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Summary - The initial-value problem for a Schdeinger particle interacting
with;é partially transparent sphefe (delta~function potential)} is solved by
an extension of the method described in Part 1 le The géneral solution is
expanded in terms of the propagators of transient modes. The relation between
this expansion and the stationary-state expansion for an impenetrable sphere
is discussed. Two special cases are considered: the decay of a wave packet
initially confined within the sphere and the scattering of a wave packet by
the sphere in the case of a sharp resonance. In the decay problem, the

domain of validity of the exponential law and the deviations from this law
are investigated. In the resonance scattering problem, the behaviour of the

solution in the internal and external regions as a function of the width of

the excitation is discussed. The concept of time delay at resonance is analysed.
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1.- INTRODUCTION

-In the first part of this paper 1 (hereafter referred to
as I), the connection between the transient behaviour of a system
and the poles of the associated S-matrix was investigated by means
of some exaﬁples. It was shown in these examples that the general
solution of the initial-value problem can be expanded in terms of
propagators of transient modes, which are associated with the poles
of the S-matrix. This eliminates the difficulties that occur in

the usual treatment by the method of complex eigenvalues.

The examples treated in I had some restrictive features
in common. They gave rise only to short-lived transient modes ,
whereas the case of long-lived modes is of greater physical im-
portance. Furthermore, in each example, the S-matrix had only a
finite number of poles for given angular momentum. In order to
extend the treatment to the interaction of non-relativistic parti-~
¢les with ah arbitrary potential of finite range, it is necessary
to overcome this limitation, since the S-matrix then has an infinite

number of poles for each value of the angular momentum 2.

In the present work, the treatment will be extended to an
example which does not suffer from either of the above limitations.
We shall consider the initial-value problem for a Schrodinger parti
cle interacting with a partially transparent sphere. The transg-
parengy of the sphere can be adjusted to obtain transient modes of
arbitrarily long lifetimes. In the limiting case of an impenetrable
sphere, the modes go over into the stationary states of a particle

in a spherical box with impenetrable walls.
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By suitablly specializing the initial conditions, one can
describe either the decay of a wave packet initially confined
within the sphere of the scattering of a wave packet by the sphere.
A different treatment of the decay problem for the same model has

been given by Petzold 3,

The transient-mode expansion for an infinite number of
poles is obtained by means of a Mittag-Leffler expansion. Such an
expansion has been employed in electric circuit theory 49 and it
has been shown that it can be applied to an arbitrary potential of
finite range in stationary scattering theory 5’6o In this way,
the treatment given in I can be extended to the interaction of
Schrédinger particles with an arbitrary potential of finite range.

It has been found more instruective, however, to consider in detail

an explicit example such as the present one.

In section 2, the general solution of the initial-value
problem for s-waves and its expansion in transient modes will be
derived. The relation between the transient-mode expansion and
the stationary-state expansion for an impenetrable sphere will be
investigated. It will be shown that the transient-mode expansion
behaves like the stationary-state expansion for large times, but
it gives a better description of the early stages of propagation

within the sphere.

In section %, the solution will be specialized to the case
of decay. The asymptotic form of the decay law and the domain of

validity of the exponential law will be discussed.

In section 4, the resonance scattering problem will be
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considered. The behaviour of the solution in the internal and
external regions and its dependence on the width of the excitation
will be examined. The relation between the results and the concept

of time delay at resonance will be discussed.

d:= GENERAL SOLUTION OF THE INITTAL~-VALUE PROBLEM

a) The propagators.

We shall be concerned with the initial-value problem for
the s-wave Schrddinger equation (in units K = m = 1) associated
with the central potential V(r) = #(A/a) 8(r-a) (A>0), which
describcﬁ a penetrable spﬁére of radius a. In the above units, A
is a dimensionless parameter, which measures the opacity of the

sphere,

We denote by indices 1 and 2 the interior and the exterior
of the sphere, respectively, and introduce corresponding radial
functions ?3(r,t) = rlpj(r,t) (j =1, 2). The problem is then

equivalent to the solution of the free-particle Schrodinger

equations
2
0 0
-3 + 2i — (r,t) = 0 (1)
(brz AL

subject to the boundary conditions

P.(0,t) =

I
(]
b
Pan
m
e

Pilast) = P la,t) , (3)
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oW d
'J (a’t) - ':'P'l.' (a’t) = é LPZ(a,t)) (4)
or or a
and the initial conditions
\Pj(r,O) = fj(r) . (5)

We want to express the general solution in terms of

propagators:

a 00
qg(r,t) = J()Gjl(r’P’t) fl(P) dp + Ja Gja(r,p,t) fZ(P) dp .
‘ (6)

For this purpose, in accordance with the method employed in I, we

write down the general solutions of (1)

+ 00
(P.(I',t) = J . U(P,t)')ﬂ (I’+P) dP 3 (7)
J - o0 J
where
U(r,t) = exp'(—iw/é)(&rt)"&‘ exp(irc/2t). (8)

The initial conditions give: X,(p) = £(p) (0<pP<a) ;
x(p) = £,(p)(p2a), and (2) implles %y(-p) = ~X,(p), so that the
unknown functions in (7) are x;(a+p) and x,(a=p) for o> O.
They are determined by conditions (3) and (4), which can be solved
by the Laplace transformation method (ef. I).

