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ABSTRACT

We have studied a bounded cluster of maﬁy particles mgo
ving under their own g?aviﬁation. The cluster 1is spherically sym-~
metric and stationary. All particles have the same rest mass and
0 coﬁponent of the energy momentumn ten

sor of the cluster is taken uniform. The distribution of the velo

the same tctal energy. The T0

cities of all particles that cross any given point imside the clus
ter is assumed isotropic., Exact solutions of the equations are ob
tained, and special internal geodesics are discvssed. Comparison

with interior Schwarzschild solution is given.

The gravitational field of a large number of particles

]

moving in a prescribed way under their own gravitation has been stu



aied by several authors. In an Einstein1 cluster all particles.m)
ve in randomly oriented concentric circular orbits, producing «
static and spherically symmetric fieid; some particular Einsteir
clusters were ‘considered by F'lorides2 and by Teixeira and Som?.
Similar clusters, but with cylindrical symmetry, has been studi-
ed by Raychaudhuri and Som4 and by Teixeira and SomS; in these
clusters alil particles move in concentric circular orbits around
the axjs of symmetry.

Though mathematically interesting, these spherical and
cylindrical clusters present a'physically unsatisfactory aspect:
since the orbit of each particle crosses. the orbits of others ,
col]iﬁions of particles may occur; after such collisions each
particle will generally present a non—vanish%ng radiai component
'in its velocity, a situation which has been discarded in the pre
violus systems.

In the present paper we consider,réndom orientations
in the motions of the particles of a spherical cluster. As a re-
sult of these random orientations one can reasonably assume thét
on the average the velocity space of the particles at'any given
point inside the cluster is iéotrcpic. Due to this iéotropy,the
off-dizgonal components of the energy momentum tensor vanish.An
exact solution cerresponding to the cluster with a homogeneous

Tg is obtained.

Z. GLNERAL EQUATIONS
In the Einstein equations {Andcrscns)
~ U P LI, +H
RS = 85 R/Z = = 1] s row Sw(;/c4 (13



e use the static spherically symmetric line element

2

ds™ = ev(dx 2 2 2

dr™ - r°- do -_r2 sin2

0y2 _ oA 6 do? | (2

with v and A functions of r alone.

The energy momentum density tensor Ts is to correspond
to a non-homogeneous cluster of particles in motipn; we assume an
isotropic distribution for the velocities éf all particles that
cross any given boint inside the cluster. Each particle (i) has
mass m and contributes to Tﬁ with an individual tensor

t?g) = c2 h u?i)“?i) ’ | (3)
with u?i) representing its four-velocity. We assume the cluster
sufficiently dense so as to allow a meaningful space average of
the individual t?¥) in order-to give our TH”,

Due to the random orientations cf the paths of the par
- ticles ™V s diagonaY; and the impositibn of isotropy in the ve-
1 -2

locity space implies that T] = T2 = Tg. So  we are led with onily

twe independent components for Tt, and write

T = <o diag(1 + 38%/2 , -g%2 . -p¥2 , -e¥2) . (2)

o

. Z t 2 - - -
with B~ and the trace c¢“p functions of r aigcne.

From (1), (2) and (4) we obtain the independent eqgua-

tions
-7 - “}\u& -2 L
(y- -1 };‘})n I Kczp(.’ b 3,’3'?/?) s (E’
2. -1 A -2 2 2
{(r “+r v, )e - r = ke p BT/Z s (6)
(p Bz)é +pl] +,252)w] = 0 s (.,

1

where a subscrint 1 means d/dr. Since these three equations co .-



va it vour functions (v,A,p,B" ), one constraint is necessary in

srder to get explicit solutions: we choose Tg = const, that is

K c2 p(1 + 362/2)= 6w2/c2' s w2 const (8)

the choice of the constant in this way will become clear later.

