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We present a discussion where the choice of the regularization procedure and the routing for the
internal lines momenta are put at the same level of arbitrariness in the analysis of Ward identities
involving simple and well-known problems in QFT. They are the complex self-interacting scalar
�eld and two simple models where the SV V and AV V process are pertinent. We show that, in
all these problems, the conditions to symmetry relations preservation are put in terms of the same
combination of divergent Feynman integrals, which are evaluated in the context of a very general
calculational strategy, concerning the manipulations and calculations involving divergences. Within
the adopted strategy, all the arbitrariness intrinsic to the problem are still maintained in the �nal
results and, consequently, a perfect map can be obtained with the corresponding results of the
traditional regularization techniques. We show that, when we require an universal interpretation for
the arbitrariness involved, in order to get consistency with all stated physical constraints, a strong
condition is imposed for regularizations which automatically eliminates the ambiguities associated
to the routing of the internal lines momenta of loops. The conclusion is clean and sound: the
association between ambiguities and unavoidable symmetry violations in Ward identities cannot
be maintained if an unique recipe is required for identical situations in the evaluation of divergent
physical amplitudes.

PACS numbers 11.15.Bt
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I. INTRODUCTION

The �rst step in the construction of a Quantum Field Theory (QFT) is the building of the corresponding Lagrangian.
The symmetry content, which means invariance under a set of transformations, implies in de�nite relations among
the Green's functions of the theory. Frequently, these symmetry relations or Ward identities involve the evaluation
of divergent Green's functions. It is crucial for the renormalization of the theory or for the derivation of low-energy
theorems that such relations are preserved at any order of the perturbative evaluation. The role of the regularization
technique can be decisive in the veri�cation of the symmetry relations. Since that, in spite of the divergences, they
must be veri�ed case by case, there is a self consistent aspect involved in these discussions. In one hand a consistent
technique to handle the divergences is the one that does not lead to undesirable features like ambiguities and/or
symmetry relations violations, which means to destroy the predictive power of the corresponding QFT or to spoil the
renormalizability of the theory. On the other hand, for the signi�cance of the theory in the perturbative approach we
need to verify the symmetry relations which means to adopt a philosophy to handle the divergences in a consistent way.
So, when we evaluate a set of divergent Green's functions using a particular regularization procedure and a certain
symmetry relation involving them is not veri�ed satis�ed, in principle, we cannot conclude in a positive way if the
violation is a consequence of the inconsistency of the employed method or if we are facing an unavoidable phenomenon
of symmetry breaking like the triangle anomalies seem to be in QFT. Strictly speaking, we can only classify a violation
of symmetry as an anomaly if we are convinced that does not exist and must not exist a technique that is capable
to avoid the violation. The eventual violating terms cannot be dependent on the regularization technique. The same
reasoning line can be applied to the symmetry preserving relations. We, in principle, can only convince ourselves that
a symmetry relation is preserved if the veri�cation is clearly not dependent on the speci�c aspects of the adopted
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regularization method. In order to allow the desirable accommodation of both situations, violations and preservations
of symmetries, no role can be played by the regularization scheme or equivalent technique. The ideal situation is to
perform the necessary calculations without the explicit use of a regularization. In certain sense the conclusion above
is obvious. Since the choice of auxiliary tools is arbitrary, no dependence on the speci�c aspects involved is accepted
due to the fact that this implies ambiguity. The real situation of the problem, however, is somehow di�erent. In the
veri�cation of the preservation of symmetries in perturbative evaluation, the explicit use of regularization philosophies
is almost always adopted. In the establishment of the desirable violations of symmetry relations (anomalies), speci�c
perturbative aspects (divergences and ambiguities) play a crucial role. The situation can be summarized in a simple
way. In all the situations where the Dimensional Regularization (DR) [1] technique can be applied we certainly
adopt it. The method provides a recipe that is well-succeeded in the avoidance of ambiguities and, simultaneously,
symmetry relations violations. However, the DR technique is not general which means that there are situations where
we cannot apply it. In consequence, we are forced to have recourse to another method which may not be blessed by
the consistency. In other words, to treat a problem where the DR cannot be applied, we adopt a procedure that, if
applied to treat a problem where the consistent results are achieved by the DR, may lead to unacceptable results.
This is precisely the situation of the AV V triangle anomaly [2] - [6]. Due to the presence of an odd number of 5 Dirac
matrix or the totally antisymmetric tensor "���� , we are prevented to use the DR. As a consequence, ingredients that
are automatically excluded within the context of DR are called to play a decisive role in the evaluations which is the
case of the internal momenta ambiguities.
In the present work we discuss the questions related to the analysis of Ward identities involving divergent amplitudes.

