the system is an
eigenvector of Ŝ, the measurement will not change it but it must change the state of
the apparatus by something proportional to its eigenvalue in order to register this value.
Thus, the interaction evolution operator must change the state before the measurement
to a state after the measurement in the following way:

ÛI js> 
 jx>= js> 
 jx+ �s> (30)

where ÛI is the interaction evolution operator, and � is some large coupling constant
which realizes the ampli�cation that took place in the apparatus 5.

If we now take as initial state the state vector

j	0>= j'S> 
 j'A> (31)

with (we are supposing that the eigenvalues s and x are discrete and continuous, respec-
tively):

j'S>=
X
s

csjs> (32)

and
j'A>=

Z
f(x) jx> dx (33)

we obtain for the �nal state:

j	F >=
X
s

csjs> 
 j'A(s)> (34)

where j'A(s)>= R
f(x) jx+ �s> dx =

R
f(x� �s) jx> dx.

Supposing that f(x) is a gaussian centered at x = 0 with error �x (which means that
the pointer of the apparatus is at the position x = 0 with error �x) and assuming that

5A realization of this interaction can be obtained by taking as interaction hamiltonian the operator
ĤI = �g(t)Ŝ 
 P̂ where P̂ is the observable canonically conjugate to the position X̂ of the pointer:
[X̂; P̂ ] = i�h. If we work in the interaction picture, supposing that g(t) is nonzero only at �� <t <� and
dominates all other e�ects at this interval, then we can arrive at equation (30) with � =

R �

��
g(t)dt.
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the di�erence in any pair of eigenvalues s of the operator Ŝ is much greater than �x,
�s>> �x, (in order for the pointer give a readable result for the measurement) then we
can show that:

<'A(s)j'A(s0)>= �s;s0 (35)

Therefore, equation (34) means that the �nal state of the measured system plus appa-
ratus is an orthogonal superposition of states, each containing an eigenvector of Ŝ with
eigenvalue s and a state of the apparatus where the pointer is centered at x = �s (not
anymore at x = 0 as the initial state).

To be more realistic, let us take into account other degrees of freedom of the appa-
ratus, which is certainly a macroscopic object with many degrees of freedom, and its
environment. The transition from the initial to the �nal state can now be written as:

j	I>= (
X
s

csjs>)
 j'A(r)>�! j	F >=
X
s;r0

ws
r;r0csjs> 
j'A(s; r0)> (36)

and j'A(r)>= R
f(x)jx> 
 jr> dx, j'A(s; r)>= R

f(x� �s)jx> 
 jr> dx. The variable
r represents the extra degrees of freedom and <x0; r0jx; r>= �(x�x0) �r;r0 (for simplicity,
we have assumed that the set frg is discrete). The coe�cients ws

r;r0 are included in order
to be as general as possible. As the time evolution coming from the Schr�odinger equation
preserves the norm than

P
r0 jws

r;r0j2 = 1 which means that the quantum probability to
obtain the eigenvalue s continues to be

P
r0 jcsj2jws

r;r0j2 = jcsj2.
What should be the density matrix of the observed system plus the measuring ap-

paratus after a real measurement has been performed? We must expect that the �nal
distribution of data should be described by ordinary probability calculus. If it is a real
measurement, the di�erent data must be clearly separated events. Therefore, in our ex-
ample, we must expect that the �nal density matrix should describe a classical statistical
ensemble of states. It should be the tensor product of eigenstates js > of the measured
observable Ŝ with states of the apparatus describing the position of the pointer dislocated
from the initial position by something proportional to the corresponding eigenvalue s,
each one of these states appearing in the statistical mixture with probability jcsj2.

To check if this is true, let us now calculate the density matrix of the �nal state given
in equation (36). As the relevant degree of freedom for the measurement is the position of
the pointer, we will calculate the reduced density matrix, which is obtained from the total
one by tracing out the irrelevant degrees of freedom r: �red =

P
r <rj�jr>. Everything

relative solely to the position of the pointer and to the observed system itself can be
calculated with this reduced density matrix [20]. For the �nal state j	F > this matrix is:

�red =
X
s

jcsj2js><sj 
 j'A(s)><'A(s)j+

+
X

r0;s;s0:s6=s0
csc

�
s0w

s
r;r0w

�s0

r;r0js><s0j 
 j'A(s)><'A(s0)j (37)

The �rst term in the sum (37) is what we were expecting for a density matrix describ-
ing a real measurement. The second term, however, as we have discussed before, describes
quantum interference in the data distribution, which is unacceptable for a real measure-
ment. The apparatus, even being a macroscopic system, would be subjected to quantum
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interference among its macroscopic states, a situation that has never been observed: no
one has ever seen the pointer of an apparatus in a superposition of quantum states like
the image in a photograph of superimposed pictures.

The situation does not change if we add a second apparatus that measures the �rst
one and the system [18]. How can we explain this con
ict between theoretical description
and what is really observed?

The �rst way out is the Copenhaguen interpretation. It says that what is wrong in the
theoretical model is the assumption that the macroscopic apparatus can be described by
quantum mechanics: it must be described by classical physics. Therefore, it postulates a
fundamental divison between the quantum world and the classical world, and it is in the
last one where observations, experiments, and the consequent knowledge about a quantum
system can be acquired. Hence, a quantum system does not have any meaning without
a classical world. However, many other questions can be raised: When a system can be
considered as macroscopic? What happens in the transition from quantum to classical?
What kind of theory is quantum mechanics that has another theory, classical mechanics,
as a limit and yet depends on it to have a meaning? Which one is more fundamental?
Must the world be described by these two completely di�erent theories? For an excellent
discussion about these points, see the book of Omn�es [21].

As we can see, this interpretation cannot be applied to quantum cosmology because
there is no classical domain in a quantum universe that could give a meaning to the
quantum theory. Thus, we must seek other solutions to our problem.

One solution is to think the transition from the initial state before the measurement
to the �nal state after the measurement, described in equation (36), as an splitting of
the world into many worlds, each one containing one and only one possible result for the
measurement. At each time a measurement takes place, the world is splitted in such a
way. No world has knowledge of the other. In each world there is an observer who sees the
pointer of the apparatus dislocated by an amount proportional to a particular eigenvalue
s. This is the many-worlds interpretation of quantum mechanics [22, 23, 24], developed
with the motivation to be applied to the whole universe. This interpretation and some
variations of it are frequently used in quantum cosmology. It will be discussed in section
4.

A second solution is to think that the second term in equation (37) which is responsible
for the quantum interference, vanishes for almost every macroscopic system. This is not
unplausible because the sum over r involvesmany degrees of freedom, as it is a macroscopic
system, and something like destructive interference may lead this term to be almost zero.
In fact, some calculations show that this is indeed the case for the majority of macroscopic
systems in nature, with some exceptions that has been subject of intense investigations.
This is the decoherence e�ect [25, 26, 27, 28, 29] and it is so fast that it has never been
observed before. It explains how the transition from quantum to classical takes place.
The applications of this idea to quantum cosmology will be discussed in sections 5 and 6.

Another possible solution to our problem is to give, like in classical mechanics, an
ontological interpretation to quantum mechanichs. This means that quantum mechanics
should not be interpreted as simply an epistemological theory of given phenomena, but
that the processes occurring in the quantum world can be described by deterministic
laws, and the physical quantities of a quantum system have a reality independent of any
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observation. Therefore, the process of a measurement must be described in a completely
di�erent way. In section 6 we will discuss one proposal of this kind of interpretation
[30, 31] and its possible application to quantum cosmology.

One common feature of all these alternatives is that, as the classical domain is not put
by hand, it must be obtained. In other words, quantum cosmology, when provided with
a consistent interpretation of quantum mechanics, must explain why the classical world
exists.

After discussing the problems with the application of the Copenhaguen interpretaion
to quantum cosmology, and before applying the possible alternatives to it, let us set up
the dynamical equations that a wave function of the universe should satisfy.

3 Canonical quantization of general relativity

As we have explained in the introduction, quantum cosmology is the application of a
theory of quantum gravity to the universe as a whole. However, until now, there is no
consistent and widely accepted theory of quantum gravity.

There are two basic approachs to quantize gravity. The point of departure is, of course,
classical general relativity. One is the covariant approach, which treats the gravitational
�eld as any other �eld theory. The spacetime metric is splitted in a background or
kinematical part, usually taken to be the 
at metric ��� , and another dynamical part
h�� : g�� = ��� + Gh�� . This splitting is inserted into the general relativity action and
the theory is treated perturbatively, making use of the powerful technics of perturbative
quantum �eld theory. The quanta of the �eld h�� are viewed as spin-two particles, called
gravitons, propagating in the background spacetime, and interacting with itself and with
matter. This theory, however, is not renormalizable [32], which means that if we include
radiative e�ects, an in�nite number of new parameters must be added and the theory loses
its predictive power. Then it was believed that general relativity should be a low energy
limit of some more fundamental gravity theory with a better high energy behaviour,
exactly like the weak interaction is with respect to the electro-weak interaction. Higher
derivative terms were added to the general relativity action. The resulting theory was
shown to be renormalizable [33], asymptotically free, but it is not unitary: it does not
conserve probability. Other theories with suitable interactions of gravity with matter were
developped, like supergravity theories, and they are unitary but still not renormalizable at
more than two loops. The last hope in the covariant approach is superstring theory. It is
generally believed that the theory is perturbatively �nite. However, Gross and Periwal [34]
have shown that the whole series of the bosonic string diverges, and they give arguments
advocating that this should also happen in superstring theory.

As we have seen, the problems of the covariant approach are very di�cult to solve. By
solving one problem, one gets another, and it seems that it does not have an end. Perhaps
these di�culties are showing us that we should not assume that the spacetime metric can
be splitted in a background and a dynamical part. In fact, this is contrary to the spirit
of general relativity. One of the motivations of Einstein to construct his theory was to
get rid of objects that act on other objects and are not in
uenced by them. Background
metrics are exactly like that. General relativity is a theory with no background metric;
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the spacetime metric is known only after the equations of motion are solved. Therefore,
we should try to construct a non-perturbative theory of quantum general relativity. Can
quantum general relativity make sense if its perturbation expansion is not renormalizable?
The answer is a�rmative. There are examples of theories that are exactly solvable non-
perturbatively but which perturbation expansion is not renormalizable [35]. This leads us
to the second approach: quantize gravity by non-perturbative methods. Non-perturbative
technics are being developed in superstring theory, but we will stay in the framework of
general relativity itself and present the canonical quantization of this theory.

The canonical approach is based on the hamiltonian of general relativity. The idea
is to obtain a quantum functional equation for a wave functional, which is analogous to
the Schr�odinger equation. For historical reasons, this approach is not very popular in
other quantum �eld theories. Some papers have been published with comparisons of this
approach with the more usual covariant approach in quantum electrodynamics and other
quantum �eld theories [36, 37, 38]. To construct the hamiltonian of general relativity we
must assume that spacetime can be splitted into a family of spacelike hypersurfaces and
a timelike direction. It means that we are restricting the topology of the manifold to be
of the type: M4 = R

N
M3. Hence, we are discarding spacetimes with rotation and with

closed timelike curves, in accordance with the assumptions of section 2. Questions about
the existence of closed timelike curves cannot be answered within this formalism.