Let X,(p), X,(p), F;(p) and F,(p) denote the Laplace
transforms of x,(a+p), ?62( a-p), H(a~p) fy(a-p) and £ (m+p),
respectively, where H(t) is Heavisgide's step function. The Laplace

transforms of (3) and (4) become
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[1 - exp(-Zap)]Xl(p) - Xa(p) = - [Fl(p) - exp(-Zap)Fl(-p)]+F2(p),
pl1 + exp(—aap)]Xl(p) + (p + %).Xz(p) = p[Fl(p) - exp(-Zap)Fl(-p)]+

+ (v -4) Fe.
Solving these equations for Xl and XZ’ applying the
inverse Laplace transformation and substituting the results in (7),
we are led to the following expressions for the propagators defined

in (6):

Gll(r,p,t) = Gl(X,t) - Gl(y,t), (9)
where

x=|r-9ply, y=r+¢p, (10)

oo}
Gl(X,t) = U(X,t) + J
0

[U(Pa+x+&,t) + U(2a-x+5,t)]Ry(8)dg ; (11)
GlZ(I’,P,t) = G(X,t) - G(y,t) = Gzl(P,r;t)g (12)

where

co

oo
Goo(Tspyt) = Ulx,t) + M[O Uly-2a+§,t)R,,(6) a§ . (14)

The functions Rjk(g) are given by (&1 denotes

the inverse Laplace transform)

AL 2ap)] (15)

Ry1(5)

Zadﬂ-l[pQ(Zap)], (16)

R12(§)

RZZ(E) =1 {[(A-Zap)exp(-aap) - A] Q(Zap)} = -e@'l[eXp(-—Zap)S(ip)] R
(17
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where

Q(z) (A + z =& e:e:p(~-=z):|“'1 R (18)

and

S(k) = -~ Q(=2ika)/Q(2ika) (x9)

is the S-function (diagonal element of the S-matrix) for s-waves.

b) The poles of the S-matrix.

The poles of the functions of p appearimg in (15) to (17)
are related by the transformation p = =ik with the poles of S(k)

in the k-plane. The latter are roots of the equation
A=-2if - A exp(2if) =0, (20)

where (= ka. Methods for locating the roots of complex
transcendental equations of this type have been given elsewhere 7°

Here we shall be interested only in some limiting cases.

For each value of A, there exists an infinite number of
poles, all of which are simple and are located in the lower half
of the k=-plane. The pole distribution is symmetrical with respect
to the imaginary axis, so that it suffices to consider the lower
right quadrant. There is one pole Bn in each strip
(n=1)7 < Re < nmr (n =1y 25 35 00.)o When A approaches zero
(free particles), @, approaches (n-#)r - ioo. When A increases,
ﬁn moves upwards and ;way from the imaginary axis, and Bn—+-nv
when A —» 00. In this limiting case, therefore, we get the eigen-

values associated with a particle in a spherical box with impene-

trable walls, as ought to be expected.
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For given A, the asymptotic behaviour of the pole dis-

tribution for large n is given by 7

B, % (n -2 =% 1 logl(zn-ddn/a]  (mr»A). (21)

We shall be interested mainly in the case A >>1, in which the
lowest-order poles are very close to their limiting values on the

real axis. They are given by

B, = nr [1 ~ (a+1)7Y] —1(nn/0)% + o[(am/8)3]  (arech).
(22)
The "lifetime" of the transient mode asgsociated with (22) is

¥, = ¥nor) %", (23)

These long-lived transient modes can be interpreted in terms of
multiple~-reflection interference effects similar to those which
occur in the Fabry-Perot interferometer. In particular, we have:
¥ = Za(vn<3n)-l, where v, 1s the velocity within the sphere and
@h 1s the transmissivity of the potential.

¢) The transient-mode expansion.

In order to derive the tfansient-mode expansion of the
propagators, we need the Mittag-Leffler expansion of the expressions
within brackets in (15) to (17). The Mittag-leffler expansions
associated with Rll and R12 are derived in the Appendix. If

we define

-*

b, = ¥A/a)(a+1)7L5 b = Hasa)(a+1-21 B )7 (n = 21, f2, ...);
(24)
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o = -21 P b /A = -i(f /a)(a+1-21B )70 (n = %1, %2, ..),  (25)

where B_ = - P: » it follows from (15), (16), (A7) and (A8) that
Ry1(§) = by + b, exp(~ik $§), (26)
Rio(§) = ¥ 8(8) + Xy exp(~ik $), (27)

where the terms n and -n must always be taken together in the

summations.