3. SOLUTION OF EQUATIONS

From (5} and (8) we obtain the regular solution at the

.origin
A = -21%gf , (9)
vhere '
F(r) = (1 - 222 #2752 (10)

From (7) and (8) we obtain the first integral

2 -v/2 _

. p 8% = Re 12 w/ec® . Asconst. (11)

From (6) one then easily obtains, using (9) and (11)

e\’/2 = B f '+ Amc4/8w‘ » B=const . (12)

In order to fix the constants A and B we impose that
any particle on the boundary r = a of the spherical cluster be

(momentarily) at rest: from (4) one Tinds then that this amounts

BS (a) = 0 o (13)

LY

since the line element {2) must be continuous with the oxternas
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scawarzschild line element, for which v=-A. These two conditions

’13) and {14) then give for our cluster (r < a)

olr) = (3w/2mG)(3f, - 2F)(3¢,-H)1 , (15

2 -1

82(r) = (F - £)(3F, - 20)"1 (16)
ds2 = %(3fa;f)2(dx0)2 - f"2 drz - rzdez-rz sin26d¢2 » (17)

where fa = f(a); and outside the cluster (r > a) we have

: d52=(1-2m233/c2r)(dxo)?-(1d2m2a3/c2r)f]drz—rzdezwrzsin26d¢2. (18)
Incidénta]]y we verify that also the radial derivative of 900 is
continuous at r = a.

In order to avoid negative values for p(r) cae finds
from (15) that 3fa-2f > 0; since the maximum value of f(r) is

f(0) = 1, one must have fa > 2/3, or

w? 2% <5 cfns (19)

which coincides with the fequirement Sz(r) > 0. Then all metric
coefficients in (17) and (18) only assume reqular and non-zero Ve
lues.

The energy differential ?onan7)

- -

di = (-9) /22101y ax] ax® ax® L g = det 0,0 (20}

integrated inside a spherical shell of radius ry and r, or our c¢lus
i [ haad

ter gives the surprisingly simple result

. 2 2,.3 3, s
E(rys rp) = w® c(ry - ry)/e (21}

for a .given value of the radiis a2 of the cluster, the maximum pr .

sible energy of the cluster is then, from (19},
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) 4 : .
Eay = (5 ¢7/18 G)a . (22

+. INTERNAL GEODESICS

To study the motion of the particles belonging to the

cluster we consider the geodesic equation

d ut/ds + (K1 ¥ et =0 , (23)

which gives for an arbitrary static spherically symmetric metric(2)

Qco\am * vy co cd_n 0 . | (24)

a:d\mm+m|» W<wm¢A:ovm+W»~m»N:deux mwsmo«:wvm - 1Acmvwgu 0 (25).
dul/ds + 2uu%/r - sine cose wHe =0, (26)

mcu\am + chcu\s + m‘oOﬁm cmcw = 0 5 (27)

these four equations (24) to Amuv are not independent, however s
since they obey the identity c:c: = 1, that is
eV(u0)2. A2 2,222 L2 (w321 . (28)

The first integraj of (24) to (28) is then

A (29)
(uh? . Awa I B L LI (30)
(W% = (42 - 5%/51n%) /0t o, | (31)
u? =67 (r? sinlo) . . (32)
z 2

ted somelhow
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tnese results are valid for arbitrary v(r) and A(r).

‘ e now impose that all particles of the cluster have
the same energy; since all of them have also the same rest mass,
it fb?lows from (29) that az is a constant common to all parfi -
cles of the cluster. To obtain the value of this constant we re-
‘member the impositibn (13) of the null velocity of any particle

of the cluster on the boundary; then from {29) and (28) we obtain

ol = f . k (33)

In view of the difficulty in integrating (29) to (32)
we consider here on1y‘thé case of non-relativistic c?uéters, for
2a2 2

which w << ¢ . Due to the spherical symmetry we oniy consider

the motion on the plane of the equator; then with 8 = /2 and

u2 = 0 in {(31) we obtain 72 = 62, and the equations (30) and (32)
give, with x0 = ct ,
(dr/7dt)? = wP(a? - Py - Pe?e? (34)
. . 2 .
.d¢/dt = c8/r° . (35)

The soluticns of these equations are ellipses centered ‘in the

origin, with semi-axes given by

? - 2.2, 2,172 -
2 Fhax = & + (327 - 4c™86"/w") / s (36)
L2 2 a4 2.2, 2\1/2
2 Thin 72 (a” - 4e787/u”)

The velocity of the particle is given by
2 2, 2
vo o= (2% - rz) , - {37
and can be seen nct to depend on 63 also the pericd - :

-
. . - . _ 2 2
voluting does notl depend on & in this Timit mza" << ¢, and s
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T = 2m/w . (38)

A\ radial geodesic corresponds to & = 0; a particle with radial m:
tion starts from the boundary of the cluster (r=a) and moves har-

monically through the center of the cluster; the singularity at

R I O

the origin in (34) and (35) is only apparent, since all particles
of the cluster which cress the origin have 6 = 0. With increasing
values of 82 the orbit does not reach the beundary r=a anymore ,
N . . . s . 2 B
since r_ .. < a; nor it crosses the origin, since Pmin 7 0. The :
2

maximum value of &8~ is a4m2/4c2, and corresponds to a circle
with radius a/vZ ; the velocity of the particle on this circle-

is a constant v = wa/Y2Z, as can be seen from (37).