Let us now split the metric into the timelike direction and the spacelike direction.
The spacelike hypersurfaces can be de�ned by the equations �(x�) = const:. Their

normals are given by one-forms � = ��dx
� = @��dx

�. As they are spacelike, there is always
a timelike coordinate x0 = t that parametrizes the hypersurfaces yielding �� = �N�0�. N
is a normalization factor, g������ = �1, which implies that g00 = � 1

N2 . The projector
onto the hypersurfaces is given by h�� � g��+���� whose components are h00 = 0, h0i = 0
and hij = gij+N2gi0gj0. De�ning N i = gi0N2, the components of the contravariant metric
are:

g00 = � 1

N2
; g0i =

N i

N2
; gij = hij � NiN j

N2
(38)

We can calculate the inverse covariant metric g�� yielding the following line element:

ds2 = g��dx
�dx�

= (NiN
i �N2)dt2 + 2Nidx

idt+ hijdx
idxj =

= N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj) (39)

where Ni = hijN
j, hij is the inverse of hij and it is, by its contruction, the intrinsic

covariant metric of the spacelike hypersurfaces. Examining equation (39) we can see that
N(t; xk) is the rate of change with respect to the coordinate time t of the proper time of
an observer with four-velocity ��(t; xk) at the point(t; xk). It is called the lapse function.
Also, N i(t; xk) is the rate of change with respect to coordinate time t of the shift of the
points with the same label xi when we go from one hypersurface to another. It is called
the shift function. It can also be viewed as the projection onto the spacelike hypersurface
of the tangent vector @

@t
to the t-time coordinate curves. For more details on this, see

reference [39].
Another useful quantity is the extrinsic curvature. It measures how much the 3-

dimensional hypersurfaces are curved with respect to the 4-dimensional manifold in which
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it is embedded. It does that by comparing the normal vector �� at one point with the
parallel transported normal vector from a neighbour point to this same point. Precisely,
it is de�ned as follows:

K�� � �h�� h�� r(���) (40)

The relevant components of the extrinsic curvature are:

Kij = �N�0
ij

=
1

2N
(2D(iNj) � @thij); (41)

Using equations (38), (39) and (41), we obtain for the four-dimensional scalar of
curvature:

R = R(3) +KkiKki +K2 � 2

N
@tK +

2N i

N
@iK � 2

N
Dk(@

kN): (42)

The Einstein-Hilbert lagrangian density can be written as:

LE =
p�gR = Nh1=2R

= Nh1=2(R(3) +KijK
ij �K2)� 2@t(h

1=2K) +

+2@i(h
1=2KN i � h1=2hki@kN): (43)

There are two total derivatives in this lagrangian density. The total time derivative
leads to inconsistencies in the path integral formulation of the quantum theory [40]. Fur-
thermore, with this term, we cannot obtain the gravitational part of Einstein's equations
by simply varying the lagrangian density (43) with respect to N , N i and hij, and impos-
ing, as usual, that the variations of these quantities on the boundaries are zero. We need
to impose as well that the time derivative of the variations of hij are also zero. For these
reasons, we will eliminate this term by taking the modi�ed lagrangian density:

L � LE + 2@t(h
1=2K) (44)

The last term in equation (43) is not important for the lagrangian formalism. In fact
it is an arbitrary term because we can add or subtract total spatial derivative terms to the
lagrangian without changing the lagrangian equations of motion. However, such terms are
crucial for the hamiltonian formalism. For open spaces, like asymptotically 
at or anti-de
Sitter spacetimes, this term must be chosen judiciously if we want to obtain the correct
hamiltonian equations of motion [41]. They also yield the total gravitational energy of
such spaces (when it can be de�ned). They are very relevant in the study of quantum
black holes. In the quantum cosmology of a closed universe, however, these terms are zero
and can be discarded from the lagrangian. The reader may ask why quantum cosmology
does not deal with open universes. First, closed universes are technically simpler and
conceptually richer. We hope the reader will be convinced of this assertion by the end of
these lectures. Second, there are path integral arguments claiming that open universes are
not probable. We will return to this point in section 5. However, there is no convincing
argument pointing in this direction. Therefore, we will make a comment every time the
presence of such terms can give di�erent results.
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Hence, the gravitational lagrangian density will be taken to be:

L[N;N i; hij] = Nh1=2(R(3) +K ijKij �K2): (45)

The total lagrangian is evidently given by:

L =
Z
Ld3x (46)

Variation with respect to N , N i and hij gives the projections of vacuum Einstein's
equations G���

��� = 0, G���
�h�� = 0 and G��h

�
�h

�
� = 0, respectively.

Let us now construct the hamiltonian of general relativity. As the lagrangian density
(46) does not depend on @tN and on @tN i, their canonical conjugate momenta are zero:

�� =
�L

�(@0N�)
� 0 (47)

where N0 � N .
The symbol � means `weakly zero' to remind us that the Poisson brackets of these

quantities with other functions of phase space variables may not be equal to zero.
Therefore, general relativity is a theory with constraints and it will be treated with

the Dirac formalism [42, 43, 44]. In the language of Dirac, the constraints (47) are called
primary constraints.

The canonical momenta conjugate to hij are given by:

�ij =
�L

�(@thij)
= �h1=2(Kij � hijK) (48)

The canonical hamiltonian densityHc is obtained in the usual way: Hc = �ij @th
ij�L.

After discarding a divergence term (something that is not generally possible for open
spacetimes), it yields the following canonical hamiltonian:

Hc =
Z
d3xHc (49)

=
Z
d3x(NH +NjHj);

where

H = Gijkl�
ij�kl � h1=2R(3) (50)

Hj = �2Di�
ij: (51)

and

Gijkl =
1

2
h�1=2(hikhjl + hilhjk � hijhkl) (52)

which is called the DeWitt metric.
The total hamiltonian density must yield the constraints (47). Thus, it must be given

by:
HT = NH+NjHj + ���� (53)
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where �� are lagrangian multipliers.
For consistency, the primary constraints must be conserved in time: _�� = f��;HTg =

0. This implies that the quantities (50) and (51) must be weakly zero:

H = Gijkl�
ij�kl � h1=2R(3) � 0 (54)

Hj = �2Di�
ij � 0: (55)

They are secondary constraints and are called super-hamiltonian and super-momentum
constraints, respectively. Their conservations in time do not lead to any new constraints.
As N and N i have no dynamics and they multiply secondary constraints in the total
hamiltonian, they can be viewed as lagrangian multipliers of these constraints, and they
can be eliminated from the phase space of the theory [44]. Therefore, the hamiltonian of
general relativity is simply given by:

HGR =
Z
d3x(NH+NjHj) (56)

It can be shown that the secondary constraints have weakly zero Poisson brackets
among each other. They are called �rst class constraints. There is a conjecture of Dirac
saying that all �rst class constraints are generators of gauge transformations. In fact, it
can be shown that:

�hij(x) = fhij(x);
Z
d3y�k(y)Hk(y)g = Dj�i(x) +Di�j(x) = $�hij (57)

�hij(x) = fhij(x);
Z
d3y�(y)H(y)g = �2�(x)Kij(x) = �(x)$�hij (58)

where $� is the Lie derivative along the in�nitesimal spacelike vector � and $� is the Lie
derivative along the direction orthogonal to the spacelike hypersurfaces with metric hij .
The function �(x) is in�nitesimal. Analogous results can be obtained for the momenta
�ij. Therefore, the �rst constraint is the generator of spatial coordinate transformations
while the second one is the generator of time reparametrization, which are the gauge
transformations of the theory. As can be seen from equation (58), the second constraint
is also responsible for the dynamics of the theory.

Variation of HGR with respect to N and N i yields the constraint equations H = 0
and Hi = 0 which are the vacuum Einstein's equations G���

��� = 0 and G���
�h�� = 0,

respectively. The evolution equation for hij gives the de�nition of �ij shown in equation
(48), which, combined with the evolution equation for �ij, yields the dynamical Einstein's
equation G��h

�
i h

�
j � 2ha(jGi)��

��a = 0.
As we can see, the vacuum Einstein's equations are obtained from a phase space com-

posed of all possible hypersurface metrics hij(x) and their canonical momentum �ij(x),
which means that the con�guration space of the theory is composed by all possible hij(x).
A particular spacetime solution of Einstein's equations can be viewed as a trajectory in
the space of all hij(x). By making an analogy with the dynamics of particles, hij(x) �! xi

and �ij(x) �! pi, we can interpret the �rst term in the constraint (50) as a kinetic term,
Gijkl(hij) given in equation (52) playing the role of a metric in the space of metrics (like
a gij(x) in the case of particles), and the second term as a potential energy.
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As can be seen from equation (56), the hamiltonian of general relativity is numerically
zero because it is a combination of constraints. However, if we were considering open
spaces, the spatial surface terms I have discarded may appear and the total hamiltonian
is not anymore numerically zero. In fact, for asymptotically 
at spacetimes for instance,
these surface terms yield their total energy.

Zero hamiltonians are characteristic of time-reparametrization invariant theories, as
is general relativity. Take as an example an action describing the classical dynamics of a
system of particles:

S =
Z
L(xi;

dxi

dt
; t) dt (59)

Let us de�ne a new paramater � and treat time as a new coordinate depending on � .
The new action is:

S =
Z
L(xi;

_xi

_t
; t) _t d� =

Z
�L(t; xi; _t; _xi) (60)

where the dot means derivative on � .
This action is now invariant by reparametrizations � 0 = � 0(� ). Let us calculate its

hamiltonian. The canonical momenta are:

�i =
@ �L

@ _xi
=

@L

@(dx
i

dt
)
� pi (61)

�0 =
@ �L

@ _t
= �H(xi; pj ; t) = �H(xi; �j; t) (62)

where H(xi; pj; t) denotes the original hamiltonian of the system. Equation (62) is a
constraint equation; no time derivative of phase space variables appear in it:

�0 +H(xi; �j; t) � 0 (63)

The canonical hamiltonian is easily calculated and it is:

�H(t; xi; �0; �i) = _t[�0 +H(xi; �j; t)] (64)

which is zero due to the constraint (63).
The total hamiltonian will be given by:

HT = N [�0 +H(xi; �j; t)] (65)

where N is a lagrangian multiplier. This hamiltonian is also zero.
The reader can verify that this hamiltonian gives the correct equations of motion, and

that the constraint (63) generates the gauge transformation linked with the reparametriza-
tion invariance of the theory. It is the analog of the constraint (54).

Let us return to general relativity and try to quantize the theory. We will work in the
hij representation. The rules for quantization are:

i) Transform phase space variables into operators acting on functionals of hij and t,
	[hij; t].



{ 18 { CBPF-NF-006/97

ii) Poisson brackets turn into comutators. In particular:

fhij(x);�kl(x0)g �! 1

i�h
[hij(x);�

kl(x0)] (66)

This means that we can write:

�̂ij = �i�h �

�hij
; (67)

iii) The wave function 	[hij; t] must satisfy the Schr�odinger-like functional equation:

i�h
@	(hij; t)

@t
= ĤGR	(hij; t) (68)

where ĤGR is the operator coming from the classical hamiltonian (56).
What will be the quantum versions of the constraint equations (54) and (55)? They

cannot turn into operator equations due to rule (ii). In fact, if we demand that equations
(54) and (55) are operators identities then all comutators with them would be zero. But
not all Poisson brackets involving the constraints (54) and (55) are zero and this would
be a contradiction with rule (ii). But constraints (54) and (55) are �rst class constraints
and there will be no contradiction if we impose them, as Dirac suggests, as conditions on
the wave function 	[hij; t]:

Ĥ	(hij; t) = 0 (69)

Ĥk	(hij ; t) = 0: (70)

If equations (69) and (70) are correct, then the right-hand-side of equation (68) is zero
and it implies that 	 does not depend on t.

Let us go back to our previous example of a time reparametrization invariant action
of a system of classical particles to understand what is going on.

If we follow the Dirac rules in this example, the Schr�odinger equation will simply imply
that the wave function does not depend on � . Imposing the constraint equation (63) as a
condition on the wave function,

[�̂0 + Ĥ(xi; �j; t)]	(t; x
i) = 0 (71)

gives the original Schr�odinger equation of the system.
As the constraint (54) is the analog of the constraint (63), we expect that equation

(69) contains the dynamics of the wave function. Let us write explicitly equations (69)
and (70):

2iDj
�	(hij)

�hij
= 0 (72)

(�h2Gijkl �

�hij
�

�hkl
+ h1=2R(3))	(hij) = 0: (73)

(we have set �h = 1).
The �rst equation has a simple interpretation. Make an in�nitesimal spatial coordinate

transformation
xi ! xi � �i (74)
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The spacelike metric changes in the following way:

hij ! hij + 2D(i�j): (75)

The new wave function may be expanded yielding:

 [hij + 2D(i�j)] = 	[hij] +
Z
d3x2D(i�j)

�	

�hij
(76)

Integrating by parts the second term of the right-hand side of the preceding equa-
tion, and as we are supposing that the spacelike hypersurfaces are closed, we obtain the
following expression for the change in 	:

�	 = �
Z
d3x�jDi(

�	

�hij
) = 0; (77)

where we have used equation (72). It means that the value of the wave function does
not change if the spacelike metric changes by a coordinate transformation. Therefore,
equation (72) implies that the wave function is a functional of the equivalence class of
metrics which describe the same geometry, not of one particular metric. It is a functional
de�ned on the space of all spacelike geometries, not on the space of all spacelike metrics.
The space of all three-dimensional spacelike geometries is called superspace. This is the
quantum version of the meaning of the constraint (55), which classically was interpreted
as the generator of spacelike coordinate transformations.