Instead of deriving a similar expansion for RZZ’ it is
more convenient to express it in terms of Rlao It follows from

(16) and (17) that

Ryn(8) = - 6(g) + Ry5(8) = H(§~-2a)R,,(5-2a).
' (28)

Substituting (26) to (28) into (11}, (13) and (14), we
find

G (xst) = Ulx,yt) + b [M(2a+x,0,t) + M(2a-x,0,t)] +

+ X b, (M(2atx gk yt) + M(2a=x,k,,t)],  (29)
G(x,t) = 3U(x,t) +Xe M(xk st), (30)

Gop(Tapyt) = Ulxyt) - H{Uly-2a,8) + U(y,t)] +

+ Y, [My-2ask »t) = M(ysk, ,t)], (31)
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where
+00

M(x,k,t) = J H(E -x) exp[ik(x-%)]U(%,t) dg (32)
~-00

is the Schrddinger propagator of a transient mode , which was
introduced in I. The transient-mode expansion of the propagators

is contained in equations (9), (12) and (29) to (31).

The physical interpretation of M(x,k,t) was discussed in

I. It was also shown there that, if A and B denote the regions of

the complex plane gbgzg and below the second bisessar, respectively,
and if (33)

W = (Zt)"%(x-kt), (33)

the following asymptotic expansions are valid:

]

M(xkyt) = My(xyk,t) = 1t(x-kt)™L Ulxyt) [1 - 3w2 + ... +

+ (-31)™en-1) 11w 4 Rn(w)] if we A,
(34)

M(xskyt) = Mg(x;k,t) = exp[1(kx-Et)] + My(x)kyt) if w e B,
(35)

where
(2n-1)11 = 1.3.5 ... (2n-1), E = % X2, and

-
IR, 0] € 7 2™ e w8 (n=0, 1, 2, ...). (36)



105
d) The limiting case of an impensatrable sphere.

Before applying the general solution to the Mgeclal cases
of decay and of resonance scattering, it is instructive to consider
the limiting case of an impenetrable sphere. In this limit (A ),

(15) becomes
Ry,(§) =Lt {[1 - exp(mZap)]nl} =% §(8) + %a“1[1+§;exp(wikﬁ§)],
(37)

where k= nr/a. Substituting this in (11),; we get

ol

Gy (x,t) = Ulxyt) + 3[U(2a+x,4) + U(2a~x3t)] + awl[M(Za“FX;Ogt) +

1

+ M(2a=x,0,t)] + % a”b E[M(2atx i ot) + M(2a-xyky )] (38)

It is also possible to expand Gll in terms of the statiopn
ary states of the particle within the impenetrable spheres

[® ]
Gyq(rspst) = 22 E sin(k ) sin(s @) exp( ~Fik “t).

«
This can be Tewritten in the form (9), with

=] =i : : o1 Loy — X Tt
Gy(xst) = Famt e g™t Egl cos(k,x) exp(mélkn t) = e(zg'!~ E;g):

(39)

where © (x|¥) is the Jacobi theta function 80 If we apply Jacobi'’s

transformation formula 8

* The consbant term in (39) is arbitrary; the choice was dictated by reasons of

conveniencsa.
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1.
6(xlv) = (v/i)7° exp(-ﬁ-ixa/"d) G (% !- %) ’ (40)
equation (39) becomes

oo
G(xst) = Ulx,t) + X

[U(Zna—x,t) + U(Zna+x,t)} (41)
n=1

Equations (38), (39) and (4l1) give three different
representations of the same propagator. In the theory of heat
conduction, the transformation (40) is employed to transform a series
which converges rapidly for large ¥ (large times) into a series
vhich converges rapidly for smail Y (small times) 8, A similar
result is valid here. The characteristic time interval is T = 4a2/w,

the period of the ground state.

For t>>T, the contributions‘from large values of n in
the stationary-state expansion (39) oscillate very rapidly, and tend
to cancel one another by destructive interference. Thus, the main
contribution arises from the lowest values of n. On the other hand,
for t<«<«< T, a large number of terms will contribute, so that the

convergence becomes very slow.

The expansion (41}, when replaced in (9), corresponds
to the result which is found by applying the method of images: there
is an infinite series of images, corresponding to the successive
reflections at r =0 and r = a. This series is rapidly convergent
for t<< Ty on account of the rapid oscillation of the terms with
large n. For very short times, the propagator does not differ very
much from the free~particle propagator, as ought to be expected.

However, for t > T, the series (4l) does not converge well.
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It can eagily ve shows, with the help of (34) and (35),

that the transient-mode eupanugicn ©32) behaves like the stationary-
~state expansion for ©>>Ty wnersas, {or t<< Ty it is dominated

by the free-particle propagator. Thusz, the transient-mode expansion

nes the advantog he statvionary-shate expansion with those

of the expansiorn by rae meghod of imapss: 1% converges well both

for small and for iarge times. Furthermore, unlike the others, it

can still be applied when & nas a finite value,

Since each Lerm in the transient-mode expansion approaches
the corresponding term in Lhe suagylonary-state expansion for large %,
it is clear that the exvansion ccelficient will give the probability
amplitude associated with the level in question. Thus, in the limit-
ing case of an impenetrable sphere, the transienn-mode expansion 1is

closely ralated with the stationary-stats expansion.

