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Is inert matter from indecomposable positive energy ”infinite spin”
representations the much sought-after dark matter?

Bert Schroer
(Dated: February 2008)

Indecomposable positive energy quantum matter comes in form of three families (one massive and
two massless) of which the massless so called ”infinite spin” family is either not mentioned at all or,
if it is presented for reasons of completeness, it is immediately dismissed as ”unphysical” without

pinpointing at a violated principle.

Using novel methods which are particularly suited for problems of localization, it was shown
that these representations cannot be generated by pointlke localized fields but rather require the
introduction of spacelike semiinfinite stringlike generators which leads to their invisibility and makes

them ideal candidates for dark matter.

PACS numbers: 95.35+d, 11.10-z, 11.30 Cp

POSITIVE ENERGY MATTER OF THE
THIRD KIND, HISTORY AND PRESENT
UNDERSTANDING

Partially invisible quantum matter in the sense
of this note is quantum matter which has no cou-
pling to photons but whose weak interaction with
visible quantum matter may still permit an indi-
rect counter registration as the various proposals
for the astrophysical dark matter in the form of
WIMP.

A more extreme case, to which we want to direct
the reader’s attention in the sequel, is completely
invisible matter. As all positive energy matter,
this quantum matter has a gravitational manifes-
tation, but it permits no compact localization and
consequently cannot be registered in laboratory
counters. Although such objects did not yet en-
ter the present hunt for the physical identification
of dark matter, they existed in a dorment incom-
pletely understood form ever since Wigner in 1939
wrote his famous paper on unitary irreducible ray-
representations [1] of the Poincaré group. He found
that there are precisely three families of indecom-
posible positive energy representations. They are
distinguished by the nature of the little group and
its representation theory. Besides the best studied
massive representation, for which the little group
is the invariance group of a timelike vector and
hence isomorphic to SO(3), there exist two mass-
less families whose little group of a lightlike vector
is isomorphic to a noncompact euclidean subgroup
group of the Lorentz group E(2) C L(3,1), and
since the representation of the P-group is induced
from F(2), this property is passed on to the P-
representation. What distinguishes the two mass-
less families is the nature of the FE(2) represen-
tations; whereas the finite helicity family which
contains the known zero mass particles is a degen-
erate representation in which the euclidean trans-

lation is represented trivially (which compactifies
the representation despite the noncompactness of
the group), the third family results from a faith-
ful F(2) representation which preserves the group
theoretic noncompactness and comes with unusual
and conceptually challenging properties. The little
Hilbert space is now an infinite dimensional space
of Fourier components which describe an E(2)-
irreducible infinite intrinsic abelian angular mo-
mentum tower; this is why we prefer ”infinite spin”
over Wigner’s ”continuous spin” (which refers to
the continuous values of the Casimir invariant).
The appearance of this infinite tower prevents the
extension of the P-group to the conformal group
despite the vanishing of the mass.

Only recently [2] it became clear why the more
than 60 year struggle to understand the quantum
field theoretic content of this huge family of in-
decomposable positive energy representations re-
sisted attempts of incorporation into a Lagrangian
quantization setting. It turned out that this third
kind of matter is generated by noncompact ex-
tended singular objects which are spacelike semi-
infinite covariant string-like localized fields, not to
be confused with the objects of string theory (com-
ments on this distinction can be found in [3]).

Already Wigner was fascinated by these extreme
quantum objects for which apparently his intrinsic
(independent of any quantization) representation-
theoretical setting was the only access since any
subsequent attempt to understand them in terms
of a classical-quantum quantization-parallelism led
him nowhere. When he found out in 1948 [4]
that there were apparent problems with placing
such objects into a thermal Gibbs state, he be-
gun to have doubts about their physical utility.
This difficulty is however solved by noticing that
KMS states of indecomposable semiinfinite strings
cannot be approximated by Gibbs states [2]. The
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subsequent investigation of localization properties
which unfortunately consisted in trying to force
this family into the standard Lagrangian quanti-
zation scheme was pursued by several generations
of particle physicists and ended in inconclusive re-
sults [5].