Let us turn to the equation (73), which is called the Wheeler-DeWitt equation [4]. This
equation is the analog of equation (71) for particle dynamics. We should expect that the
dynamics of the wave function be contained in it. Like in equation (71), there should exist
one momentumwhich is canonically conjugate to the time in which the quantum dynamics
takes place. In equation (71) this particular momentum is easily distinguishable from the
others because it appears linearly in this equation, while the others appear quadratically.
However, in equation (73), there is no momentum which appears linearly; all of them
appear quadratically. Hence, where is time? (Once again it should be reminded that if
we were working with open spaces, the total hamiltonian would have had extra surface
terms and the Schr�odinger equation of the problem would no longer be trivial: the wave
function would depend on time).

There are some proposals of solution to this problem, which is called the issue of time.
We will now expose some of them:

i) The DeWitt metric (52) is a 6X 6 matrix per space point and it can be shown that
it has signature (�;+;+;+;+;+) [4]. The minus sign is related to the square root of the
determinant of the spacelike metric [4, 45, 46],

p
h. Thus, it seems that we should identify

this quantity with time. However,
p
h is the volume of the spacelike hypersurfaces. Does

it mean that if the universe recolapses time will go backwards? Quite unplausible. Fur-
thermore, as the DeWitt metric has a Lorentzian signature, the Wheeler-DeWitt equation
(73) is like a Klein-Gordon equation with a variable `mass' term, R(3)(hij), which depends
on the `time'

p
h. Consequently, if we want to give some kind of probabilistic interpre-

tation to 	, we will have to face all the problems with negative probabilities which are
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characteristic of this type of equation. The presence of the variable `mass' term turns this
problem di�cult to solve [47].

In quantum �eld theory, this problem is solved by second quantizing the Klein-Gordon
�eld. This �eld operator is expanded in creation and annihilation operators of spin zero
particles. The vacuum state is the state with no particles. If this quantum �eld is
submitted to a time variable potential energy or if it is embedded in a time variable
curved background, then spin zero particles are created out of the vaccum.

For the Wheeler-DeWitt equation, this procedure would lead us to a third quantization
of gravity by quantizing the wave function itself [48, 49]. The particles are now universes
that can be created by the action of creation operators which are obtained by an expansion
of the wave function, which is now an operator. The vacuum state is the real nothing, the
absence of matter and spacetime. As the DeWitt metric (52) as well as R(3)(hij) depends
on

p
h, which is considered here as `time', then this quantum wave function is like a

quantum scalar �eld propagating in a time variable curved background and submitted
to a time variable potential energy. Thus, universes can be spontaneously created from
nothing! This is a very exotic and attractive picture. Note that within this picture, it
may be possible to explain why the constants of nature have the values we measure of
them [50, 51].

ii) We could try to �nd some variables where the Wheeler-DeWitt equation (73) has
the form of equation (71). In fact, this is possible but only implicitly [47, 46]. The
variable that plays the role of time is the trace of �ij which is proportional to �� de�ned
in equation (12). It is a good choice because it is a monotonically increasing function of
time whenever the dominant energy condition is satis�ed (see equation (21)).

iii) The fact that it is not easy to �nd what should play the role of time in the Wheeler-
DeWitt equation simply means that there is no time in quantum gravity [52, 53]. In fact,
the analogy with the quantum mechanics of particles via the time reparametrization
invariant action (62) is not apropriate. One should take the Jacobi action

S =
Z
d�
q
FET (78)

where FE = E � V and T = 1
2

Pn
i=1mi

dxi

d�
dxi

d�
. This is the apropriate action when a closed

conservative system is studied. The conserved energy is E, and V and T are the potential
and kinetic energy of the system. This action yields the Newton equations of motion if a
suitable choice of the parameter � is made such that T = FE.

The hamiltonian can be calculated in the same way as before and it turns out to be
proportional to the following constraint:

1

2

nX
i=1

pipi

mi
� FE � 0 (79)

Following the Dirac quantization scheme, this constraint yields the following quantum
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equation:
1

2
(
nX
i=1

p̂ip̂i

mi
+ V )	(xi) = E	(xi) (80)

which is the time independent Schr�odinger equation.
This is the correct analogous equation to the Wheeler-DeWitt equation (73) because it

is also quadratic in all momenta. Consequently, we should consider the Wheeler-DeWitt
equation as a time-independent Schr�odinger equation.

How can we physically justify that? First note that time appears in quantum mechan-
ics as an external parameter. If we want to describe an open system, like an ensemble
of black holes we will need open spaces, like asymptotically 
at spaces. Consequently,
the hamiltonian of general relativity will no longer be zero and the wave function will
depend on time, as reminded before. This time comes from the asymptotic structure
of such spaces. Thus everything is coherent; time appears because there is an external
place where it can come from: the asymptotic structure. However, for closed spaces,
there is no place where it can come from. We are quantizing everything, nothing is left.
Furthermore, as we have commented before, space geometry is like position in ordinary
particle mechanics while spacetime geometry is like a trajectory. As trajectories have
no sense in the quantum mechanics of particles, only instantaneous positions have, we
can conclude that spacetime has no meaning in quantum gravity, only space geometries
have. Hence, time has no sense at the Planck scale. Therefore, it is quite natural that the
Wheeler-DeWitt equation of closed spaces be time independent. It is a time independent
Schr�odinger equation for zero energy, as it should be!

The reader may object that we should expect that the gravitational �eld should behave
like a massless spin-two �eld and have two degrees of freedom, like in the weak �eld limit
. However, nothing can assure us that this conclusion can be extended to full quantum
gravity.

How time can be recovered? It can be recovered only at the semi-classical limit,
where geometry becomes classical and spacetime has a sense. To show this, let us take
the semi-classical limit of the Wheeler-DeWitt equation, now taking matter into account
[54, 55, 56]:

[
�h2

2M
Gijkl

�

�hij

�

�hkl
+Mh1=2R(3) + Ĥm(hij; �; ��)]	(hij; �) = 0 (81)

where M � c2

32�G .
The reader may convince himself of the last term of equation (81) by adding to the

lagrangian density of general relativity (46), for example, the lagrangian density of a
minimally coupled scalar �eld and follow the same steps we have followed to arrive at
equation (73).

As we are interested in the limit of classical gravity and quantum matter, we will
consider the limit where G is small (M is large) as compared with some combination of
Planck's constant and the coupling constants of matter.

We write the wave function as:
	 = eiS=�h (82)

and expand S in the form S =MS0 + S1 +M�1S2:::
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In the highest order M2 we obtain:

(
�S0

��
)2 = 0 (83)

This means that S0 depends only on the metric.
In the next order M1 we have:

1

2
(Gijkl

�S0

�hij

�S0

�hkl
+ h1=2R(3)) = 0 (84)

This is the Hamilton-Jacobi equation for vacuum general relativity and they are equiv-
alent to the vacuum Einstein's equations in the sense that once a solution S0 of this equa-
tion is �nded, the spatial geometry can be integrated to yield the spacetime geometry.

In order M0 we have:

Gijkl
�S0

�hij

�S1

�hkl
� i�h

2
Gijkl

�2S0

�hij�hkl
+

1

2
p
h
(
�S1

��
)2 � i�h

2
p
h

�2S1

��2
= 0 (85)

To understand this equation, we de�ne a new functional

f � D(hij )eiS1=�h (86)

where the functional D(hij) satis�es the equation:

Gijkl
�S0

�hij

�D

�hkl
� 1

2
Gijkl

�S0

�hij

�S0

�hkl
D = 0 (87)

In terms of f , equation (85) can be written as:

i�hGijkl
�S0

�hij

�f

�hkl
� i�h

�f

�� (x)
= Ĥmf (88)

This is a Tomonaga-Schwinger equation [57] describing a quantum scalar �eld propa-
gating in a curved classical background which is the solution of equation (84). The many
�ngered time � (x) is the time associated with observers with four velocity �� which are
orthogonal to the surfaces S0 = const: at each spacetime point. It is the natural de�nition
of time because �S0

�hij
is just the momentum conjugate to the classical solution hij , which is

linked to the Lie derivative of hij with respect to the normal vector to the hypersurfaces
where hij is de�ned. Therefore, time appears when spacetime becomes classical, as we
have seen6.

One could also try to compute the back reaction of the quantum �eld � into equation
(84) in order to obtain the semiclassical Einstein's equations:

G�� = � <T��> (89)

This problem is treated in references [54, 55].
In this section we have obtained the Schr�odinger-like equation for the quantum wave

function which is, in the presence of matter, the Wheeler-DeWitt equation (81). We have
seen that there is no time in it. In the next section, we will try to interpret this wave
function and try to extract physical information from it.

6See, however, Ref. [56] for a discussion on conditions for this time be well de�ned.
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4 Predictions from the wave function of the uni-

verse

As we have emphasized in section 2, we need a new interpretation of quantum mechanics
that can be applied consistently to the wave function of the universe, which is a solution
of the Wheeler-DeWitt equation (81).

In quantum mechanics, the sole sentence we can a�rm with certainty, which is in-
dependent of probabilities, is that the measurement of some observable B̂ of a quantum
system in a state which is an eigenstate of this observable corresponding to the eigenvalue
b, yields the value b. This state, when expressed on the basis of eigenvectors of B̂, will
have only one component di�erent from zero: the one associated with the eigenvalue b7.
Therefore, we could try to �nd the operators from which a solution of the Wheeler-DeWitt
equation is an eigenfunction. It is evident that it is a very di�cult task, perhaps with no
solution.

We could try to relax this eigenstate restriction, and create the notion of an approxi-
mate eigenstate, which is de�ned as an state whose wave function has a sharp �nite peak
at one of the eigenvalues of B̂ and smoothly goes to zero outside it. This bring us to
a version of the many-worldss interpretation of quantum mechanics cited in section 2.
In this version [58, 59], the predictions of quantum mechanics are described in terms of
precluded regions. The values of some observable for which the wave function is small,
not necessarily zero, are impossible to be obtained. Note that the usual interpretation
of quantum mechanics says that small regions of the wave function are not precluded or
impossible; they only have a small probability to occur. However, we cannot talk about
probabilities in the quantum mechanics of a individual system. Hence, within this alter-
native interpretation which attempts to be applied to individual systems, small regions
will be treated as precluded regions. Geroch shows in his paper [58] how some known
predictions of quantummechanics can be obtained with the use of this notion of precluded
regions. He also emphasizes that if there is some prediction of quantum mechanics that
cannot be said in terms of precluded regions, this interpretation must be discarded.

If the individual quantum system is divided into many identical quantum systems,
we should expect that the old interpretation in terms of probabilities could be obtained.
This can be shown in the following way (for details, see Ref. [59]): suppose we have an
observable Ŝ which, for simplicity, have a discrete spectrum. Its eigenvalues are si with
respective eigenstates ji>. Suppose also that the state of the individual system j	> can
be writen as a tensor product j�> 
 j'> where the state j'> is also a tensor product of
N identical subsystems:

j'>= j�1> 
:::
 j�j> 
:::
 j�N> (90)

The identical subsystems are in identical states which can be expanded in the basis of
eigenvectors of Ŝ as:

j�j>= j�>=
X

i
ciji> (91)

7In the case of a continuous spectrum, the associated wave function will be a Dirac delta. For instance,
let B̂ be the position operator. Its `eigenstate' with eigenvalue x0 is jx0>. The associated `eigenfuction'
(in quotes because it is not square integrable) is <xjx0>= �(x� x0).
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The �rst equality expresses that the j�j> states are identical. The index j is written just
to remind us that the states j�j> belong to di�erent Hilbert subspaces.