Zer, FHE PLOAY PROBLAH

I SRV

a) Behaviour of ths propagators.

In crder %o describe the decsy of a particle which is
initially confined within the svhers,; it suffices to specialize the
initial conmditions (&), by requiring that  i,{p) = 0. The behaviour
of the solution in regiomz ) and 2 is then determined by the propa-

gators Gll and lea respectively.

et us consgidar the behavioupr of Gl.r as a Tunction of

time. We shall be intsres=tad only in times much larger than the
hperiod' associated with the Ilowest transient mode, i.e. t >:>a2o

s g ‘ " , - : . e
Under these conditions, jwﬁl§> o for all the functions M(da~X,Kn,t)
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in (29), where w_ 1s the parameter defined in (33). We can there-
fore employ the expansions (34) and (35). Denoting by 1., the sum

over all poles located above the second bisector, we get
Gi(x,t) = Ulx,t) + Zﬁ_bHGXP[i(knx-Ent)]+ { b M(2a+x,0,t) +

+ 1tU(2a+x,t)Ebn[(2a+x-knt)‘1 - 1t(2atx-k t) "= 5t%(2atxk t)75 ]+

+ (x e—a-x)} + a"lg[(aa/t)B] ’ (a2)

where the last temm in the expression within curly brackets

denct es antisymmetrization of that expression with respect to x.

The sum of each of the series that appear within the
curly brackets can be explicitly computed by employing the Mittag-
~Leffler expansions given in the Appendix. For instance, according

to (24) and (A8),

Ty, 07 = b af faas)g] T+ 2167Tg -21a8/0)]

and the sums of the remaining series follow by repeated differenti-
ation with respect to ¥ . The results can then be expanded in
powers of a§/t. HMaking similar expansions for the other terms
of (42), and substituting the results in (9), we finally get, for

t>>a2,

Gll(r,P,t) = 25”1 ZA[J. - (A+1-2ipn)"1]sin(kn9) sin(k rexp(~-1E t) -

- (2/m)¥ exp(in/a)(a+1)2 prt 24 2(2/m)% exp(-im/a) A(A+1)"'3{ [A - 2-

2
- %(_H%i)( 2A-1)A(A+1)‘1] a? + %‘-A-l( A+1)(r2+P2)}Prt'5/2 + a-lg[(a /t)3].

(43)
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Fach term of the series appearing in (43) decays expo-
nentially (the lifetime of the nth term is given by (23)). For
t—>00, Gll is dominated by the term in t-3/2. The same term
has been found in'reference 3, The asymptotic decay law is there=-
fore in general,* an inverse third power law. This agrees with

the discussion given in I.

Equation (43) enables us to obtain the decay law
corresponding to a gilven exeitation, for all times 'tvb-aa. A

specific example will be given below.

The propagator GZl may be treated in a similar way.
Bach transient mode k, =k, - i, (k, € 4) in (30) gives rise t0
an exponential wave train with a diffuse wave front at r::(kgwgh)t,
ahead of which the amplitude decreases rapidly (cf. the general
discussion in I). Behind the waﬁefront agsociated with the lowest
mode, all the wave trains overlap. For points far behind this wave

front (r <<kit)\'and times t>> aZ, we find

Goq(Pypyt) = D-21 ¥y cnsin(knp)exp[i(knr-Ent)] + (a+1)™t {1 +
+ 1 ae)™ [BA(A+1)-1 - 2] (az/t)} [U(r—p,t) - U(r-f-P,t)] -

- 1A/ 6) | (2=p)UCz- 1) = (r+PUCz+pst)]| + (am"“lg[(az/t)a]-

(44)
In the derivation of this result, we have made use of (30), (34),

(35) and the Mittag-Leffler expansion (A7).

*  An exception occurs if fl(p) is chosen orthogonal to p over the interval
(O,a)o
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The terms of the series that appear in (43) and (44)
correspond to the "complex energy wave functions" which are employed
in- the method of complex eigenvalues. BEach term sin(kﬁr) in (43)
corresponds to a term Tnexp(iknr) in (44), where T, is the

"transmission coefficient", given by

Ty = = Py exp(-21p )/A . (45)

For t>>r2, (44) becomes
Gal(r,p,t) = <21 &, cnsin(knp)exp[i(knr-Ent)]~

- (z/m)t ‘:exp(m/4)(A+1)"1[r - A(A"‘l)-la]_Pt-B/Z + ... (46)

and the last term predominates for t—oco. This term has also been

given in reference 3.

b) The decay law.