5. DISCUSSIGNS

We have construéied a spherically éymmetric cluster of
particies of same rest mass, all with same total energy. In such
cluster all particies must be always in motion, except the parti 7
cles that pe}farm radial motion; these are momentarily at rest
when ihey reach the boundary of the sphere,

The density p(r) increascs from the center

ot
o
(-+
W
o o
o
€

]

dary of the sphore, where

0(3) = 30°/4u6 (35)

this means that if &11 particles were momentarily stopped we would

see 2 larger coendensation in the cutermost shells. In non-relati

At

vistic clusters this density p is constant, with the vatlue "’

3 Iy
o 2 , 2 .
g o= 3w /4nG s 6hat << C2 {4l
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We can evaluate the quantity v(r) that is analogous

to the classical three-velocity,

. ,
(v/e)? = (9g5 905 - 900 94300 W8 u)° 5 (A1)

~ from (17) and (29) to (33) we obtain for our cluster

3

(v/e)? = 3 (5-£/F)(F75,-1) st (42)

this quantity increases from the value zero on the boundary (f=fa)
to a maximum value less than unity at the center of the cluster

(f=1; G<fa<1). In non-relativistic clusters we have

= w (a” = r7) 5 . wa <<c . (43)

The guantity g(r) is also a measure of the velocity

field of the bartic!es. This quantity also decreases from a maxi-

~mum value at the origin to the value zero on the boundary; in the

non-relativistic limit (m2a2 << cz) the two quantities Bz(r) and

2
v“(r')/c2 coincide.

We verified that while p(r) increases from the center

to the boundary the quantity Bz(r) decreases in a rate such that

the combination p(1+38é/2) is held constant. Alsc the combination

- fv+d) /e , . o . .
p(7+582)e‘ /e which appears in the energy differential (20} is

-a constant; this constancy explains the simplicity of the expres-

sion {21) for the energy content of a sheill,

Our c?ust%r has been specified by only two constants,

the radius a and the parameter w. An easy interpretation for

is obtained in non-relativistic clusters; we found (38) that in

such clunters all particles perform elliptic paths with same

nericd T

i

/e

-

e
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The clusters of maximum energy (w2a2=5c2/18, fa=2/3)
¢ >serve é special consideration: their rest_mass density p(r)
(15) increases from the value zerc at the origin to the non-reli
tivistic value 3w2/4nG on the boundary. The quantity 62(r) (16)
is zero on the boundary and diverges on the origin; however,this
divergence does not affect the bounded values of the components
of the energy momentum tensor (4). Incidentally we verify that

Tﬁ assumes the form

T(0) = (20%/xc?)diag(3,-1,-1,-1) , " f, = 2/3 (44)

on the center of the cluster, a form which is characteristic of
a null fluid. The quantity v{r) analogous to‘thé classical thrég
velocity (42) of the particles gives on the center of the clus-
ter‘an acceptable value, near 2c¢/3. The amount of energy (22) pre
sent in these clusters in formidable; if we take for a the ra-
dius-usualy attributed for gTémentary particies (1 fm) we get for
;-2Emax a mass of the order of that of earth (103 Tg) .-

In our cluster all particles have the same mass; and
all particles that cross a given point have the same modulus of
velocity at that point. So when two particles of the cluster
collide elastically, the emerging partic?aé have also that same
modulus of vegocity. And since the velocities of the elastically

coliiding particles were randemly oriented, the velocities of

the emerging particies have also random orientalion, only cons -

3

“r
)

trained by momentum conservation, assuming absence of gravitatic

he svsten

o+

121 radiation and of spin effects., This attributes to

<
]

in equiliibrium configuration.

One of the interesting features of the soluticn s
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.uat tne cluster of particles with randomly oriénted vejocities
:an also be described in terms of a fluid systemQ In a fluid des
cription Tg is stiil an energy density of the system, while the
negative of'T} = Tg = Tg is now the pressure of the fluid. In our
particular system, where Tg = const, we find that the cluster pro
duces the same gravitational field as that of a‘static sphere of
incempressible fluid. Our cluster thus represents a new physical

interpretation of the well known interior Schwarzschild solution

of Einstein's field equations.
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