The states j�j> are normalized which means that:

X
i
jcij2 =

X
i
j<�ji> j2 = 1 (92)

We will be interested in the part of the total quantum individual system j'> given
in equation (90). Let an observer measure the observable Ŝ on each of the identical
states j�j>. He will certainly obtain one of the eigenvalues si. Let us de�ne the relative
frequency operator as:

f̂ (sl) �=
X

i1:::ij:::iN
ji1> 
:::
 jij> 
:::
 jiN>

PN
j=1�l ij
N

<iN j 
 :::
 <ijj 
 :::
 <i1j
(93)

where the the sum over each ij is performed in order to cover all possible eigenvectors of

Ŝ at each subspace labelled by the index j.
The eigenvectors of this operator are ji1 > 
::: 
 jiN > (one for each sequence of

possible measurement results fsi1:::siNg):

f̂ (sl)ji1> 
:::
 jiN>=
PN

j=1�l ij
N

ji1> 
:::
 jiN> (94)

As we can see from equation (94), the eigenvalues of the relative frequence operator
f̂ (sl) is, as the name indicates, the relative frequence in which the particular eigenvalue
sl appears in the sequence fsi1:::siNg corresponding to the eigenvector ji1> 
:::
 jiN>.

Let us now calculate the norm of the ket f̂(sl)j'> �jclj2j'>. This will be given by:

j f̂ j'> �jclj2j'> j2 =<'jf̂2j'> �2jclj2 <'jf̂ j'> +jclj4 (95)

First note that:

f̂2 =
X

i1:::ij:::iN
ji1> 
:::
 jiN>

PN
j=1�l ij
N

PN
k=1�l ik
N

<iN j 
 :::
 <i1j (96)

The second term in the right-hand-side of equation (95) is proportional to:

<'jf̂j'> =
X

i1
j <�1ji1> j2:::

X
iN
j <�N jiN> j2(�l i1 + :::+ �l iN )

1

N
= j <�jl> j2 = jclj2 (97)

where we have used equations (90), (91), (92) and (93).
The �rst term is proportional to:

<'jf̂2j'> =
X

i1
j <�1ji1> j2:::

X
iN
j <�N jiN> j2 :

: (�l i1�l i1 + :::+ �l iN �l iN + 2�l i1�l i2 + 2�l i1�l i3 :::)
1

N2
=

=
1

N2
(N jclj2 + 2

N(N � 1)

2
jclj4) (98)
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where we have used equation (96).
Substituting equations (97) and (98) into equation (95), we obtain:

j f̂ j'> �jclj2j'> j2 = 1

N
(jclj2 � jclj4) (99)

In the limit where N goes to in�nity, the above norm is zero which means that j'> is
an eigenstate of the operator f̂(sl) with eigenvalue jclj2. If N is very large but not in�nity,
the total wave function j'> in the representation of eigenstates of f̂(sl) will be sharply
peaked around the value jclj2. If we use the interpretation that a peak in the wave function
is a prediction, we can say that the relative frequence in which the particular eigenvalue
sl is found in a very large sequence of outcomes of measurements of Ŝ on each of the
identical states j�>, which is nothing but the probability of �nding the eigenvalue sl in
a measurement of Ŝ in the state j�>, is exactly equal to jclj2. Therefore, we recover the
usual probabilistic interpretation of quantum mechanics. Note that, in practice, we never
make an in�nite number of measurements in order to test this probabilistic interpretation.

This result is very attractive and some people clame that this kind of interpretation is
more fundamental then the usual one because probabilities are obtained, not postulated8.

Adopting this new interpretation, we need to �nd peaks in the solutions of the Wheeler-
DeWitt equation in order to make predictions. However, such solutions are very di�cult
to �nd. Furthermore, it is hard to extract physical information from them, due to the
absence of the notion of time at the Planck scale, as pointed out in the last section. Can
we �nd other quantum functionals which are more likely to have peaks and which are
easier to extract physical information? To answer this question, let us return to ordinary
quantum mechanics. There we can construct phase space functions from operators which
are functions of X̂ and P̂ by the so called Weyl-Wigner formalism. In this formalism, a
correspondence between an operator Â which is expressible in terms of coordinate and
momentum operators and a function on the phase space of the theory A(x; p) is proposed
as follows:

A(x; p) � 1

�hf
TrfÂ

Z
dy
Z
dv exp

i

�h
[(P̂ � p):y + (X̂ � x):v]g (100)

where f is the number of degrees of freedom of the system.
The inverse relation is given by:

Â =
1

�h2f

Z
dx
Z
dpA(x; p)

Z
dy
Z
dv exp

i

�h
[(P̂ � p):y + (X̂ � x):v]g (101)

Note that A(x; p) depends on �h and it is a quantum function.
Other correspondences could be de�ned. However, these alternatives are unsatisfac-

tory for studying the classical limit. See Ref. [61] for more details on this.
One interesting phase space function is the Wigner function, which is the Weyl-Wigner

transform of the density matrix j	><	j. It is given by:

F (x; p) =
Z
du	�(x� �h

2
u)	(x+

�h

2
u) exp (�ipu) (102)

8However, objections to this proof have already been made [60].
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It satis�es the following properties:Z
dpF (x; p) = j	(x)j2Z
dxF (x; p) = j	(p)j2 (103)

The idea proposed in Ref. [62] is to �nd peaks of the wave function of the universe
in the phase space of general relativity by looking for peaks of its corresponding Wigner
function of the theory. This idea is motivated by the following reasoning: a semi-classical
wave function, in ordinary quantum mechanics, is writen in WKB form as:

 W (x; t) = A(x; t) exp[
i

�h
S(x; t)] (104)

where A is a slowly varying function of x and S satis�es the classical Hamilton-Jacobi
equation

� @S(x; t)

@t
= H(x; p =

@S(x; t)

@x
) (105)

This equation is obtained by inserting the wave function (104) into the Schr�odinger
equation of the system and keeping only the order-�h0 term9.

If we insert this wave function in the Wigner function (102), in order-�h0, the result
obtained in Ref. [62] (which is not true, as will see later on) is:

F (x; p; t) = jC(x)j2�(p� @S(x; t)

@x
) (106)

Therefore, WKB wave functions have a peak on the �rst integral of the equations of
motion p = @S(x;t)

@x
). If we accept this as a prediction, then f classical solutions are selected

out of the 2f possible classical solutions of the theory. Furthermore, the prefactor jC(x)j2
can be used as a probability measure on this set of trajectories, as we will see later on.
The proposal of Ref. [62] is to follow an analogous procedure: one takes the WKB wave
function of the universe and calculates its Wigner functional de�ned on the phase space
of general relativity in order to �nd the most probable classical cosmological solution of
the Einstein's equations.

Let us see an application of this program to a simple example, which is extracted
from Ref. [63]. Here we will introduce the notion of a minisuperspace model. The
Wheeler-DeWitt equation (81) is a very complicate functional di�erential equation, which
is equivalent to an intricate system of partial di�erential equations, one for each space
point xi. To solve this equation is evidently very di�cult. One usually simpli�es it by
freezing the degrees of freedom of gravity by reducing the superspace to a minisuperspace
where only a �nite amount of degrees of freedom are still avilable.

More precisely, expand the spacelike metric and its conjugate momentum in some
complete set fn:

hij(x; t) = hij(0)(t) +
X1

n=1
hij(n)(t)fn(x) (107)

�ij(x; t) = �(0)
ij (t) +

X1

n=1
�(n)
ij (t)fn(x) (108)

9To show this, is necessary that the classical hamiltonian be a quadratic function of p.
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A minisuperspace is the set of all spacelike geometries where all but a set of the hij(n)(t)

and the corresponding �
(n)
ij (t) are put identically to zero.

Evidently, this procedure violate the uncertainty principle. However, we expect that
the quantization of these minisuperspace models retains many of the qualitative features
of the full quantum theory, which are easier to study in this simpli�ed model. For more
details on minisuperspace models, see Refs. [64, 65, 82].

The minisuperspace model we will discuss was developped in the context of a theory
in which gravity is non-minimally coupled to electromagnetism [9], the Lagrangian being
given by a combination of Einstein's and Maxwell's theory plus an interacting (non-
minimal) term:

L =
p�g

�
�1

4
F��F

�� +
1

k
R+ �RW�W�g

��
�
+ @t

�
2h1=2K

�
1

k
+ �W�W�g

��
��

(109)

where � is a dimensionless positive coupling constant,W� is the vector potential and F�� =
@�W� � @�W�. The surface term appearing in the lagrangian (109) is a generalization,
due to the non-minimal coupling, of the one added in general relativity in equation (44).

The �eld equations of this theory are:

(1 + �W 2)G�� = �1

2
E�� + �2(W 2)g�� � �RW�W�

� �r�r�(W
2) (110)

r�F
�� = 2�RW � (111)

where W 2 = g��W�W� , 2 is the covariant Laplacian operator, and E�� := F��F
�
� +

1
4
g��F��F

��. (We have put k = 1).
Our minisuperspace model is characterized by the following ansatz:(

ds2 = �N2(t)dt2 + a2(t)d
2
3

W� = ( (t); 0; 0; 0; )
(112)

The four-metric is of Robertson-Walker form, where d
2
3 is the metric on the spatial

sections with constant positive or negative curvature "(" = +1 or " = �1 respectively).
The topology of these sections is considered to be closed.

With these assumptions it follows that F�� = 0 = E�� and

W 2 = g��W�W� = � 2=N2 =: ��2 (113)

De�ning � := (1���2), and substituting �, �, a and N into the �eld equations (110)
we obtain, after some manipulation:8>>><

>>>:
�a
a
+ _a2

a2
+ "N

2

a2
� _a

a

_N
N

= 0
��
�
+ 3 �a

a
� 3_a

a

_N
N
� _�

�

_N
N

= 0
��
�
+ 3

_�
�

_a
a
� _�

�

_N
N

= 0

(114)

From the above equations we obtain the following constraint (no second-order time
derivative appears):

_a2 + a _a
_�

�
+ "N2 = 0 (115)
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We de�ne the associated minisuperspace action substituting the restriction (112) di-
rectly into the lagrangian (109), yielding the action:

S :=
Z
dtL(a; �;N) (116)

in which

L =
1

2
("Na� � a _a2�

N
� a2 _a _�

N
)

up to a multiplicative constant. Let us point out that the constraint (115) can be obtained
by variation of this lagrangian with respect to N .

The equations of motion obtained from the action (116) form a system which is equiv-
alent to the system (114). This result validates the interpretation of our model as a
minisuperspace model10.

The calculation of the Hamiltonian from the action (116) yields:

H = N
�
��a��

a2
+ �

��

a3
+ �a

�
=: NH (117)

where �a and �� are respectively the momenta associated to the variables a and �, and N
plays the role of a Lagrange multiplier. Variation of the above hamiltonian with respect
to N yields the minisuperspace version of the super-hamiltonian constraint (54), H � 0,
which is nothing but the constraint (115).

We can notice that, if we proceed through the Dirac quantization of our model using
the variables (a; �), the Hamiltonian (2.9) leads to factor-ordering problems11. In this
minisuperspace model, it is easy to circumvent such a di�culty. Let us introduce a new
equivalent set of coordinates (x; y) and set

(
x := �a

y := a2

2

(118)

The action (116) is then given by

S =
Z
dt
�
"Nx� 1

N
_x _y
�

(119)

The general solutions to the equations of motion are:

y = �"t
2

2
+ � (120)

x = ct (121)

10In general, the simple substitution of an ansatz into the complete action of the theory gives an action
whose equations of motion are not equal to the equations of motion of the full theory restricted to the
ansatz. These procedures may not commute. This is usually the case when the constraints (55) are
not identically zero. Therefore, we must be very careful with the procedure of obtaining the correct
minisuperspace equations.