In order to investigate the domain of validity of the
exponential decay law under the most favourable conditions, let us
cons}der the &eéay of a long-lived mode, e.g. the lowest mode for
A>1. To concentrate the excitation as much és possible on this
mode, we shall choose the initial (unnormalized )swave function *

fl(p) = sin(klp), which corresponds to a "coﬁplax reso-

The choice £ (p) = sin(rp/a) would lead to amplitudes of the order A~

(instead of A™%) for the higher modes.
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nance'.

Employing (43) and (22), this leads to

@ (rst) = [1 - i7A™2 + Q(A_B)}sin(klr)eXp(-iElt) +

+ 73 ZA"l[Z%exp(iTr/é)A-l + %i(az/t)] [1 * gcA“1>]ra2t‘3/ 2+

+ AP (rst) (for t»a™), (47)
where
_ o o y-L -1,
8y (rst) = 2 [2- ava-2ap) Y [cpy-pp sinep P -
- QPH+P1)"lsin(Pn+F&)]sin(knr)exp(-iEnt) + 0 [(az/t)3 ]. (48)

It follows from (21) and (22) that only modes with

nr<< A give an appreciable contribution to (48), so that we may

write

n
£¥Pl(r,t)2521wA"2 Z;% (-)n(n/n+l)sin(nvr/a)exp[-%i(nw/a)at-%nat/Ti]

In]

+ 0 [/, (49)

where 1 is such that the contribution from n3 R is negligible

(nr << A) and ¥, is the lifetime of the mode n =1, which is given

by (23).

According to (47) and (49), there are only very small
corrections to the exponential law for a2<<t £ Xy For ¢t a,tl,

the main correction arises from the term in t_B/Z, so that

¢Eﬁr,t):8 sin(ﬁ&%a)exp[-%i(v/a)at - %t/tl] -
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- 223/ 2agn(im/a) 4™ 2ary "3 2 (tz%). (50)

The probability that the particle is still confined
within the sphere after a time t gives the decay law:

a a
P(t) = H lfl(r)ladr]_ljo |©1(rst)|= ar.  (51)
0

According to (50), we get

P() ¥ exp(-t/2)) - (2/m)% 2 2cos(dnPa™2t + Dlexp(~bt/7 ) (a/£)7/2
+ Sr3am4a%/t)? (t3 ). (52)

The deviations from the exponential law will become
important when the first term of (52) becomes of the same order of

magnitude as the last one, i.e. exp(t/ti ﬁi(t/ti)aAlO, which gives

t/¥) ® 10 log A + 3 loglog A. (5%)

Thus, the t"B law predominates only after the probabili-
ty that the particle still has not decayed becomes smaller than A'lo.
This 1s extremely small for all values of :A which correspond to
even moderately long-lived modes. In this case, th#nefore, it seems
to be extremely difficult to detect deviations from the exponential

law, in the present mocdel. A similar conclusion has been reached

by Petzold -.

According to Krylov and Fock 9, the decay law is
entirely determined by the energy spectrum of the initial state.
This follows from their definition of the decay law as the proba-

bility of finding the system in the initial state at time t, namely,
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{¥(,t), @(QJO))IZ, where ¥(r.t) is the normalized wave function.
It must be pointed out, however, that this definition, although it
would lead to essentially the same results as (51) in the case of
(50), becomes inadeguate in other cases. For instance, it would
imply a definite "decay law"™ even for a wave packet confined within
an impenetrable sphere. The definition (51) does not suffer from
this disadvantage. In the case of non-zero angular momentum, how="-
ever, due to the presence of the centrifugal barrier, the defini-

tion of the decay law reguires further consideration.

4,- THE RESCNANCE SCATTERING PROBLEM

a) Solution in the internal region-

The generali solution derived in section 2 can also
be applied to describe the scattering of an arbitrary initial wave
packet by the sphere. In this case; fl(p) =0 in (6), so that
the behaviour of the solution in regions 1 and 2 is determined by

the propagators G12 and GZZ” respectively.

We shall consider only the case of a sharp resonance.
In order to investigate the effect of the excitation conditions,
we shall take an initial wave packet depending on two variable
parameters, which correspond to its mean momentum and its width

*
in momentum space. A convenient choice for this purpose is

*  For the sake of simplicity, the initiel instani is taken to coincide with the
time at which the incident wave front impinges on the surface. It would amount
to the same to take the initial position of the wave front at any reasonable
distance from the spherse (for not too large distances, the spread of the wave

packet on its way to the surface can be neglected).
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£5(p) = exp[-iko(P-a) ], (54)

vwhere ko = k;-ikb is a complex parameter with negative imaginary

part (k> 0).

For definiteness, we shall associate the resonance
with the lowest transient mode. Thus, it will be assumed through--
out that |(k -k,J)/k;|&1 and AM»1. For k, = ky» we neve a

"eomplex resonance'.