For this purpose, we select three simple but representative models and generate the corresponding symmetry relations.
The main aspect is the fact that we can put all the considered Ward identities in terms of the same condition. After
this, we use a very general calculational strategy [7], concerning the divergences manipulations and calculations, in
order to evaluate the divergent Feynman integrals involved. In the adopted method, all the arbitrariness intrinsic to the
problem are preserved and a map with the DR results and with those produced by the surface's term analysis is always
possible. These two maps, however, are obtained through conicting interpretations for the involved arbitrariness
[8,9]. We show that, when we require an unique interpretation for the inde�nitions, interesting questions about the
perturbative origin of the AV V anomaly emerge [8].
The work is organized as follows. In the section II we derive, in detail, a Ward identity for the self-interacting complex

scalar �eld. In the section III and IV, we consider a simple model to the SV V and AV V process, respectively, and
their associated symmetry relations. The calculational strategy, used in the treatment of divergent Feynman integrals,
is introduced in the section V, whose results are substituted in all the obtained Ward identities in the section VI. In
the section VII we use the general results obtained from our analysis in order to recover the traditional treatment for
the AV V triangle anomaly. Finally, in the section VIII we present our �nal remarks and conclusions.

II. THE COMPLEX SCALAR FIELD

Perhaps the most simple QFT where a symmetry relation can be stated is the ��4 theory. A Ward identity can be
easily constructed for the complex scalar �eld due to the existence of a conserved vector current. In this section, we
follow in a closely related way the ref. [10] in order to state the symmetry relation. The corresponding Lagrangian
can be written as

L = (@��
�)(@��)� �2(���)� �(���)2; (1)

where � is the mass of the scalar �eld and � is the coupling constant. The above Lagrangian is invariant under U(1)
transformations

�! �
0

= ei�:T�; (2)

where �6=�(x) is a parameter and T is an usual number. Such invariance gives raise to the conserved vector current

J� = i[(@��
�)�� (@��)�

�]: (3)

The complex scalar �eld satis�es the following canonical commutation relation

[@0�
y(~x; t); �(~x0 ; t)] = �iÆ3(~x � ~x0); (4)

which leads us to the following commutators involving the �elds and currents
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[J0(~x; t); �(~x
0 ; t)] = i[@0�

y(~x; t); �(~x0 ; t)]�(~x; t) (5)

= Æ3(~x� ~x0)�(~x; t)

[J0(~x; t); �
y(~x0 ; t)] = �Æ3(~x� ~x0)�y(~x; t): (6)

With these ingredients it is possible to consider a process involving a vector current and two scalar �elds and the
corresponding symmetry relation. For this purpose let us consider the Green's function

G�(p; q) =

Z
d4xd4y e(�iq:x�iq:y) < 0jT (J�(x)�(y)�

y(0))j0 > : (7)

In order to get a symmetry relation we take the four-divergence in both sides of the equation above and, in the
integrand, use standard manipulations of the current algebra

@�x [(T (J�(x)O(y))] = T (@�J�(x)O(y)) + [J0(x); O(y)]Æ(x0 � y0): (8)

After this step we get

q�G
�(p; q) = �i

Z
d4xd4y e�iq:x�ip:y @� < 0jT (J�(x)�(y)�

y(0))j0 > (9)

= �i

Z
d4xd4y e�iq:x�ip:y

�
< 0jT (@�J�(x)�(y)�

y(0))j0 >

+ < 0jT ([J0(x); �(y)]Æ(x0 � y0)�
y(0))j0 >

+ < 0jT ([J0(x); �
y(0)]Æ(x0)�(y))j0 >

	
:

Given the conservation of the vector current the �rst term in the equation above vanishes. Using then the commutation
relations (5) and (6) we are left with

q�G
�(p; q) = �i

Z
d4xd4y e�i(q+p)x < 0jT (�(x)�y(0))j0 > (10)