The most laconic way to excorcise the apparent
conceptual nuisance posed by this third third kind
of matter can be found in Weinberg’s 1995 excel-
lent first volume [6]. In constrast to most other
textbooks he does present these representations,
but only to dismiss them afterwards with the re-
mark that nature has apparently no use for them.
This left the reader without a clue if any principle
of nature was possibly violated by this matter.

Actually there was an unheeded early hint in-
dicating a new direction in a 1970 paper [7] in
which a mathematically precise no-go theorem was
derived, proving that the infinite spin representa-
tion cannot be obtained within the setting of co-
variant pointlike local free fields (the Wightman
framework). But only by the end of the 90, when
the conceptual-mathematical tools were in place, a
good part of their physical properties, in particu-
lar about their precise localization status, begun to
unravel. The mathematical framework of the rel-
evant quantum localization concept is fairly new
(but not revolutionary in the sense string theorists
use this word) and goes under the name of modu-
lar localization [8][9]. Since in the deafening noise
of present particle physics fashions probably none
of the readers has taken notice about significant
conceptual progress in QFT, I will at least sketch
the main idea without proof in the simplest spin-
less case (where also traditional methods would be
sufficient) and only quote the results for the case
at hand.

Intuitively modular localization results from the
causal localization, which is inherent in relativistic
QFT, after one liberates it from the use of par-
ticular field coordinatizations and localization in
the standard formulation of QFT is a special case
of modular localization. Starting from a Wigner
representation space of wave functions of a scalar
particle

ng={w<p>| / |w<p>|2du<p><oo} 1)
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one first defines two commuting operators which
are associated to the ¢t — x wedge Wy =
{z | 1 > |®zo|} namely the unitary representers
u of the wedge-preserving Lorentz boost Ay, (x)
and commutes with the antiunitary representers

)
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of the wedge-reversing reflection jw, across the
edge of the wedge (third line). One then forms
the [15] “analytic continuation” in the rapidity
u(x — —im) which leads to unbounded positive op-
erators. Using the customary notation in modular
theory, we define the following unbounded closed
antilinear involutive operators in Hyy;g

s(Wy) : = jwoéévo, (5%0 =uw, (x = —=27t) (2)
(s(Wo)v) (p) = ¢¥(=p)*, dom s(Wp) = dom (55‘,0

where the analytic properties of the domain of
this unbounded modular involution s(W,) with
s%2(Wp) C 1 consists precisely of that subspace of
Wigner wave functions which permit that analytic
continuation on the complex mass shell which is
necessary in order to get from the forward to the
backward mass shell (x — x — mi). The main
assertion of modular localization is that the +1
eigenspaces (real since s(Wp) is antiunitary) are
the real closed component of the dense dom s(Wj)

R(Wo) = {¢] s(Wo)v = o}, s(Wo)iy = —ivp (3)
dom s(Wy)= &(Wy) + i&(Wy)
s(Wo)(W+ip) = —ip

The dense subspace dom s(Wy) (i.e. dom s(Wp) =
Hyig) is precisely the one-particle component of
the Wy localization space associated with a scalar
free field A(x), or in terms of the real subspace[16]

R(Wo) = clos {(A(f) + A(f)") | suppf C Wo}
(4)

but the modular construction of localized sub-
spaces avoids the use of singular field coordinatiza-
tions smeared with classically localized test func-
tions and relies instead on the more intrinsic de-
scription in terms of domains of distinguished un-
bounded operators in the unique[17] Wigner space
associated with the representation (m, s = 0). The
second line is the defining relation of what mathe-
maticians call a standard real subspace. The stan-
dardness property is equivalent to the existence of
an abstract (nongeometric) modular involution.