Substituting (54) in (6), and taking into account (12)
and (30), we find

(Pl(r,t) = F(I’,t) - F(-I’,t) 3 (55)
vhere

o0
F(r,t) = % J U(p-r,t)exp[-iko(?-a)]dp +

a

o
+ L, J MIp-r,kn,t)exp[-iko(P-a)]dp . (56)
a

It follows from (32) that

D

U(p-r,t)exp[-iko(p-aj]dp = M(a-r,k st} (57)
Ja
r 00

MIP-r,kn,t)exp[-iko(p-a)]dp = (58)
Ja

i

. -1 .
l(ko"kn) [M(a-r ,kogt) - M(a-r ,kn,t)]. if kO’t kn- 1

N

itU(a=-r,t) - (a—r—knt) M(a-r,kn,t) if k= k,
The last term of (58) appears only at the complex
resonanee (k = kl). Excluding this case, for the moment, (56)

becones
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F(r,t) = -21B,(-21B M(a-r sk st} - izcn(ko-kn)“l M(a-r,k,st)s (59)

where @, =k a, and (A7) has been employed to compute the coeffi-
cient of the first term.

Tet us investigate the behaviour of (55) for times

much larger than the "peried" of the lowest mode (t = a2),

Under
these circumstances, the asymptotic expansions (34) and ("5) can
be employed in (59). The resulting series can be summed with the
help of the Appendix, and the results can be expanded in powers
of a2/t (cf. the similar treatment of G;q in section 3(a)l).
Grouping together thé first term of (59) and the resonance term
(n = 1) in the serles, and expanding;them in powers of k,-kq,y we

finally get

@, (r,t) = -21f,exp(d ﬁl)tA+1fZiﬁl)ml'{sin(klr)g(ko,t) +
+ Bil [klr cés(klf) + sin(klr)]exp(-iEot)} + 2123; @ngxp(iph).
. (PO-PH)-l (A+1-Zipn)'isin(kn¢)exp(-iEnt)-F(2/#)%exp(iw/4).

ﬁi?(1+ipl)(A+l)“1 art™3/2 4 . (t>»a°), (60)

where the accent in the summation sign indicates the exclusion of

n =1, and

_ AT N

g(ko,t).— (ﬁo-ﬁl) [exp(-i@;) - exp(-iElt)] (ko#kl}.

(61)

At the complex resonance, according to (58), (60) is still valid,
with

glkyt) = llci_{ﬂk glkyst) = ~i(k t/a)exp(-1Eyt) . (62)

1
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According to (60), the amplitudes of the non-resonant
modes are at most of the order of the corresponding transmission
coefficients (45), and decrease as they get further away from the
resonant mode, on account of the factor (po-ﬁn)"ln The effect of
the resonance 1is contained in the "amplitude gain factor" Ig(ko,t)l,
which measures the increase in the amplitude of the mode =n = 1 due

to the resonance.,

At the complex resonance, (62) gives
| 8Ckq 28| % F(a/m)% (/) Jexp( -t/ . (63)

Thus, the amplitude increases linearly with the time, to begin

with, and attains its maximum value = e T (a/m)% after a

le ] pax
rise time t = 2‘815 thereafter, it decreases; with a decay time

which is also of the order of Ztlp

Outside of the complex resonance, we have to consider
the effect of the displacement of the center of the exciting line
(54) and the effect of its width variation. These two effects can

be considered separately.

If only the center of the execiting line is shifted,
its width remaining the same, we find, as ought to be expected,
that this gives rise to "beats" with the difference frequency, and
the maximum gain decreases in proportion with the distance from

exact resonance.

It is more interesting to consider the effect of the
width variation. Let the center of the exciting line be kept at

its resonance value, while the width is changed. Then, (61) gives
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Yy =1
;gi) [exp( =Tt/ €, ) = exp( =¥t/ 21 ):l y  (64)

lg(k, st | % (a/m)@ (1 -

where 2% is the "lifetime™ associated with the exciting line.

It follows from (64) that, in the case of excitation
by a narrow line (t0>>éi)g the rise time and the maximum gain are of
the same order as at the complel rescnance ; whereas the decay time
is of the order of 2% . On the other hand, for excltation by a
broad line Cto<<ti), the decay time is of the same order as at the
complex resonance, but both the rise time and the maximum gain are

reduced by a factor of the order of Tb/tlg

The above results can be summed up as follows: the

rise (decay) time is the shorter (longer) of %o and 1 ; the

maximum amplitude gain is of the order of (&/m)° times the fraction

of the width of the exeltation that falls upon the width of the

resonant mode.

b) Solution in the external region.

It follows from (54), (6). (31), (56), (57) and (59)
that
“Pz(rgt) = \PZH(rgt) + L021;{(131:) y (65)

where ,
Polrat) = M(asr k st) « Mlr-ak st); (66)

WER(r,t) = F(2a=rst) =~ Fl=r.t) = WZipoQ(mzipo)[M(rma,kogt)m

- M(r+ask st)] -i ch(Komkn)wl[M(r-a,kngt) - M(r+a k_,t)] . (67)



118

This corresponds to a decomposition of WE into a "hard sphere term"
KPZH’ which is identical to the solution for an ilmpenetrable sphere,

and a "regonance term" WER.