+i

Z
d4xd4y e�ipy < 0jT (�(0)y�(y))j0 > :

Next, we can identify the two terms on the right hand side as propagators of the scalar �eld

�(p) =

Z
d4x e�ipx < 0jT (�(x)�y(0))j0 >; (11)

and then write

�iq�G
�(p; q) = �(p+ q)��(p); (12)

which is the vector-current Ward identity. The equation above holds for the corresponding renormalized quantities
due to the fact that the conserved current J�(x) is not renormalized as a composite operator [4]. It is then easy to
state the corresponding one-loop version for the eq.(12). For this purpose we de�ne the amputed Green's functions,
in terms of the renormalizable quantities present in the eq.(12); in the following way [10]

��(p; q) = [i�R(p+ q)]�1GR
� (p; q) [i�

R(p)]�1; (13)

where the one-loop renormalized propagator is given by

�R(p)�1 = p2 � �2 � ~�(p2); (14)

and ~�(p2) is the 1PI self-energy. Then the Ward identity (12) assumes the simple form

iq���(p; q) = [(p+ q)
2
� �2 � ~�(p+ q)]� [p2 � �2 � ~�(p]: (15)

Let us now consider the explicit evaluation at tree level and next at the one-loop level. For this purpose we start
by considering the coupling among the conserved vector current with the two scalar lines. The corresponding vertex
is given by
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iÆ3LI
ÆJ� Æ� Æ��

= i2[i(p+ q)� + ip�] (16)

= �i(2p+ q)�:

The tree level contribution, diagrammatically represented in the �g.1, can be easily evaluated as

iq��tree� (p; q) = iq�[�i(2p+ q)�] = 2p:q + q2 = (p+ q)2 � p2: (17)

p+ q

p

q *

Y

�
�
�
�
�

H
H
H
H
H

�

Fig.1: Diagrammatic representation for the tree level contribution.

The comparison with the expression (15) reveals that, at the tree level, the identity (12) is preserved. Let us now
consider the one-loop level, diagrammatically represented in the �g.2 and �g.3.

�
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j
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Fig.2: Diagrammatic representation for the one-loop contribution to the vertex correction.

The �rst two diagrams in the �g.3 require the evaluation of the self-energy at the one-loop level, which is given by

�i�(p) = �i
�

2

Z
d4k

(2�)4
i

(k + l)2 � �2
; (18)

where we have adopted an arbitrary routing for the internal line momentum of the loop. The one-loop renormalization
implies in the addition of the counterterm's diagrams, �g.3.
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Fig.3: Diagrammatic representation for the one-loop corrections and their counterterms diagrams.

The contribution of the �rst two diagrams to the ��(p; q) vertex function can be written as

iq���(p; q) = iq�
�
(�i)(2p+ q)�

i

(p+ q)2 � �2
[�(p+ q)��(0)]

�
; (19)
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which vanishes identically due to the independence of the external momentum of the scalar one-loop self-energy. So,
we are left only with the contribution of the diagram in the �g.2. The contribution for the symmetry relation is given
by

iq��1 loop� (p; q) = iq�
�Z

d4k

(2�)4
(i�)

i

[(k + k1)2 � �2]
(�i)(2k + k1 + k2)�

i

[(k + k2)2 � �2]

�
; (20)

which means that

iq��1 loop� (p; q) = i�(k1 � k2)
�

�Z
d4k

(2�)4
2k� + (k1 + k2)�

[(k + k1)2 � �2] [(k + k2)2 � �2]

�
; (21)

or

iq��1 loop� (p; q) = i�(k1 � k2)
� (�I�) : (22)

We have arrived at the main point of this section. Given the fact that the one-loop scalar self-energy does not have
a �nite part, the Ward identity is satis�ed by the tree level contribution. This implies that all the contribution of
the one-loop level must cancel. Since two diagrams cancel two others it remains only the contribution of one diagram
which must identically vanish by itself. In the corresponding expression, two divergent integrals are involved with a
degree of divergence linear and logarithmic. Independent on the details involved, which we will discuss later, it is
clear that if the value for the speci�c combination of integrals

�I� = 2 (I2)� + (k1 + k2)� (I2) ; (23)

where we have introduced the de�nitions,

(I2; I
�
2 ) =

Z
d4k

(2�)4
(1; k�)

[(k + k1)2 �m2][(k + k2)2 �m2]
; (24)

does not vanish, the Ward identity that we have stated will be violated. Due to the divergences the evaluation of the
expression (23) requires the adoption of a regularization technique or an equivalent philosophy. Before such discussions
let us state other kinds of Ward identities.

