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ABSTRACT

The canonical structure of non-Abelian gauge fields

is analyzed in the (non-covariant) Poincaré gauge. General

aspects of the gauge conditions and quantization preScriptions

are discussed.
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The purpose of this note is to consider the canonical
structure and quantization of a general non-Abelian gauge fieid
Au(x) = Aau(x)Ta, where {Ta} is a hermitian representation of
the (semi-simple, compact) gauge group, under the Poincaré gauge

conditions defined by

o AR
a _ a = - L > .
A0 =0 A = ek [ amiead w

{(We will restrict our considerations to regular gauge fields.)

The above equations are the non-Abelian generalization
of the gauge conditions discuséed in [1) and widely used in
quantum optics in connection with the interaction of electro-
magnetic radiation with matter in the long-wavelength limit,

(In the old litérature the Abe;ian version of conditions (1)
were known as “mu;tipolar gauge". See [2], for instance.)

The first of the conditions (1)'can be viewed as the
non-covariant version of the Fock-Schwinger gauge condition [3]
which, in its more general (Lorentz covariant) form, is
defined by (x”-Eu)Au(x) = 0, where £ 1is a constant vector.

The Fock-Schwinger gauge condition has recently acquired some
popularity [4] due to its many rémarkable virtues, the most
important of which being the fact that it provides an expression

" for the gauge fields in terms of the field strength tensor,

1
Au(x) = JO dA Ax Fvu(lx) . (2)

This "inversion formula” holds true for both Abelian and non-

-Abelian fields.

Brittin et al. [1] has called the attention to the
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fact that the inversion formula (2) is in fact ensured by the
Poincaré lemma, so that the way of reasoning can be reversed
since it is clear from eq. (2) that the gauge field”éutomati—
cally satisfies the Fock-Schwinger condition,'quu(x) = 0,
Now, in ref. [l] it has been shown that the Poincaré lemma
also provides a non-covariant way of expressing the Abelian
fields a, (x) ;nd Ay(x) in terms of the componenté of the field

strength tensor as follows:

1 -+
Ai(*? = IO ax AxkEki(t,lx) .
(3)
- 1 *

The main differences between the above expressions aqd the
coxrresponding components of the gauge field obtained from eq.
{2) are clear. From the first of egs. (3) it follows tﬁat
xiAi(x) = 0 which is the non-covariant form of the Fock-
-Schwinger gauge conditions. The set of gauge conditions (3)
has been called by Brittin et al..the "Poincaré gauge conditions".
The non~Abelian version of eqs. (3) can be obtained by
the same procedure used in ref. (1], i.e., by applying the
Poincaré lemma. Reversing the argument we can impose xiAi(x)=0
as a gauge condition, and then obtain the second of eqgs. (1)
as the consistency condition (time preéervation) of the first
one, as we will show shortly. Now, cbnditioné (1} can be shown
to be attainable and complete, thus constituting a good set
of gauge conditions.
In what follows we will not go into details of the

formal properties of the Poincaré gauge. A detailed discussion
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~ will be presented somewhere [5].

We shall now proceed with the canonical formalism for

the Yang-Mills field. Due to the presence of two first class_ cons-

traints in the theory,

(1) _ 0 .
Qa h IIa =0 ’
(4)
(2) _ _ b,c _
B = M55~ 9Cpchifly = 0

we need to impose two (non~covariant) gauge conditions and we

choose one of them to be

4 a .
ol =x %) z0  ,  w=1,2,3 . - (5)
Once the condition (5) is imposed we cannot arbitrarily choose .

a conditjon on Ag(x) for such a condition is dictated by the

time preservation of eq. (5). Indeed using the canonical Hamil~

tonian
- 3 - 3,|1zapa ; A, 4@ , 1 Ja -a
H, = [ a ch- I a’x 2HiI_Ii + 139,A3 + 7 15734
- 9C,pe AASTS | | (6)
it follows from Q;4) = {Q;4) ,H .} = 0 that
. . c
a _ a :
xiaiAO 3 xiHi {(7)

whose solution provides us with the second gauge condition we

are looking for:

1 R |
Q;Z) = Ag(x) + Xy JO dlﬂi(lx) =0 . . (8)
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The set of constraints (4), (5) and {(8) is second

class. The matrix

¢ = vz = (a0 @, i4-1,2,3,4,

is non-singular. For the inverse matrix g™ = (ﬂl (x,2)) we

find that the only non-vanishing elements are

1 1 2 (3) .
flz(x,y) = 6$b IO da IO diai X X; $ (uhx-Y) ¢ (9a)

Q) .
Py = =6 8 (x-9) (9b)

1 1 (3) .
-gf?tx,y) = e j dx I da a2n§(a§)xk § (ay-AX) ,
0 0 (9¢)

1 2 (3)

5.0, Io'aa 32 5 (G- (9d)

34 x,y)

Using the above expressions'we obtain the following fundamental

Dirac brackets:

a B_v1* _ _ (sab 3 _
{Ai(x).ko(z)} = {s ;;I Cach (x))cS ztx z)
o 1 (3) |
+ §9b I dr z; § (%-A7) (10a)
| 0

] (3)
a b * _ ab T2
{Ai(x),ﬂk(z)} = § Gik 8§ (x-2z)

1 (3)
ab 9 2 + o+ o
+ z, {6 ;—I = CicbPi (x))I dar™ § (x=-iz) , (10b)
p 4 0
1 1
* 2
{Aa(x).ﬂb(z)} = = I, ax J da a“.

0 Kk : abc 0 0

c. - {3) (3)
[Hi(hx)xizk 5 (Ax- az) + H (z)x X, A & (rax-z). {10c)
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All other brackets are null. It is easy to verify that the
above Dirac breckets are compatible with the constraints

equations (4), (5), (8). The equations of motion for the dy-

namical variables read

aa2
2a _ @ 0 _ b c
ii2(z) = D,FR, (z) + g cabcnﬁz;g(z) . (12)

Equation (11) is clearly compatible with equation (7).

The canonical guantization procedure can now be im-
plemented as the fundamental Dirac brackets relations obtained
above provide a basis for the construetion of the equal time

commutation relations through the usual transition scheme

{c(x),B(z)} — L [E(x),Bl2)]
- ‘ ih |

with the second class constraints (4), (5), (8) converted into
strong 0pe£ators identities acting on the physical states of
the system. It is worth noting that the righp hand sides of
the fundamental Dirac brackets (10) do not pose any operators
ordering problems.

Let us new consider the path integral guantization.

It is done by expressing the generating functional for the

evolution operator as

a1 ranP (1), 50025035
Z = N J [Qnu][dAaJdet(MF) E§(Qa )G(Qa )B(Qa )G(Qa )

x exp [i J d4x(Il”aAau -% ) (13)
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where % is given by equation (6). After some length manipu-
C

lations using standard techniques we obtain the desired result,

Z =N I [dAuald(xiA;).exp{% s{a]ll (14)

where S[A) is the action functional expressed only in terms of

the fields Aﬁ(x) and its derivatives.
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Comments and Conclusions

We have considered the canonical framework for a
general gauge field under the Poincaré gauge conditions. The
gauge conditions are.attainable and complete and thus consti-
tute a good set of gauge conditions. Besides introducing some
technical complications the gauge conditions break the trans-
lational invariance of the theory. As a consequence, on one
hand, the Green's functions 1ack translational invariance but,
on the other hand, they are endowed with a very simple
structure. Also, the gauge conditions renders a theory which
is free from Fadeev-Popov ghosts, a remarkable property which

is shared by the class of axial gauges.
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