11This is characteristic of the Wheeler-DeWitt equation (73) and it is one of the problems we have to
face in the canonical quantization scheme [66, 67, 46].
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which can be expressed as

y = �" x2

2c2
+ � (122)

where c and � are integration constants.
As it can be seen from equation (120), we may have the following possible classical

solutions:

a) For " = 1.
For �> 0, there is a singularity on t = �p� when the universe is created, it expands

till maximum size at t = 0, and then recolapse at t =
p
�.

If � � 0, there is no classical solution.

b) For " = �1
If �> 0, the universe is 
at at t! �1, contracts to its minimum size at t = 0 and

then expands to become 
at again at t!1. No singularities are present: it is an eternal
universe.

If � = 0, it is just the 
at spacetime in Milne coordinates.
If � <0, we may have a universe that contracts from 
at spacetime till a singularity

or an expanding universe coming from a singularity and going to 
at spacetime.
Thus, for " = �1, there is the possibility of having eternal or singular universes,

depending on the constant of integration �.
It is here where quantum cosmology enters. The idea is to apply the proposal of

Ref. [62], which sustains that semi-classical wave functions are peaked on the correlations

pi =
@S(qj;t)
@qi

, and apply to this problem in order to see if one of the cosmological classical

solutions (eternal or singular) of the problem we are now studying can be selected. We
are taking this minisuperspace example because most of the qualitative features of min-
isuperspace quantum cosmology can be easily discussed due to the simple calculations it
involves.

Let us then quantize the theory.
The Hamiltonian of the new action (119) is given by

H = �N(�x�y + "x) (123)

which yields the super-Hamiltonian constraint

H := �(�x�y + "x) � 0 (124)

where �x = � _y
N
and �y = � _x

N
.

The quantum version of equation (124) yields the minisuperspace Wheeler-DeWitt
equation, which governs the dynamics of the quantum state  (x; y). For our model this
equation is given by:

Ĥ
 
x;�i @

@x0
; �i @

@y

!
 (x; y) = 0 (125)

where Ĥ is the operator version of equation (124).
The explicit form of equation (125) is:

� @2 

@x@y
+ "x = 0 (126)
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A solution of (126) is given by

 (x; y) =  0 exp

"p�"
 
z0y � x2

2z0

!#
(127)

where  0 and z0 are arbitrary complex constants.
Note that  is an eigenfunction of the momentumoperator �y with eigenvalue�i

p�" z0.
In order for this eigenvalue to be real, z0 must be real for " = 1 or pure imaginary for
" = �1.

Thus, we may write equation (127) as:

 (x; y) =  0 exp

"
�i
 
cy � "

x2

2c

!#
(128)

where c is a real constant. This wave function is also a semi-classical wave function
because the argument in the exponential of equation (128)

S � �cy + "
x2

2c
(129)

is the complete solution of the Hamiltonian-Jacobi equation of the model

@S

@x

@S

@y
+ "x = 0 (130)

The general solution of equation (126) constructed from the particular solution (128)
is:

 (x; y) =
Z
dcG(c) exp

"
�i
 
cy � "

x2

2c

!#

=
Z
dcF (c) exp

"
�i
 
cy � "

x2

2c
+ �(c)

!#
(131)

where G(c) = jG(c)je�i�(c) = F (c)�i�(c) is an arbitrary complex function.
We are interested in the wave function of the universe leading to a classical universe.

In particular we want to know which of the possibilities of having an eternal or a singular
classical universe is predicted. The occurrence of eternal or singular solutions depends on
the sign of the constant ", as discussed above. As it is impossible, in the above model, to
obtain a classical eternal universe with " = 1 we will, from now on, limit our discussion
to the case " = �1.

The idea that a quantum solution predicts a classical universe is meaningful, of course,
only in the semi-classical limit which will be identi�ed here with the behaviour of the wave
function in the region where the scale factor is very large. Both quantities x2 and y are
proportional to a2 (a is the scale factor) and so is the term

�
cy + x2

2c

�
in the phase of (131).

Hence, when a!1, this phase varies rather rapidly, enabling us to approximate  (x; y),
in the semi-classical limit, employing the stationary phase method. The stationary phase
condition applied to equation (131) yields:

d�(c)

dc
+ y � x2

2c2
= 0 (132)
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Suppose that equation (132) have N solutions, cn(x; y); n = 1; � � � ; N . In the semi-
classical limit,  (x; y) can be written as

 sc(x; y) =
NX
n=1

F (cn(x; y)) exp (�iSn(x; y)) (133)

with Sn de�ned by

Sn(x; y) := �
"
� (cn(x; y)) + ycn(x; y) +

x2

2cn(x; y)

#
(134)

It is easy to show that the Sn(x; y) given by equation (134), are solutions of equation
(130) with " = �1:

@S

@x

@S

@y
� x = 0 (135)

In the theory of the nonlinear partial di�erential equations of �rst order [68], it is
called the general integral of equation (135). This type of equation admits two other sets
of solutions: the complete and the singular integral. The complete integral of equation
(135) is given by:

Sc(x; y) = �cy � x2

2c
(136)

which is the solution (130) for " = �1. There is no singular integral of equation (135).
The functions Sc(x; y) given by (136) can be used to construct another set of semi-

classical wave functions by the WKB approximation method. These WKB wave functions
are approximate solutions in �rst order of �h of equation (125) (with " = �1) and have
the form:

 W (x; y) = A(x; y) exp[iS(x; y)] (137)

For the particular case of equation (126), the functionsA(x; y) and S(x; y) must satisfy,
besides the Hamiltonian-Jacobi equation (135), the following equation

@A

@x

@S

@y
+
@A

@y

@S

@x
+

@2S

@x@y
A = 0 (138)

Using Sc(x; y) given by (136) (which satis�es equation (135)), noting that
@2Sc
@x@y

= 0, and

solving the above equation by the separation of variables method (A(x; y) = X(x)Y (y)),
we obtain for the prefactor A(x; y)

A(x; y) = B exp

"
W

 
�cy + c2

2c

!#

where B and W are real constants.
Thus, we obtain for the WKB wave function (137):

 W (x; y) = B exp

"
W

 
�cy + x2

2c

!
� i

 
cy +

x2

2c

!#
(139)
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The semi-classical wave function  sc(x; y) given by equation (133) also satis�es the
WKB equations (135) and (138). To see this, di�erentiate equation (132) with respect to
x and y to obtain the following di�erential equation for c(x; y)

@c

@x
= � x

c2
@c

@y

Using again the separation of variables method, we can obtain the general solution

c(x; y) = �
p
x2 + 2
q
2(y � �)

(140)

where 
 and � are constants of integration.
The functions �(c) that yield these solutions are of the form

�(c) = ��c+ 


c

Substituting into equation (134), the functions S(x; y) are:

S�(x; y) = �
q
2(y � �)

q
x2 + 2
 (141)

It is easy to show that S�(x; y) satisfy equation (135), and that every smooth function
F (c) (the prefactor of  sc) together with S�(�; y), satisfy equation (138) when a >> 1.

Also, j~rF j <<1 for a>> 1.
The wave functions  sc and  W given by equations (133) and (139), respectively, are

the most general forms of WKB solutions in the form  � eis where S is a solution of the
Hamilton-Jacobi equation. (The prefactors should satisfy the relations j~rF j � j~rAj <<
1).

As mentioned above, these wave functions have a peak on the correlations pi =
@S
@qi

,

where the qi are the minisuperspace variables and the pi their canonical momenta. These
correlations are in fact �rst integrals of the classical equations of motion. For the semi-
classical wave functions given in equations (133) and (141) they yield:

�x =
@S�
@x

= �x
q
2(y � �)p
x2 + 2


(142)

�y =
@S�
@y

= �
p
x2 + 2
q
2(y � �)

(143)

In the gauge N = 1; �x = � _y and �y = � _x. Hence, the above equations yield:

dy

dx
=

�x

�y
=

@S�
@x
@S�
@y

whose general solution is

y =
x2

2c2
+



c2
+ � (144)
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where c is a real integration constant.
Looking to the above equation we see that � = 


c2
+ �. Therefore, if we know the

exact form of S�(x; y) (or �(c)), it is possible to make exact predictions about the singular
nature of the classical solutions. If both � and 
 are positive, negative or null, the wave
functions predict eternal, singular or Minkowski universes, respectively.

Note that, in these cases, the knowledge of the function S(x; y) is enough to make
exact predictions.

The other type of semi-classical wave functions given in equation (139) are peaked on

�x =
@Sc
@x

= �x
c

(145)

�y =
@Sc
@y

= �c (146)

where Sc is given by (136), which yields the following �rst integral of the classical equations
of motion:

dy

dx
=
x

c2
) y =

x2

2c2
+ � (147)

The constant � comes again as an integration constant. Therefore, its sign is still
unknown. The knowledge of the function S(x; y) is not enough to make predictions.

However, in the semi-classical approximation, we can use the prefactor to de�ne a
measure over the ensemble of classical trajectories in the minisuperspace of the problem,
around which the wave function is peaked. This is done in the following way: the WKB
solutions are of the form  = A(q)eiS(q). We can construct the minisuperspace vector
(a vector which is de�ned in minisuperspace whose indices are raised and lowered by the
Wheeler-DeWitt metric)

ji = A2(qj)riS(q
j) (148)

where theri is the covariant derivative with respect to the Wheeler-DeWitt metric. Using
the Wheeler-DeWitt equation in the WKB approximation, it can easily be shown that
this vector has null covariant divergence [82]. Then we can construct a conserved measure
on minisuperspace

P =
Z
dP =

Z
jid�

i (149)

if d�i is the \area element" of a suitably chosen hypersurface of minisuperspace, so that
all the trajectories of the ensemble of classical trajectories cross it only once.

Once we have de�ned this measure, we can calculate what is the relative measure of
some of the classical solutions with respect to the others. If this relative measure is very
close to one, we will say that this classical solution is predicted. If it is very close to zero,
it is excluded.

Let us return to our example. We de�ne:

� = y � x2

2c2
(150)

� = �y � x2

2c2
(151)
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We then obtain for ji given in equation (148)

ji = exp(2cW�)ri(c�) (152)

In the plane (�; �), the surfaces � = const. (� is essentially Sc given in (136)) are
orthogonal to the classical trajectories (147) (by virtue of equations (145) and (146))
which have � = � = const. Thus, the vector ~j points largely in the � direction. Choosing
the surfaces � in (169) to be the surfaces of constant �, it will be guaranteed that ~j crosses
them only once. This choice yields for (149) the following equation:

dP = ~j � d~� � exp(2cW�)d�

The conditional probability of having � � �> 0 will be given by:

P (� � �> 0j �1 <� <1) =

R1
0 exp(2cW�)d�R1
�1 exp(2cW�)d�

(153)

If cW > 0 then P = 1 and if cW < 0; P = 0. In each case the condition jrAj << 1
as a>> 1 is satis�ed. Thus, we can make a de�nite prediction about the sign of � if we
know the sign of cW , which is given by the wave function (139).

We have seen that both wave functions (133) (with (141)) and (139) select one and only
one classical solution depending on the values of the constants 
 and � in the �rst case,
and c and W in the second case12. To know tese constants, we need boundary conditions
on the Wheeler-DeWitt equation in order to select one and only one solution with their
speci�cs (
, �) or (c, W ). The reader may object by saying that we have only displaced
the problem: why not impose boundary conditions on Einstein's equations directly? This
is because our experience in quantum mechanics shows that it is common to have natural
boundary conditions on the wave function (usually coming from impositions of regularity
on the boundaries of the space where its arguments are de�ned), which sometimes are
su�cient to select a unique wave function. Also, if there is some deep principle which
explains the puzzles in classical cosmology, it must be sought in the more fundamental
quantum theory. We will return to these problems in the next section.