III. S!V V PROCESS

Let us now consider a theory where the scalar and the vector fermionic densities are coupled to a scalar and a vector
�eld, respectively. In this section we perform the discussions in a similar way to that of the ref. [11]. The interaction
Lagrangian can be written as

LI = iGs( �		)��Gv

�
�	�	

�
A�; (25)

where 	 is a massive 1
2 spin fermion, � is a scalar �eld and A� a vector �eld. The fermionic vector current obeys

@�V
� = @�

�
�	�	

�
= 0; (26)

i.e., due to the presence of only one specie of massive fermion the scalar and vector currents are not connected. So,
if we de�ne the S!V V Green's function

TS!V V
�� (p; p0; q) = i

Z
d4x1d

4x2 eipx1+ip
0x2 < 0jT (V�(x1)V� (x2)S0(0))j0 >; (27)

following the standard procedure of the current algebra, we must get the Ward identities�
p�TS!V V

�� = 0
p0�TS!V V

�� = 0:
(28)

The lowest order perturbative contribution for the S!V V process is given by the triangle diagram. The summation
of the direct and crossed diagrams is required by the Bose �nal state symmetrization. In the evaluation of these
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contributions, we will assume the routings of the internal lines as the most general ones. For the direct channel,
�g.4(a), we adopt the internal lines momenta as being related to the external ones by their di�erences as follows8<: k3 � k2 = q = p+ p0

k3 � k1 = p
k1 � k2 = p0:

(29)

The crossed diagram can be constructed by changing � and � and adopting for the internal lines the arbitrary momenta
as l1; l2 and l3, satisfying 8<: l3 � l2 = q = p+ p0

l3 � l1 = p0

l1 � l2 = p:
(30)

The expression for the direct diagram can be written as

TSV V
�� (k1; k2; k3;m) =

Z
d4k

(2�)4
Tr

�b1 1

(6 k + 6 k3)�m
�

1

(6 k + 6 k1)�m
�

1

( 6 k + 6 k2)�m

�
: (31)

(a)
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k + k2
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� �
�

-k + ki

k + kj

1 �

Fig.4: Diagrammatic representation for the SV V three-point function and for the SV two-point function, �gs.(a)
and (b) respectively.

Contracting with the vector's vertexes momenta we can obtain a condition for the corresponding Ward identities

(k3 � k1)
�TSV V

�� =

Z
d4k

(2�)4
Tr

�
1̂

1

(6 k + 6 k1)�m
�

1

(6 k + 6 k2)�m

�
(32)

�

Z
d4k

(2�)4
Tr

�
1̂

1

(6 k + 6 k3)�m
�

1

(6 k + 6 k2)�m

�
;

where we have used in the traces level the identity

(6 k3� 6 k1) = [6 k+ 6 k3 �m]� [6 k+ 6 k1 �m]: (33)

Let us now de�ne the two-point function of the right hand side as (seefig:4(b))

T V S
� (k1; k2;m) =

Z
d4k

(2�)4
Tr

�
�

1

(6 k + 6 k1)�m
1̂

1

(6 k + 6 k2)�m

�
; (34)

and

TS!V V
�� = TSV V

�� (k1; k2; k3;m) + TSV V
�� (l1; l2; l3;m) ; (35)

in order to write the Ward identities as

p�TS!V V
�� = T V S

� (k1; k2;m)� T V S
� (k3; k2;m) + T V S

� (l3; l2;m)� T V S
� (l3; l1;m) (36)

p0�TS!V V
�� = T V S

� (k3; k2;m)� T V S
� (k3; k1;m) + T V S

� (l1; l2;m)� T V S
� (l3; l2;m) : (37)

The conditions for the symmetry relations maintenance are put in terms of the value for the SV two-point function
structure. If the traces involved are performed we get

T V S
� = 4m

�Z
d4k

(2�)4
2k�

[(k + k1)2 �m2][(k + k2)2 �m2]