Applying Poincaré transformations one gener-
ates from s(Wy) and K(Wy) to the W-indexed
families {s(W)} ey, {RW)}yew - The local-
ization spaces for smaller causally complete space-
time regions @ (which could be trivial) are ob-
tained by intersections K(O) = Nw-soR(W). A
remarkable property of all these spaces resulting
from Wigner ’s positive energy representation set-
ting is the validity of Haag duality

R(O") = &(O) ()

where the dash on the region denotes the causal
complement and that on the K-space stands for
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its simplectic complement within Hy; 1. e.
Im(K,p) =0 for all p € K(O) = joR(O)

The final step is the functorial ascend to the
net of spacetime localized operator algebras in the
Wigner-Fock space (with creation/annihilation op-

erators a*(p), a(p))

Weyl(y) = expi(a(y) + a*(¢)), ¥ € R(O)

A(O) :=alg{Weyl(¢) | v € R(O)}, A:=UpnA(O)
KO)={(A+ A5 Q| Ae A(O)}, R(O) = PLK(0)

where alg denotes the operator (von Neumann) al-
gebra generated by the unitary Weyl operators in
the Wigner-Weyl space and P; is the projection of
the Wigner-Fock space onto the Wigner one par-
ticle space. Note that there are no spacetime de-
pendent field coordinates, the construction is as
intrinsic and unique as the Wigner representation
theory.

This modular construction exists for all three
Wigner representation families. The &(O)+1i8(0)
spaces for O = D = double cone (the prototype of
a simly connected causally complete compact re-
gion) for the first 2 families are dense in Hyygg
whereas the third kind of Wigner matter yields a
vanishing K(D).for double cones. In that case the
nontrivial space with the tightest localization K(C)
is associated with an (arbitrarily thin) noncompact
spacelike cone C = x + R;D with apex x and an
opening angle which is determined by D. All re-
lations about K pass to the K’s in Wigner-Fock
space.

There is no problem in adapting the modular
setting to the presence of interactions; however
there are no one-particle creators in compactly lo-
calized algebras (for details see [3]).

All the steps explained above in the spinless
context can be carried out for the first two fam-
ilies with the help of intertwiners. These can
also be constructed without modular theory by
standard group theoretical techniques as explained
in Weinberg’s first volume of [6]. In that case
there are are intertwiners from the unique Wigner
representation to the denumerable infinite set of
(2A+1) (2B + 1) component spinorial fields in-
dexed by r = (4, B)

b= Y [ e )+

k=—s
e P)esbpr)}, [A= B Ss <A+ B
(6)
The covariantization of the (m = 0,s) family

leads to stronger restrictions on (A,B); In par-
ticular there is no covariant vector potential for

s = 1.0n the other hand a covariant semiinfi-
nite string-localized vector potential A, (x, e) poses
no problems i.e. missing possibilies the gaps in
the spinorial formalism can be filled with string-
localized field generators. These covariant string-
localized " potentials” associated to pointlike ”field
strengths” possess mild short distance property
(scale dimension = one) and are certainly more
intrinsic objects than the contrived BRST ghost
extension whose advantage is that they upholding
the pointlike formalism [3].

For the third kind of matter the only systematic
construction is one which determines a continuous
(a-dependent) family of intertwiners u®(p, e) us-
ing their modular localization properties [2][10]. In
this way one obtains a continuous set which depend
in addition to the momentum p on a spacelike unit
vector e, e? = —1. It intertwines the Wigner trans-
formation, which involves the representation D,, of
the noncompact E(2) little group with the covari-
ance transformation law in p and e and leads to a
string field whose intrinsic stringlike extension can
be seen by the appearance of a nontrivial commu-
tator if one string enters the causal influence region
of the other

DH(R(A,p))ua(Aflp,e) =u*(p, Ae) (7)
v = (5:) [ e im0 m)
T pe) o alp))