Another important problem with the program suggested in Ref. [62], as we have
mentioned before, is that it is not true that WKB wave functions have their Wigner
functions peaked on the correlations p � @S(x;t)

@x
. The approximation method used to

arrive at equation (106) is not correct. In fact, in Ref. [61] it is shown that using
the uniform approximation method for one dimensional systems, the Wigner function of
semi-classical wave functions is proportional to Airy functions, which may have a lot of
peaks. As discussed in Ref. [69], these Airy functions are much more close to the exact
Wigner functions calculated in some simple examples then the Dirac-delta function (106).
Therefore, if semi-classical Wigner functions may have many peaks, no prediction can be
made out of them. Fortunately, this is not the case of the minisuperspace example we
have discussed in this section but in general we will have to face this problem. This point
will also be discussed in the next section.

12In the �rst case, it is possible to make predictions only with the knowledge of the hamilton-jacobi
function (141); in the second case, the pre-factor (138) together with a de�nition of measure on minisu-
perspace are also necessary.
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5 Boundary conditions and decoherence

5.1) The no-boundary boundary condition

As was explained in the last section, in order to quantum cosmology be a theory of
initial conditions of the universe, boundary conditions to the Wheeler-DeWitt equation
are needed in order to select a unique solution which will be called the wave function of
the universe. The minisuperspace example we have studied above suggested this need
13. There are many proposals of boundary conditions to the Wheeler-DeWitt equation
[71, 72], the most popular being the tunnelling boundary condition [73, 74] and the no-
boundary boundary condition [75, 76]. Only the second one will be discussed here.

The no-boundary boundary condition is de�ned in the context of what is called eu-
clidean quantum gravity [77]. It makes use of a path integral formulation of quantum
gravity. In ordinary quantum mechanics, a solution of the Schr�odinger equation can be
written as a path integral in the following way:

	(x; t) =
Z
dx0K(x; t;x0; t0)	(x0; t0)

=
Z Z

DF [x(� )] expf i
�h
S([x(� )] : x; t;x0; t0)g	(x0; t0)dx0 (154)

where K(x; t;x0; t0) =< xjU(t; t0)jx0 > is the propagator, 	(x0; t0) is the initial wave
function (which re
ects the way the system has been prepared), and the integrationR
DF [x(� )] is over all possible paths between (x0; t0) and (x; t)
The ground state wave function can be obtained in the following way: choose t = 0,

x0 = 0, write t0 = t0, substitute in the propagator, and insert in it the identity operator
written in terms of a complete set of energy eigenfunctions:

K(x; 0; 0; t0) = <xjU(0; t0)j0>=X
n
<xjU(0; t0)j'n><'nj0>

=
X

n
'n(x)'n(0) exp(iEnt

0)

=
Z
DFx(� ) expf i

�h
S([x(� )] : x; 0; 0; t0)g (155)

If we make a Wick rotation t0 = �i� 0 and take the limite � ! �1, the unique term in
the sum which survives is the one with the lowest energy. Thus, we can write the ground
state wave function as:

'0(x) = N
Z
DFx(� ) expf�1

�h
I([x(� )] : x; 0; 0; � 0 !�1)g (156)

where I(� ) � �S(t = �i� ) is the Euclidean action, and N is a normalization constant.
When the action is the kinetic energy T minus the potential energy V , S = T � V , the

13However, Ref. [70] shows a minisuperspace example where a natural measure can be de�ned in the
space of solutions of the Wheeler-DeWitt equation. Using this measure, they show that in
ation is a
common feature of these solutions. This is an example of prediction without boundary conditions.
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euclidean action turns out to be I = T + V , the total energy and, as a consequence,
positive de�nite. Consequently, the path integral in equation (156) converges.

In quantum �eld theory, we have an analogous equation for the ground state wave
functional:

	0[�(x); 0] = N
Z
DF [�(x)] expf�1

�h
I([�(x)])g (157)

where the path integral is over all Euclidean �eld con�gurations �(x; � ) to the past of � = 0
which match with �(x) in the hypersurface � = 0. As in ordinary quantum mechanics,
the Euclidean actions of usual �eld theories are positive de�nite.

In general relativity, the notion of gravitational energy has a meaning only in space-
times with timelike Killing vectors. Hence, we cannot use the notion of energy in order
to de�ne the ground state. The proposal of Hartle and Hawking [75] is to extend the
Euclidean functional integral de�nition of ground state in ordinary quantum mechanics
and quantum �eld theory to the domain of general relativity:

	0[hij(x); �(x); B] = N
Z
DF [hij(x)]DF [�(x)] expf�1

�h
I([g��(x); �(x)])g (158)

where the integration is over all Euclidean four-geometries and Euclidean �eld con�gura-
tions which match with hij(x) and �(x) in the three-boundary B.

As was discussed in section 3, if the four-geometry is spatially open, the action of
general relativity has surface terms. For cosmological geometries, whose metric compo-
nents do not go to zero at spatial in�nity, these surface terms are usually in�nity. The
Euclidean action diverges like the spatial volume of the open universe. Therefore, in the
path integral (158), the contributions of spatially open geometries seems to be zero (or
in�nity but then the wave function will be ill de�ned), and so we will only consider spa-
tially closed universes. This is the �rst feature of the wave function (158); it seems to
predict that the universe is spatially closed (evidently, this is not a rigorous statement).
It is in accordance with the conjecture which says that this wave function is a kind of
ground state wave function: a closed universe is the closest one to a vacuum state because
its energy and all charges are zero.

The path integral in equation (158) will be over spatially closed Euclidean four-
geometries. We can parametrize the three-geometries hij and �eld con�gurations �
of this four-geometry by a parameter � in such a way that hij(x; � = 1) = hij(x);
�(x; � = 1) = �(x), the arguments of the wave function (158). In order to obtain a
unique 	0 out of equation (158), we must specify what are the values of geometry and
matter �elds at some other value of �, at some other boundary. The proposal of Hartle
and Hawking is that there is no other boundary; the integration in (158) must be over
Euclidean four-geometries which are compact in space and time. The sole boundary is the
one which appears in the argument of the wave function. The universe in the Euclidean
regime has no boundary in space or time. That is why it is called the no-boundary pro-
posal. The foliation of this compact Euclidean four-geometry will necessarily reach the
`south pole' of this geometry at some �, say � = 0. At this point, h1=2 = 0 but the geome-
try is perfectly regular there. Thus, the boundary conditions at � = 0 are h1=2(� = 0) = 0,
and conditions of regularity on the matter �elds and on the derivatives of the geometry
and matter �elds at this point.
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There is a problem, however, with equation (158). The euclidean action of general
relativity is not positive de�nite. In fact, as we have seen in section 3, the kinetic term of
the general relativity lagrangean has a metric which is not positive de�nite: the Wheeler-
DeWitt metric. As we have discussed there, the negative sign of the Wheeler-DeWitt
metric corresponds to the determinant of the spacelike metric hij. It means, as can easily
be checked, that if we have a metric for which the Euclidean action is positive de�nite,
a conformally related metric ~g�� = 
2g�� may have a negative action depending on 

being a rapdly varying function.

To solve this problem, we have to distort the contour of integration in equation (158)
to complex metrics and �nd a contour which gives a �nite 	0. However, this contour
is not unique and we may have di�erent �nite no-boundary wave functions for di�erent
contours [78]. This is a serious problem of the no-boundary proposal; it may not give
a unique wave function of the universe. This motivated some authors to add some new
restrictions to the no-boundary proposal [79]. We will not enter on these details here.

As general relativity is a theory with constraints, the path integral in equation (158)
must be made with care in order to not integrate over spurious degrees of freedom, like
in any other gauge �eld theory. For details on this point see Refs. [80, 43, 44].

In the semi-classical approximation, the dominant contributions to the path integral
(158) will come from the four-geometries and matter �elds which are solutions of the
Euclidean equations of motions because they minimize the Euclidean action:

	sc
0 [hij(x); �(x); B] /

X
n

expf�1

�h
Icln ([g��(x); �(x)])g (159)

where the sum is over Euclidean classical solutions.
Let us impose the no-boundary boundary condition to the solutions of the minisuper-

space model we have presented in the last section to see how it works. The no-boundary
semi-classical wave function can be calculated by evaluating the Euclidean action that
comes from (119) (with " = �1)

I = �
Z
d�

1

2

�
_x _y

N
�Nx

�

in the classical solutions of the Euclidean �eld equations

(
_y

N
): +N = 0

(
_x

N
): = 0

_x _y

N2
+ x = 0

At the boundary B, where the wave function is evaluated, we have y(1) = ~y and
x(1) = ~x. At the `south pole', labelled by � = 0, the no-boundary proposal says that
h1=2 = 0. This implies that a(0) = y(0) = 0. Also, it requires regularity of the �elds
there: j�(0)j <1 which implies that x(0) = a(0)[1� ��2(0)] = 0. With these boundary
conditions, the solutions of the Euclidean equations of motion are: y = ~yt2; x = ~xt and
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N = �ip2~y. These solutions can be substituted into the action yielding I� = �i~xp2~y.
The semi-classical no-boundary solution is given by:

 NB / exp(�I+) + exp(�I�) / cos(x
q
2y) (160)

This is a wave function of the type  sc with S given by equation (141) with � = 
 = 0.
Therefore, by equation (144), the no-boundary wave-function predicts Minkowski space-
time.

This result is in accordance with the conjecture that the no-boundary wave function
is a kind of vacuum wave function in the sense that it represents a state with maximal
symmetry. In fact, Minkowski spacetime is the solution with maximum number of Killing
vectors in our minisuperspace model.

For the " = +1 case the solution is

 NB = exp(x
q
2y) (161)

It is not an oscilatory wave function. It can be viewed as generating solutions of
equation (120) with � = 0, which are not allowed for " = +1. In general, oscilatory wave
functions are related to classical solutions while non-oscilatory wave functions are related
to classical forbidden regions, like tunneling e�ects, exactly like in ordinary quantum
mechanics.

The no-boundary boundary condition, as other boundary conditions, has been ap-
plied to many di�erent minisuperspace examples as attempts to answer old cosmological
questions, as described in the introduction.

For minisuperspaces of homogeneous but anisotropic universes, like Bianchi I and
Bianchi IX models, it was shown that the no-boundary wave function has a peak where
the minisupersapce coordinates describe isotropic cosmological solutions [81].

In the case of a homogeneous minimally coupled scalar �eld, some authors have studied
if the no-boundary and tunneling solutions yield the initial conditions for having in
ation.
As explained in the lectures of Branderberger, in
ation can explain the observed isotropy
of the universe. However, not all initial conditions give rise to in
ation; depending on the
initial value of the scalar �eld, the universe may recollapse too early or we may not have
enough in
ation to isotropize it. In Ref. [82] this issue is discussed comprehensively, and
it is shown that the tunneling solution yields good in
ation while the no-boundary does
not (although some controversy on this result exists in the literature).

The problem of structure formation can also be discussed in the light of quantum
cosmology [82, 83]. Small inhomogeneous perturbations are added to the homogeneous
and isotropic metric and scalar �eld, enlarging the minisuperspace model:

hij(x; t) = a2(t)(
ij + �ij(x; t))

�(x; t) = �(t) + ��(x; t)

N(x; t) = N0(t) + �N(x; t)

�N i(x; t) (162)

where 
ij is the metric on the unit three sphere.
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These inhomogeneous perturbations are expanded in three-sphere harmonics Qn
lm, as

for example the scalar �eld:

��(x; t) =
X
nlm

fnlm(t)Q
n
lm(x) (163)

The new minisuperspace action is:

S(g�� ;�) = S0(N0; a; �) + S2(N0; a; �; �N;N
i; f�nlm) (164)

where f�nlm represents all expansion coe�cients of the perturbations.
We can proceed with the quantization of this enlarged minisuperspace in the usual

way (see details in the Refs. [82, 83]). In the semi-classical approximation, we can
obtain a Schr�odinger equation for a wave function describing the quantum evolution of
the perturbations in a �xed curved spacetime, following the same steps we have taken
in order to obtain equation (88) in section 3. This wave function can be obtained from
the original solution of the Wheeler-DeWitt equation, as in equations (82), (86) and
(87). If a unique solution of the Wheeler-DeWitt equation is selected by some boundary
condition (no-boundary, tunneling, etc), the quantum state of primordial perturbations
can be known and its evolution uniquely determined. After, it can be compared with
observations as explained in Refs. [84, 85].