+(k1 + k2)�

Z
d4k

(2�)4
1

[(k + k1)2 �m2][(k + k2)2 �m2]

�
; (38)
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which means that

T V S
� = 4m

n
(k1 + k2)�I2 + 2 (I2)�

o
; (39)

or, given the de�nition (23),

T V S
� = 4m (�I�) : (40)

If we look at the equation (22) of the preceding section we can see that the condition we have found for the Ward
identities involved in the S!V V process is the same one we found for the complex scalar theory Ward identity. Only if
the structure (40) is obtained identically vanishing, the symmetry relations are preserved by the one-loop perturbative
calculation. Before the analysis let us now consider another (and more interesting) set of symmetry relations.

IV. A!V V PROCESS

A more interesting situation involving Ward identities emerges when we want to consider the process where an
Axial-Vector is connected with two vectors. Such a process can be constructed by coupling the appropriate fermionic
densities with the external �elds. Similar discussions can be found in the ref. [11] (see also ref. [10] and [12]). The
interaction Lagrangian can be written as

LI = iGP ( �	5	)� � eV
�
�	�	

�
A� � eA

�
�	5

�	
�
WA

� : (41)

Here, 	 is the massive 1
2 fermion, WA

� is an Axial-Vector �eld and � is a pseudo-scalar one. The fermionic currents
obey �

@�V
� = @�

�
�	�	

�
= 0

@�A
� = @�

�
�	5

�	
�
= 2mi( �	5	) = 2miP:

: (42)

In such theory we can de�ne the Green's functions

TA!V V
��� (p; p0; q) = i

Z
d4x1d

4x2 eipx1+ip
0x2 < 0jT (V�(x1)V�(x2)A�(0))j0 >; (43)

TP!V V
�� (p; p0; q) = i

Z
d4x1d

4x2 eipx1+ip
0x2 < 0jT (V�(x1)V�(x2)P0(0))j0 > : (44)

The standard procedure of current algebra can be used to state the Ward identities

p0�TA!V V
��� = 0; (45)

p�TA!V V
��� = 0; (46)

q�TA!V V
��� = 2mTP!V V

�� : (47)

The lowest order perturbative calculation of the AV V process requires the evaluation of the one-loop triangle diagrams
of the �g.5(a) and (b). The de�nitions for the external and internal lines follow the same conventions of the preceding
section. So, we write for the direct channel (see �g.5(a))

TAV V
��� (k1; k2; k3;m) =

Z
d4k

(2�)4
Tr

�
i�5

1

(6 k + 6 k3)�m
�

1

(6 k + 6 k1)�m
�

1

(6 k + 6 k2)�m

�
: (48)

(a)

i�5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH (b)

5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH (c)

� �
�

-
k + ki

k + kj

i�5 �

Fig.5: Diagrammatic representation for the AV V and PV V three-point functions and for the AV two-point
function, �gs.(a), (b) and (c), respectively.
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Contracting with the external momenta we can derive conditions to be ful�lled in order to get the respective Ward
identities preserved. First we contract with the external momentum (k3 � k2)

� and use the identity

(6 k2� 6 k3)5 = (6 k+ 6 k2 �m)5 + 5(6 k+ 6 k3 �m) + 2m5; (49)

in the interior of the traces, to get

(k3 � k2)
�TAV V

��� = �2mi

Z
d4k

(2�)4
Tr

�
5

1

[6 k+ 6 k3 �m]
�

1

[6 k+ 6 k1 �m]
�

1

[6 k+ 6 k2 �m]

�
�

Z
d4k

(2�)4
Tr

�
i�5

1

[6 k+ 6 k3 �m]
�

1

[6 k+ 6 k1 �m]

�
+

Z
d4k

(2�)4
Tr

�
i�5

1

[6 k+ 6 k1 �m]
�

1

[6 k+ 6 k2 �m]

�
: (50)

If we de�ne the two-point functions on the right hand side as (see �g.5(c))

TAV
�� (ki; kj ;m) =

Z
d4k

(2�)4
Tr

�
i�5

1

(6 k + 6 ki)�m
�

1

(6 k + 6 kj)�m

�
; (51)

we can write (see �g.6)

(k3 � k2)
�TAV V

��� = �2imTPV V
�� � TAV

�� (k3; k1;m) + TAV
�� (k1; k2;m) ; (52)

where we have de�ned (see fig:5(b))

TPV V
�� (k1; k2; k3;m) =

Z
d4k

(2�)4
Tr

�
5

1

(6 k + 6 k3)�m
�

1

(6 k + 6 k1)�m
�

1

(6 k + 6 k2)�m

�
: (53)

(k3 � k2)
� i�5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH

= �2im 5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH

+ � �
�

-k + k1

k + k2

i�5 � � � �
�

-k + k3

k + k1

i�5 �

Fig.6: Diagrammatic representation for the identity (52 ).