[U(z,e), V(2 )] =0, 24+ Rye >< 2’/ +Re

That certain objects do not admit a presenta-
tion in terms of pointlike fields is not a speciality
of these infinite spin representation. The d=1+2
"plektons” (particle associated to braid group sta-
tistics) are particles whose field theoretic descrip-
tion requires spacelike strings [11]. By forming
charge-neutral bilinear composites one descends to
compactly localizable observables. Another case is
that of vector potentials in zero mass s = 1 rep-
resentation mentioned before. The string fields of
the third kind of matter are however neither po-
tentials associated with pointlike field strengths [7]
nor do their algebras contain any compactly lo-
calizable subobservables; they are string-like in a
very radical sense. The absence of pointlike local-
ized composites can be supported by the follow-
ing calculation. The most general covariant bilin-
ear scalar object in the Wigner infinite spin cre-
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B@) = [ | dvtavdupiauta)

!PTy (p, q) (. D)a* (p, k)a* (g, 1)

(8)

us(p, q)(k, 1) = / @2 zd2we F ) B(BLC(2) - Byl (w))

where ((2) = (3(22 + 1), 21,22, 3(22 = 1)) and F
is any smooth sufficiently decreasing function so
that us is square integrable in k,[ for fixed p,q.
This function is so constructed that us absorbes
the little group Wigner transformations (involv-
ing the little group with and the net result is a
scalar field. The momentum integration is over
both light cones 0V = 9V, U OV_, and the we
used the notation a*(—p) = a(p). According to the
Kallen-Lehmann representation its two-point func-
tion is automatically causal, but this only means
that the distribution-valued vector B(x){Q is point-
localized and implies nothing about the localiza-
tion of the operator. The string generated algebra
would have compactly localized subalgebras in case
of existence of tensor fields which are relatively lo-
cal to the string. In case of our scalar binilear field
B (8) the answer to the question:

IBs.t. (¢, [B(x), ¥(y,e)]|0) =0, z >< y+Rye?
(9)
is negative and this is best understood by compar-
ing the contraction functions with those for stan-
dard matter. By splitting off a plane wave expo-
nential the matrixelement in (9) only depends on
the x-y difference. The Fourier transform of this
function is then polynomial in the Fourier momen-
tum and this leads to the spacelike vanishing. The
presence of the z, w little-group Fourier transforms
in (8) as well as in the definition of ¥(x,e) indi-
cates a more complicated non-polynomial depen-
dence which after Fourier transform to the relative
distance variable x — y has no support properties
at all. A more predestrian way to see this is to
restrict the string and B to equal times. This sit-
uation cannot be improved by going from bilinear
scalars to tensors, or by generalizing from bilinear
to 2n-linear expressions in the a#. The best one
can do is forming composite local strings which at
least maintain the original string localization.

COMPLETE INVISIBILITY,
NON-GRAVITATIONAL INERTNESS

The existence of local observables is a prerequi-
site for measuring properties of quantum matter.
There are two notions of localization, the Born-

localization of wave functions which in the rela-
tivistic context becomes frame-dependent Newton-
Wigner localization and the above explained co-
variant modular localization[18]. It is only the
first which comes with a (Born) probability inter-
pretation and projection operators which are only
in an macrocausal asymptotic sense of large time
like separation between two such Born-localized
events consistent with a luminal-bounded propa-
gation whereas the strictly causal modular local-
ization has nothing to do with projectors and lo-
calization probabilities but rather with domains of
modular involutions. In the absence of interac-
tions B-N-W and modular localized states are, al-
though conceptually totally different, in the effec-
tive FAPP sense the same; the difference consists
in an exponential tail which in case of massive mat-
ter is characterized by the Compton wave length
of the particle. The idealization of a counter as a
sharp modular localizator would lead to vacuum-
polarization caused activation in the vacuum state
even if no particle is around. To avoid this zero ef-
fect we follow [12] and identify counters with mem-
bers of the quasi-local observable C*-algebra Agyq
which is the algebra whose operators can be ap-
proximated rapidly (faster than any inverse Euclid-
ean power) by local observables; this somewhat
larger C*-algebra contains observables which anni-
hilate the vacuum and localize one-particle states.