5.2) Decoherence

Let us now return to the problem of �nding peaks in the Wigner function, as discussed
in the last section. As Berry have shown, Wigner functions of semi-classical wave functions
do not have, in general, a unique peak. Also, it may sometimes happen that the semi-
classical wave function be a superposition of many WKB wave functions, like in equation
(160), and the corresponding Wigner function present quantum interference (which is not
the case of the particular precedent case for the questions we were trying to answer).

Usually, quantum interference can be eraised by the phenomenon of decoherence. It
happens when the degrees of freedom under study are in interaction with a macroscopic
environment. When all the irrelevant degrees of freedom of the environment are traced
out, we obtain a reduced density matrix, like in equation (37) of section 2. As we have
pointed out in that section, the term responsible for quantum interference vanishes for
almost every macroscopic system [25, 26, 27, 28, 29].

The natural idea is to apply the concept of decoherence to quantum cosmology. But
what is the `environment' of the universe? Our observations of the universe are coarse.
Therefore, we could think the `environment' of the universe as composed of �ne degrees of
freedom which are not observed. In Ref. [86], a minisuperspace example of this idea has
been developped. It was also shown in this paper that the Wigner function of the reduced
density matrix obtained by tracing out the unobserved degrees of freedom has only one
peak. They took a very simple minisuperspace model where the unique degree of freedom
was the scale factor. The theory is general relativity with a cosmological constant. The
Wheeler-DeWitt equation is:

[4
d2

dq2
� 1 + �q]	(q) = 0 (165)
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where q = a2, a being the scale factor, and � is the cosmological constant. The no-
boundary wave function is 	NB = �iAi[ 1��q

(2�)2=3
]. The semi-classicalWigner function of the

no-boundary wave function is proportional to a sinus function and has many peaks. After,
they introduced inhomogeneous perturbations, like in equation (162). They calculated the
modi�ed density matrix, integrated over the inhomogeneous degrees of freedom to obtain
the reduced density matrix, and calculated the semi-classical Wigner function of this
reduced density matrix. The result was that, depending on the degrees of freedom that
were traced out, the new Wigner function has only one peak over the classical trajectories.

Therefore, decoherence is not only responsible for the eraising of quantum interference
but also for the construction of classical correlations between phase space variables.

There are many questions still to be answered. The calculations of Ref. [86] indicate
that the tracing out of unobserved degrees of freedom is not arbitrary: if we trace out
too many degrees of freedom, we end with no peak; if we trace out only a few, we end
with a lot of peaks. Until now, there is no physical reason that can guide us with the
good choice. This problem leads to another one: what is a good peak? The Dirac delta
peaks of Ref. [62] are undoubtly good peaks but they are not correct, in general, as we
have seen. It is unavoidable to deal with �nite peaks. Therefore, the question of how big
must be a peak in order to yield exact predictions is pertinent, and without a general
and satisfying answer. This motivates us to the next section, where we will present some
other interpretations of quantum mechanics which may be more apropriate to quantum
cosmology.

6 The ontological and consistent histories interpre-

tations of quantum mechanics

What we call the consistent histories interpretation is the one developped by Gri�ths,
Omn�es, Hartle and Gell-Mann [87, 21, 88, 89], and the ontological interpretation is the
one developped basically by David Bohm [30, 31].

6.1) The consistent histories interpretation

The consistent histories interpretation is an improvement of the idea behind the many-
worlds interpretation. Quantum mechanics is not viewed as a theory of many worlds but
as a theory of many histories. It was developed by Gri�ths and Omn�es in order to get
a consistent interpretation of quantum mechanics without the problems mentioned in
section 2.

The �rst basic assumption of this scheme is that, according to Omn�es [21], `every
physical system, whether an atom or a star, is assumed to be described by a universal
kind of mechanics, which is quantum mechanics'. There are two immediate important
consequences of this assumption: �rst that the theory deals with individual systems
(there is no sense in dealing with an ensemble of planets Mars in order to study this
planet), and second that classical mechanics must be derived from quantum mechanics
in the situations where it is a good approximation. Here, classical mechanics means not
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only classical dynamics (Newton's laws, in the non-relativistic case) but also classical
logic (common sense), determinism, and everything characteristic of the classical world.
Therefore, the classical world must be derived from the quantum world.

Evidently, this kind of interpretation is better suited to quantum cosmology than
the Copenhaguen one. That is why Hartle and Gell-Mann have developed an analogous
framework in order to apply it to quantum cosmology.

In the history interpretation, probabilities14 are not assigned to events as in usual
quantum mechanics but to whole histories. However, as we know, we cannot assign
probabilities to every history in quantum mechanics. The interference �gure obtained
from the two slit experiment is an evidence of this fact. Hence, we must establish what
are the conditions on families of histories in order to be possible to assign probabilities to
all members of such families. Once we obtain these conditions, we will have the possibility
of saying, for instance, that a history of the universe with in
ation is more probable than
another one without in
ation, without mentioning observers or measurements. Let us
give more details on how this interpretation works.

A history of an isolated physical system is a succession of properties of this system
occurring at di�erent times. An example of a property of a system is the sentence `the
eigenvalue of the observable B̂ is in the set D'. To each property is associated a projector
operator. In the above example, it would be the projector P onto the subspace of the
Hilbert space containing all eigenvectors with eigenvalues in the set D. Another way to
say the above property is `the value of P is 1'.

The probability of a property, designed by its projector P , must satisfy the following
conditions:

0 � p (P ) � 1 (166)

p (I) = 1 (167)

p (P + P 0) = p (P ) + p (P 0) (168)

where P and P 0 are projectors into disjoint sets D and D0.
There is a theorem due to Gleason [90], which shows that there exists a trace-class

(with unit trace) positive operator � (the density operator), where a p (P ) satisfying the
above conditions can be written as (compare with equation (27)):

p (P ) = Tr(�P ) (169)

The probability of a history can also be obtained from some logical conditions (for
details, see Ref. [21]). The unique15 probability is given by:

p = TrfPn(tn):::Pk(tk):::P1(t1)�P1(t1):::Pk(tk):::Pn(tn)g (170)

14Here, probability has only a formal meaning, a mathematical object which must satisfy some math-
ematical requirements, as will see later on. Its connection with the relative frequences of measurement
data is something to be established when a theory of measurements is formulated. It is argued in Ref.
[21] that there are some probabilities which cannot be tested by measurements while there are others
which may have an empirical sense.

15The uniqueness is only proved for histories with two instants of time or histories where the projectors
refers either to position or momentum operators.
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where � is the density matrix of the initial state of the system. One of the projectors
Pn(tn) can be omitted due to the cyclic property of the trace and the fact that Pn(tn) is
a projector. Note that for n = 1 this probability reduces to equation (169). Also, if �
represents a pure state, � = j	><	j, this probability reduces to the reasonable equation:

p = jPn(tn):::Pk(tk):::P1(t1)j	> j2 (171)

If we have more then one history, constituting what will be called a family of histo-
ries, then the additivity condition on probabilities must be checked. Let us make some
de�nitions.

Two histories h and h0 are said to be disjoint if P 0
k(tk)Pk(tk) = 0 for some k. The

union of two histories is de�ned if the histories have P 0
i (ti) = Pi(ti) for all i except for one

i = k where P 0
k(tk)Pk(tk) = 0 (they must be disjoint). The union is the history given by

the sequence fP1(t1):::Pi(ti):::Pk(tk) + P 0
k(tk):::Pn(tn)g

A consistent family of histories is one where each probability of each possible union of
two disjoint histories is the sum of the probabilities of each disjoint history:

p (h+ h0) = p (h) + p (h0) (172)

Therefore, in a consistent family of histories, a probability can be assigned to each
history of the family. Equation (172) implies some consistency conditions. Let us examine
a simple example. Take a family constituted of two histories and two instants of time.
The history h is fP1(t1); P2(t2)g and h0 is fP 0

1(t1); P2(t2)g, with P1(t1)P 0
1(t1) = 0. The

initial state is given by the density matrix �. Then we have:

p (h + h0) = TrfP2(t2)(P1(t1) + P 0
1(t1))�(P1(t1) + P 0

1(t1))g
= p (h) + p (h0) +

+ TrfP2(t2)P
0
1(t1)�P1(t1)g+ TrfP2(t2)P1(t1)�P

0
1(t1)g (173)

Hence, probabilities can be assigned to this family of histories if:

TrfP2(t2)P
0
1(t1)�P1(t1)g+ TrfP2(t2)P1(t1)�P

0
1(t1)g = 0 (174)

Using that the projectors are hermitean operators, equation (174) is equivalent to:

ReTrfP2(t2)P1(t1)�P
0
1(t1)g = 0 (175)

This is the consistency condition for this family of histories.
To illustrate the meaning of equation (175), let us apply it to a concrete example.

Consider a spin 1
2 particle. The initial state is given by the property �:n0 = +1 where n0

is some unit length vector and � are the Pauli matrices. At times t1 and t2, the possible
properties are given by �:nj = �1, j = 1 or 2, n1 and n2 being two others unit vectors. It
can be shown that the consistency conditions derived from this family of histories imply
that:

(n0 ^ n1):(n1 ^ n2) = 0 (176)

where ^ is the vector product.
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i) Take n0 = x, n1 = y and n2 = z. In this case, condition (176) is satis�ed. A history
h is: the particle has spin Sx =

1
2�h at t = t0, Sy =

1
2�h at t = t1 and Sz =

1
2�h at t = t2. A

history h0 is: the particle has spin Sx =
1
2
�h at t = t0, Sy = �1

2
�h at t = t1 and Sz =

1
2
�h at

t = t2. The union h+h0 is: the particle has spin Sx =
1
2
�h at t = t0 and Sz =

1
2
�h at t = t2.

The intermediate step at time t1 is omited because the sum of the projectors associated
with this step in h and h0 is the identity operator. In other words, the statement that the
y component of the spin of the particle at time t1 is either

1
2�h or �1

2�h is a trivial statement
which can be omited.

It can be easily veri�ed that the probability of h + h0 is the sum of the probabilities
of h and h0. Indeed:

p (h + h0) = p (h) + p (h0)
1

2
=

1

2
:
1

2
+
1

2
:
1

2

ii) Take n0 = x, n1 = y and n2 = x. In this case, condition (176) is not satis�ed. A
history h is: the particle has spin Sx = 1

2�h at t = t0, Sy = 1
2�h at t = t1 and Sx = 1

2�h
at t = t2. A history h0 is: the particle has spin Sx = 1

2�h at t = t0, Sy = �1
2�h at t = t1

and Sx =
1
2
�h at t = t2. The union h + h0 is: the particle has spin Sx =

1
2
�h at t = t0 and

Sx = 1
2
�h at t = t2. The intermediate step at time t1 is omited for the same reason as

before.
It can be easily veri�ed that the probability of h+h0 is not the sum of the probabilities

of h and h0.

p (h + h0) 6= p (h) + p (h0)

1 6= 1

2
:
1

2
+
1

2
:
1

2

iii) Take n0 = x, n1 = x and n2 = z. In this case, condition (176) is satis�ed. A
history h is: the particle has spin Sx = 1

2
�h at t = t0, Sx = 1

2
�h at t = t1 and Sz = 1

2
�h

at t = t2. A history h0 is: the particle has spin Sx = 1
2�h at t = t0, Sx = �1

2�h at t = t1
and Sz =

1
2�h at t = t2. The union h + h0 is: the particle has spin Sx =

1
2�h at t = t0 and

Sz =
1
2�h at t = t2.