Now if we take the contractions of the AV V function with the vector's momenta we immediately identify (see �g.7)

(k3 � k1)
�TAV V

��� = TAV
�� (k1; k2;m)� TAV

�� (k3; k2;m): (54)

Also, in a similar way we can state (see �g.8)

(k1 � k2)
�TAV V

��� = TAV
�� (k3; k2;m)� TAV

�� (k3; k1;m): (55)

(k3 � k1)
� i�5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH

= � �
�

-k + k1

k + k2

i�5 � � � �
�

-k + k3

k + k2

i�5 �

Fig.7: Diagrammatic representation for the identity (54).

(k1 � k2)
� i�5

�

�

k + k3

k + k1
k + k2

*

Y

?

�

�

��
�
��

H
H
HH

= � �
�

-k + k3

k + k2

i�5 � � � �
�

-k + k3

k + k1

i�5 �

Fig.8: Diagrammatic representation for the identity (55).
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The inclusion of the crossed channel allows us to write the following expressions

q�TA!V V
��� = �2imTP!V V

�� + TAV
�� (k1; k2;m)� TAV

�� (k3; k1;m) + TAV
�� (l1; l2;m)� TAV

�� (l3; l1;m); (56)

p�TA!V V
��� = TAV

�� (k1; k2;m)� TAV
�� (k3; k2;m) + TAV

�� (l3; l2;m)� TAV
�� (l3; l1;m); (57)

p0�TA!V V
��� = TAV

�� (k3; k2;m)� TAV
�� (k3; k1;m) + TAV

�� (l1; l2;m)� TAV
�� (l3; l2;m): (58)

The conditions for Ward identities preservation are now put in terms of the AV two-point functions. They are the
same ones we can �nd in the ref. [10], [11] and [12]. The evaluation of the traces leads us to the expression

TAV
�� (k1; k2;m) = �4"����

�
k�2

Z
d4k

(2�)4
k�

[(k + k1)2 �m2][(k + k2)2 �m2]

+k�1

Z
d4k

(2�)4
k�

[(k + k1)2 �m2][(k + k2)2 �m2]

+k�1 k
�
2

Z
d4k

(2�)4
1

[(k + k1)2 �m2][(k + k2)2 �m2]

�
: (59)

We can use the properties of the totally antisymmetric tensor "���� in order to put the equation above into the form

TAV
�� (k1; k2;m) = 2"����(k1 � k2)

� f(k1 + k2)
�I2 + 2 (I2)

�
g : (60)

This means that, given the de�nition (23), we have

TAV
�� (k1; k2;m) = 2"����(k1 � k2)

� (�I�) ; (61)

which means that the condition is the same one as those found in the preceding sections. Now it is time to study the
divergent integrals that appeared in the three amplitudes considered and their symmetry relations.

V. THE CALCULATIONAL STRATEGY

If the explicit evaluation of perturbative (divergent) amplitudes is in order we need to specify some philosophy to
handle the mathematical inde�nitions involved. Usually the calculations become reliable only after the adoption of a
regularization technique. After this, in the intermediary steps, we invariably assume some speci�c consequences for
the results intrinsically associated to the properties attributed for the divergent integrals resulting from the (arbitrary)
choices for the mathematical inde�nitions implied by the adopted regularization. In the �nal form this way obtained,
for the amplitudes in general, it is not possible to specify in a clear way what are the particular e�ects of the adopted
regularization for the result or, in other words, to evaluate in what sense the expression is dependent on the adopted
technique. In order to perform a as safe as possible analysis of the properties of the divergent amplitudes, including
their symmetry relations and the question of the ambiguities related to the arbitrariness involved in the routing of
the loop internal lines momenta, we need to avoid as much as possible speci�c choices in the intermediary steps so
that all the possibilities still remain contained in the �nal results. If it is possible, we can change the usual focus
of the analysis, which is the veri�cation by testing the consistency of the proposed regularization technique, for the
identi�cation of the eventual properties such a technique should have in order to be consistent. The implication of
the preceding arguments, which will become clear in what follows, will play an important role in the discussion we
want to perform.
To explicitly evaluate the divergent integrals involved we will adopt an alternative strategy to handle the divergences.