The vacuum polarization at the causal boundary
may appear as a conceptual nuisanse in the mea-
surement process, but it is of crucial importance in
the understanding of astrophysical manifestations
of "localization thermality” (Unruh, Hawking tem-
perature) and the use of holographic projections
onto the causal boundary for the computation of
the leading clne behavior of the localization en-
tropy in the attenuation size € of the vacuum po-
larization cloud [13]. One of the marvelous con-
ceptual achievments of modular theory is that it
exposes a basic difference beween the quantum me-
chanical Born localization and its relation to an in-
formation theoretical kind of entanglement and the
quantum field theoretical modular localization for
which the restriction of pure global states to modu-
lar localized algebras creates a completely different
type of thermal entanglement [14].

Semiinfinite strings of the infinite spin kind are
not measurable by any counter since counters are
at least quasilocal and to register a finite piece of
an indecomposable semi-infinite object is a contra-
diction in terms. This leaves in principle the pos-
sibility of an indirect evidence via interaction with
standard matter; in this case the third kind of mat-
ter has a chance of being detected with the planned
underground dark matter detecting devices. The
problems one faces to formulate interactions with
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standard matter may indicate that the third kind
of matter is inert, apart from gravitational mani-
festation. But the final clarification on inertness is
left to further research.

As we have seen in the previous section, the
change from Wigner’s first kind of perfectly lo-
calized massive matter to the third kind of mass-
less infinite spin matter with noncompact localiza-
tion is not quite that abrupt as it appears at first
sight. between the perfectly localizable (visible)
massive fields and the not cpmpactly localizable
(invisible) third kind of quantum matter there is
the small (countably infinite) but important class
of finite helicity fields. In that case not all covari-
ant (A, B) pointlike fields fulfilling (6) exist, but
they do exist as semiinfinitely localized covariant
strings and there are many reasons why their in-
troduction is indispensable in the presence of in-
teractions. Surprisingly there are also two entirely
intrinsic arguments which indicate their presence
in the interaction-free Wigner setting. On the one
hand one needs the potentials in order to express
the inner product in Wigner space as an integral
over a local bilinear conserved ”current” and on
the other hand there is violation of Haag dual-
ity 5 for non simply connected spacetime region
in Minkowski space which does not occur in the
massive case and whose presence is explained in
terms of the existence of stringlike potentials [3].
The third kind of quantum matter radically ex-
tends this tendency of weakening of localization so
that there are no ”visible” field strength or com-
posites at all.

There are reasons to believe that the confine-
ment of gluons in the setting of gauge theory and
perhaps even quark confinement have their deeper
explanation in terms of partial invisibility so that
a better insight of the issues raised in this note
may not only be beneficial to understand how
things work in heaven, but also may bring a totally
new perspective on earthly LHC kind of standard
model physics.

An object which carries energy cannot hide from
the influence of gravitation and hence there is a
deep paradigmatic problem here: how does grav-
ity interact with a substance which is presumably
totally inert relative to any compactly localizable
matter? Since the infinite spin matter has no clas-
sical Lagrangian of which it can be considered to
arise by quantization, it is tempting to think that
the understanding of quantum gravity may inex-
orably linked to that of the third kind of positive
energy matter.

The motor behind these investigations was not
only their conceptual appeal but also the historical
charm resulting from the possibility that the dis-

coverer of the DM Fritz Zwicky and his contempo-
rary, the protagonist of symmetriy and of the first
intrinsic classification of particles theory Eugene
Wigner, may have more in common than was hith-
erto expected. As a theoretical physicist interested
in conceptual problems, I always admired Wigner’s
strict insistence in exploring known principles be-
fore doing mind games. Whereas the traditional
way of valuating observations essentially did not
change since the time of Zwicky, the same cannot
be said about modern particle theory where the
number of researchers following the intrinsic logic
of theoretical principles a la Wigner unfortunately
has decreased in favor of those who prefer mind
games.
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