The probability of h+ h0 is the sum of the probabilities of h and h0.

p (h + h0) 6= p (h) + p (h0)
1

2
= 1 :

1

2
+ 0 :

1

2

For more complicate families of histories, the necessary and su�cient consistency con-
ditions are more involved [21]. That is why Hartle and Gell-Mann [88] prefer to use a
simpler su�cient, but not necessary, condition. They de�ned the `decoherence functional'
as:

D(fP�0gfP�g) = TrfP n
�0n
(tn):::P

1
�0
1

(t1)�P
1
�1
(t1):::P

n
�n(tn)g (177)

(the indices �n are to emphasize that we may have many projectors at each instant tn).
Their su�cient condition is:

D(fP�0gfP�g) = 0 ; �k0 6= �k (178)
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This implies that the decoherence functional can be written as:

D(fP�0gfP�g) = ��0
1
�1:::��0n�np (h = fP�g) (179)

for each history h = fP�g of the given family of histories.
Families of �ne grained histories (for instance, precise values of the position operator

at every instant of time) are not consistent. Usually we have to deal with coarse grained
histories (for instance, values of the position operator belonging to some set of values at
some instants of time). These coarse grained histories may satisfy, at least approximately,
equation (178) (recall that our observations in cosmology are very coarse grained). In this
case, we may assign probabilities to them. There must exist some families of coarse grained
histories which satisfy equation (178) with no �ner-grained family which satis�es it. These
families are called maximal sets. The time evolution contained in some histories belonging
to consistent families may be approximately equal to the time evolution obtained from
the classical equations of motion. These are quasi-classical histories. They involve quasi-
classical projectors associated with collective observables (e.g., the center of mass position
of a collection of atoms).

In quantum cosmology, the goal would be to �nd collective observables (related with
concrete observations), and their connections with fundamental quantum gravity opera-
tors, identify consistent family of histories, impose as initial condition some solution of the
Wheeler-DeWitt equation obtained from some suitable boundary conditions as described
in the precedent section, and �nally calculate probabilities of histories. This is subject of
intense research nowadays [91, 92, 93, 94, 95].

It should be emphasized that there are some important di�erences in the formulations
of the history interpretation. The �rst we have already mentioned: while Hartle and
Gell-Mann work with the simpler su�cient conditions (178), Omn�es works with more
complicate su�cient and necessary conditions. It means that Hartle and Gell-Mann loose
some consistent families of histories in the name of simplicity.

Second, in the original formulation of Gri�ths, the initial and �nal states in the
histories are �xed while in the Omn�es formulation the �nal state is open. This implies
that the Gri�ths formulation is time reversal while the Omn�es one is not. Omn�es argues
that with his de�nition of probability, he can de�ne a consistent logic in consistent families
of histories while with Gri�ths de�nition this is not possible. This is undoubtly a very
persuasive argument.

Let us now introduce another interpretation, the ontological interpretation of quantum
mechanics.

6.2) The ontological interpretation

The ontological interpretation of quantummechanicsworks as follows: take the Schr�odinger
equation in the coordinate representation with the hamiltonian H = P 2

2m
+ V (x)

i�h
d	(x; t)

dt
= [� �h2

2m
r2 + V (x)]	(x; t) (180)
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Write 	 = R exp(iS=�h) and substitute in (180). We obtain the following equations:

@S

@t
+
(rS)2
2m

+ V � �h2

2m

r2R

R
= 0 (181)

@R2

@t
+r:(R2rS

m
) = 0 (182)

The ontological interpretation, based on these two equations, is the following [30]:
i) The quantum particles follow trajectories x(t), independent of observations.
ii) The particles are never separated from a quantum �eld 	 which acts on them,

which satis�es the Schr�odinger equation (180).
iii) The momentum of the particle is p = rS.
iv) Equation (181) is a Hamilton-Jacobi type equation for a particle submited to an

external potential which is the classical potential plus a new quantum potential

Q � � �h2

2m

r2R

R
(183)

Hence, the particle trajectory x(t) satis�es the equation of motion

m
d2x

dt2
= �rV �rQ (184)

.
v) In a statistical ensemble of particles in the same quantum �eld 	, the probability

density is P = R2. Equation (182) guarantees its conservation on time.
Let us make some comments:
a) Even in the regions where 	 is very small, the quantum potential can be very

high, as we can see from equation (183). It depends only on the form of 	, not on its
absolute value. This fact brings home the non-local character of the quantum potential.
This is very important because the Bell's inequalities together with Aspect's experiments
show that, in general, a quantum theory must be either non-local or non-ontological.
As Bohm's interpretation is ontological, it must be non-local, as it is. The quantum
potential is responsible for the quantum e�ects. For instance, in the two-slit experiment,
the gradient of the quantum potential, the quantum force, is in�nite exactly on the points
of destructive interference; particles cannot be there.

b) An image proposed by Bohm and Hiley is that the wave function 	 acts like a radio
wave emited to an automatic pilot in a ship and guide it. It has not the energy to pull
the ship but it gives the information for its engine, in our case the quantum potential, to
do so.

c) It is not always true that we can write the probabilty density of an statistical
ensemble of quantum particles as P = R2. The function R is more important to construct
the quantum potential then to assign probilities. Probabilities are not fundamental in this
interpretation.

d) The classical limit is very simple: we have only to �nd the conditions for having
Q = 0.

e) As we have discussed in section 2, in a measurement the wave function is a super-
position of non-overlaping wave functions, as we can see from equation (34) and equation
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(35). The particle will enter in only one region and it will be in
uenced by the quantum
potential obtained from the non-zero wave function of this region only.

For quantum �elds, we can apply a similar reasoning. As an example, take the
Schr�odinger equation for a quantum scalar �eld:

i�h
@	(�; t)

@t
=
Z
d3x

1

2
[��h2 �

2

��2
+ (r�)2 + V (�)]	(�; t) (185)

Writing again 	 = R exp(iS=�h), we obtain:

@S

@t
+
Z
d3x

1

2
[�(�S

��
)2 + (r�)2 + V (�)] +Q = 0 (186)

@R2

@t
+
Z
d3x

�

��
(R2 �S

��
) = 0 (187)

where Q[�; t] = ��h2 1
2R

R
d3x �2R

��2
is the corresponding quantum potential.

A detailed analysis of the ontological interpretation of quantum �eld theory is given
in Ref. [96] for the case of quantum electrodynamics.

The ontological interpretation of canonical quantum gravity is obtained in an analo-
gous way. Substitution of 	 = R exp(iS=�h) into the Wheeler-DeWitt equation (73) yields
the two equations (for simplicity we stay in pure gravity):

1

2
Gijkl

�S

�hij

�S

�hkl
+ h1=2R(3)(hij) + h1=2Q(hij) = 0 (188)

Gijkl
�

�hij
(R2 �S

�hkl
) = 0 (189)

where the quantum potential is given by:

Q = ��h2 1
R
Gijkl

�2R

�hij�hkl
(190)

As before, we set:

�ij = �h1=2(Kij � hijK) =
�S

�hij
(191)

Hence, as Kij is essentially the time derivative of hij, equation (191) gives the time
evolution of hij, which will be di�erent from the time evolution of classical general rela-
tivity due to the presence of the quantum potential in equation (188). As we see, there
is no issue of time. The notion of spacetime is meaningful in this interpretation, exactly
like the notion of trajectory is meaningful in particle quantum mechanics following this
interpretation.

Some interesting works have been done in ontological quantum cosmology. In Ref. [97],
it is shown, using a minisuperspace model, that the quantum potential cancels the cosmo-
logical constant for real wave functions (which is the case of the no-boundary one), leading
to a null e�ective cosmological constant. In Ref. [98] it is shown, in a straightforward
way, how to obtain semi-classical quantum cosmology, in the light of this interpretation.
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7 Conclusion

In these lectures, we have tried to outline the main problems, goals, and achievements of
quantum cosmology.

1) The �rst problem is to formulate a consistent theory of quantum gravity. In our
opinion, perturbative methods are inadequate to quantize gravity. We have to focus
our attention to a non-perturbative approach, which can be applied to some general
theory which contains general relativity, like superstring theory [99], or simply to general
relativity itself. We have adopted this last attitude, for simplicity, applied the Dirac
quantization procedure, and arrived at the the fundamental canonical quantum gravity
equation: the Wheeler-DeWitt equation (81), which is a complicate equation and very
di�cult to solve.

a) One attempt to solve this problem is to work with a di�erent set of canonical
variables: the Ashtekar variables [100, 101]. In these variables, the hamiltonian constraints
of general relativity are greatly simpli�ed, and also the corresponding Wheeler-DeWitt
equation. They become similar to the Yang-Mills equations. Therefore, many technics
developed for so many years in the framework of Yang-Mills theory, can be applied to
canonical quantum gravity in Ashtekar variables. In particular, the introduction of loop-
space variables, inspired in the Yang-Mills Wilson loops, has presented some interesting
non-perturbative results [102, 103]. The program of canonical quantization of general
relativity in the Ashtekar variables is the subject of intense research nowadays. It has
many unresolved questions and problems of physical interpretation, but it surely deserves
the atention and work of researchers interested in quantum gravity.

b) As we have mentioned in section 3, due to the Klein-Gordon nature of the Wheeler-
DeWitt equation, it has been proposed that we should quantize the wave functions 	
which are solutions of the Wheeler-DeWitt equation. It would be like a third quantization
of gravity. This is a theory where universes, with all their internal characteristic features
(total charge, coupling constants, etc) can be spontaneously created. This approach is
connected with euclidean quantum gravity, where topology change is described in terms
of instantons (solutions of the euclidean �eld equations, like in quantum �eld theory):
disconnected universes (baby universes) are created by quantum 
uctuations of topology
[77]. In Refs. [104, 105] this approach is studied and the issue of the determination of the
values of coupling constants is discussed.

2) In section 2 we have shown that the Copenhaguen interpretation cannot be applied
to quantum cosmology.

a) One proposal of interpretation is the one inspired in the many-worldss interpretation
of quantum mechanics which says that a de�nite prediction can be made if the wave
function has one peak. The problems of this interpretation are mainly two. First, it is
not easy to �nd a peak in solutions of the Wheeler-DeWitt equation. One attempt to
solve this problem is to study the corresponding Wigner functions of semi-classical wave
functions but even them have not a single peak. Nevertheless, decoherence e�ects may
yield a Wigner function with a single peak, but with a �nite height. The natural question
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is: what height must have a peak in order to be considered as a prediction? Furthermore,
decoherence comes from tracing out irrelevant degrees of freedom. What are the irrelevant
degrees of freedom in quantum cosmology?

b) A second proposal is the consistent histories interpretation. In this interpretation,
the conditions for assigning probabilities to histories are established without mentioning
observers or measurements.

A common feature of these two interpretations is the important role of decoherence
in both of them. Decoherence is fundamental to obtain classical spacetime in a theory
where there is no classical domain `a priori'.

c) The third interpretation presented in these lectures is fundamentally di�erent from
the �rst two. It is an ontological interpretation. In this approach, the notion of trajectories
of quantum particles is meaningful. Analogously, the notion of spacetime is meaningful in
quantum gravity and hence the notion of time. The classical limit is very easy to obtain;
we have just to set the conditions for having the quantum potential equal to zero. The
problem with this interpretation is the di�culty to accomodate the notion of spin, which
cannot be described with classical images [106].

3) In order to obtain predictions from quantum cosmology, we need boundary condi-
tions to the Wheeler-DeWitt equation which select only one of its solutions. In section 5,
we have presented one of the proposed boundary conditions, the no-boundary one. The
no-boundary wave function is analogous to a ground state wave function. We have shown,
with a simple minisuperspace example, how a no-boundary wave function yields de�nite
predictions. However, in general, the no-boundary boundary condition, does not select
a unique wave function. It depends on the complex contour where we perform the path
integral. Hence, it needs more speci�cations in order to yield a unique solution.

We have also described how quantum cosmology can be relevant in explaining structure
formation. This is a domain where we can really test if quantum cosmology ideas may
yield some physical testable consequences [107].16

Summarizing, a lot of work has been made and is still needed in domains like non-
perturbative string theory, Ashtekar variables, baby universes, decoherence, consistent
histories interpretation, Wigner functions, boundary conditions and the problem of struc-
ture formation. Not so much attention has been devoted, however, to the ontological
interpretation which seems to be the best adapted to quantum cosmology, although with
its problem to accomodate spin. We think some more research is needed in this area.

16Some possible e�ects of quantum gravity in quantum �eld theory have also been studied [108].
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