We shall consider only the case of an excitation
centered at the resonapeé momentum but of variable width, 1.e.
1 1 . N
ko = kl - ixo, where kl = kl - ixle We want to find the shape of
the scattered wave at a time t larger than the lifetime

€, = 3k ©)™0, but still much smaller than the "spreading time"

bs

*
packet will be small. According to (23), this means that

Min(Kl-Z,KZZD, so that the effect of the spreading of the wave

2

8% ¢ t/a% << a*, (68)

The wave front associated with the scattered wave
is located at r-a::kito Around this wave front, according tolthe
general discussion given in I, there is a domain of width (2t)%,
where "diffraction in time" effects play an important role. We
shall consider only the behaviour of the wave function far behind

this region, so that

1
= k;_t-r > t7 . (69)

This allows us to employ the asymptotic expansions

(34) and (35), restricting (34) to its first term. Thus, (66)

Notice that t << rcf

wave packet, namely, w2 << (Kla)fx /A . We restrict our consideration to

* also implieg a restriction on the width of the incident

wave packets satisfying this condition.
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hecomes
WEH(r,t) = =21 sin[ko(r—a)]exp(-igy) - Zit(r-a)[(r—a)z-kgtz]"1U(r-a,t)

+ o.o’ (70)
and (67), with the help of (A7) and expansions in powers of k -,
gives

1

WER(r,t) = f(r,t) + 2imA~ exp[i(kor-§§)]+ ZiEApnsinpn(Po-Pn)"l.

(A+1-21p ) Fexp[1(k r-E t )]+ za(r-a)(r-a-k,t)"1q[-21ia(r-a)/t]-

‘U{r-a,t) ~ 2a(r+a)(r+a-g§)"l Q[—Zia(r+a)/t] U(r+a,t) + cooy (71)

where the accent in the summatlion sign indicates the exclusion of

n =1, and
£(ryt) = 2ug (e =x )7 exp(~1 2) = exp(icy §)] exp[ 10 r-dr, %6)] .(72)

According to (45), sin By = Tnexp(i @n), so that the
amplitude of each non-resonant mode in (71) differs from the corre-
sponding amplitude in (60) only by the transmission factor, and is

2 ror mmw<< A. Under the assumptions (68) and (69),

of order A~
it can be shown that the dominant term in (71) is f(r,t) (the remain

ing terms give only small corrections).

Since f(r,t) is the transmitted wave corresponding
to the first term of (60), its spatial behaviour is just the
transmitted counterpart of the time behaviour within the sphere.
Thé amplitude of the resonance term at a distance ¢ behind the
wave front corresponds to the amplitude of the resonant mode within

]
the sphere at a time t = ¢ /¥ -
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The total outgoing wave, under the above conditions,

is given by

‘Pz,out(r,t)x{axl(wo-wl)'l[exp(-’fom - exp(-*fll)] + exp(-“og)}

cexp [10gr-?0)] (73)
where the last term in the curly brackets represents the contribution
from hard sphere scattering.

This result has a simple interpretation in terms of

the expansion in stationary scattering states,

+00
L ['k( )%'kat] L
= .+ = o e - - Y _—
o
1 +00 2.1 dk
+ — Sa(k) exp[ik(r~a)-%ik t] —— , (74)
2ri | ~oo (k-ko)

where 8 (k) = exp(2ika)S(k), and S(k) is given by (19). It can

readily be shown that (73) corresponds to the result which is

obtained by taking the one-level aporoximation 10

_ * -1
Sa(k) = (k-kl)(k-kl) . (?5)

Thus, under the above conditions, only the immediate neighbourhood
of the resonant level gives an appreciable contribution to the

integral.

The hard-sphere term in (73) slways interferes
destructively with the resonance term. The resulting "absorption
dip" in the surface~reflected wave represents the part of the

incident wave packet which penetrates within the scatterer to
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K3! - K

#ig., 1 -~ Profiles of the hard sphere term (- - - =), the resonrnes term (-.-.-,)

and the total outgoing wave { ) as a function of the distance &

behind the wave front. (a) K, =5 Wy (broad line); (b) = (complex

resonance); (c¢) e = ni/5_(narrqw line).
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build up the resonant mode.

The absolute values of the factor within curly
brackets in (73) and its component terms are plotted as a function
of ¢ in Fig. 1, in the following cases: (a) broad line (K »k4);
(b) complex resonance (Ko = Kl); (e) narrow line (ud«:ul). The
amplitude of the resonance term also represents the behaviour of

the resonant mode within the sphere as a function of time.

The curves in Fig. 1 represent probability ampli-
tudes. The corresponding probability distributions can be obtained
by squaring them. In all cases, the total outgoing wave consists
of a peak due to direct reflection at the surface, followed by a

tail which represents the effect of resonance scattering.

c¢) The time delay.

According to Eisenbud 11

s the energy derivative of
the scattering phase shift represents the time delay suffered by
the incident wave packet in the scattering process. The retardation
suffered by the center of the outgoing wave packet is given by

A =2 dy/dk, where (k) is the phase shift.

According to Wigner 12

» this result leads to a
simple physical interpretation of the energy dependence of 7o At
energies for which the incident particle hardly enters the scatbterer
the "retardation” will be close to =-2a(a being the radius of the
scatterer), whereas it will assume large positive values close to

resonances, where the incident particle is captured and retained

for some time by the scatterer.
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In the case of a gsharp resonance, where the one-
~level approximation (75) can be applied, the retardation is
given by A = 2/%1, where k4 is the width of the level in wave-
-number units. This corresponds to a time delay of twice the life-
time agssociated with the level. If K is the width of the incident
wave packet, it is assumed in this case that KoLK Ky so that

the variation of dy/dk over the width Kk can be neglected.

Adccording to (73) and Pig. 1 (e), the results which
have been found in the present example in the case of a narrow line
(Ko<<xl) are not in agreement with Bisenbud's expression. The
"retardation" of the outgoing wave front is % ~2a, and the shape
of the outgoing wave packet differs from that of the incldent wave,
so that a description in terms of a retardation of the center of

the wave packet is not appropriate.

The reason for thlis discrepancy is that the
momentum distribution of the incident wave packet (ef. (74)) does
not fulfil one of the conditions which are required for the validity
of Eisenbud's expression., This condition is that the momentum
distribution should go to zero sufficiently rapidly outside of 1ts
width Ko An example is provided by a Gaussian wave packet of
width KO-*. In this case, the strong surface reflection which
was found above disappears, because the internal reglon is excited
adiabatically. The initilal excitation wifhkin the scatterer does

not vanish, but it can be made arbitrarily small by taking the

*  The author wishes to thank Professor E. P. Wigner for drawing his attention
to this point.
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initial position of the center of the wave packet sufficiently far
from the scatterer. The outgoing wave packet is also. of Gaussian
shape, and the retardation of its center is given by Eisenbud’s

expression.

It should be emphasized, however, that the
retardation, under these conditions, is a very small effect. A
retardation A = Z/Kl produces a decrease in the probability
density at the unretarded position of the center of the Gaussian
wave packet by an amount 1 - exp(-lcg A% % 4(KO/K1)2, which is

very small for Ky <K Ky

In order to render the retardation effect more
conspicuous, one can try to associate it with a sharper signal.
However, this necessarily involves a violation of the requirements
for the validity of Eisenbud's expression, as we have seen in the
case of an initial wave packet having a sharp front. If one takes
an incident wave packet of width %O>>icl, so that the correspond-
ing unmertainty in position is much smaller than the retardation
in question, Eisenbud's expression cannot be applied, because
d9/dk varies greatly over the width Ko+ As shown in Fig. 1 (a),
the outgoing wave packet then has a tail of small amplitude |
(~ Kl/*%), which decays with the lifetime of the level, i.e. much
more slowly than the incident wave. This can also be called a

time delay, but it is again a small effect.
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Appendix - The Mittag-Leffler expansions.

We want to find Mittag-Leffler expansions of ((z)
and of zQ(z), where J(z) is defined b (18). Let z, (n = 1; 25 «00)
be the poles of zQ(z) in the lower left gquadrant of the z=-plane. The
poles in the upper left guadrant are 2oy = z; » The residue at

z, is

r, = z( A+1+zn)“'l . (A1)

and, according to (21),

Zp R ~log[(2n-%)n/A] = i(2n~F)r (nw»A). (A2)
The Mittag=-Leffler expansion of z3(z) can be
obtained by applying Cauchy's method 130 For this purpose, consider
a sequence of squares C_ with corners at the points (2n+3)(E1ti)r.
It is easily shown that zQ3(z) is bounded on this system of contours

taken as a whole.
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it follows that

1 1 1
2Q(z) = ~— + Zrn< +~—-> y (A3)
A+1 Z=Z Z

n n

where the terms n and -n must be taken together in the summation.
According to (Al) and (A2), each of the series within brackets is

absolutely convergent, so that we may write

L

1 r
—_— 2 Ry C = ZQ(Z) - Z: I . (Aé)

Z-Zn

A+]

]

To determine the constant C, add to (A4) the same

equation with z replaced by =-z. This gives

rnzn

¢ = #[2Q(z) =~ 2Q(~2)] = T ———— . (A5)

(zz-zna)

According to (Al) and (A2), the series in (A5) converges uniformly
on the real axis as a whole (which is not true for the series in
(A4)). Therefore, it does not contribute in the limit z -»% o0,

and we find

C=% lim [28(z) - 2z9(-2)] =%, (A6)
z—% o0

s0 that the Mittag-Leffler expansion finally becomes

r
2§(z) = 3 + 0 —2- | (A7)

Z=3

Dividing both members of (A3) by z, we obtain the
Mittag-Leffler expansion of Q(z) :

1
Q(z) = 705 + Z:Z Z?Z (A8)
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