The referred method, introduced in ref. [7], has been used recently in the literature in di�erent contexts. It allows us
a clear and universal point of view for the divergences of perturbative calculations in QFT. The strategy is simple:
instead of the speci�cation of some regularization, to justify all the necessary manipulations, we will assume the
presence of a regulating distribution only in an implicit way. SchematicallyZ

d4k

(2�)
4 f(k)!

Z
d4k

(2�)
4 f(k)

�
lim

�2

i
!1

G�i

�
k;�2

i

��
=

Z
�

d4k

(2�)
4 f(k): (62)

Here �0is are parameters of the generic distribution G(�2
i ; k) that, in addition to the obvious �nite character of the

modi�ed integral, must have two other very general properties. It must be even in the integrating momentum k, due
to Lorentz invariance maintenance, as well as a well-de�ned connection limit must exists, i.e.,
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lim
�2

i
!1

G�i

�
k2;�2

i

�
= 1: (63)

The �rst property imply that all odd integrals vanish. The second one guarantees, in particular, that the value of
the �nite integrals in the amplitudes will not be modi�ed. Having this in mind, we manipulate the integrand of the
divergent integrals to generate a mathematical expression where all the divergences are located in internal momenta
independent structures. This goal can be achieved by the use of an adequate identity like

1

[(k + ki)2 �m2]
=

NX
j=0

(�1)j
�
k2i + 2ki � k

�j
(k2 �m2)

j+1 +
(�1)N+1 �k2i + 2ki � k

�N+1

(k2 �m2)
N+1

h
(k + ki)

2
�m2

i ; (64)

where ki is (in principle) an arbitrary choice for the routing of a loop internal line momentum. The value for N must be
adequately chosen. The minor value must be the one that leads the last term in the above expression to be present in a
�nite integral and therefore, by virtue of the well-de�ned connection limit assumptions, the corresponding integration
can be performed without any restrictions and free from the speci�c e�ects of the eventual regularization. All the
remaining structures become independent on the internal lines momenta. We then eliminate all the integrals with
odd integrand, as a trivial consequence of the even character of the regulating implicit distribution. In the divergent
structures obtained this way no additional assumptions are taken. They are organized in �ve objects, namely

����� =

Z
�

d4k

(2�)
4

24k�k�k�k�

(k2 �m2)
4 � g��

Z
�

d4k

(2�)
4

4k�k�

(k2 �m2)
3 (65)

�g��

Z
�

d4k

(2�)
4

4k�k�

(k2 �m2)
3 � g��

Z
�

d4k

(2�)
4

4k�k�

(k2 �m2)
3 ;

��� =

Z
�

d4k

(2�)
4

4k�k�

(k2 �m2)
3 �

Z
�

d4k

(2�)
4

g��

(k2 �m2)
2 ; (66)

r�� =

Z
�

d4k

(2�)4
2k�k�

(k2 �m2)2
�

Z
�

d4k

(2�)4
g��

(k2 �m2)
; (67)

Ilog(m
2) =

Z
�

d4k

(2�)
4

1

(k2 �m2)
2 ; (68)

Iquad(m
2) =

Z
�

d4k

(2�)
4

1

(k2 �m2)
: (69)

This systematization is suÆcient for discussions in fundamental theories at the one-loop level. In the non-
renormalizable ones new objects can be de�ned following this philosophy. In the two (or more) loop level of cal-
culations new basic divergent structures can be equally de�ned in a completely analogous way. The main point is to
avoid the explicit evaluation of such divergent structures in which case a regulating distribution needs to be speci�ed.
We can say that this procedure furnishes an universal point of view for the calculated amplitudes since it become

possible to map the �nal expressions obtained this way into the corresponding results of other techniques. All the
steps followed and all the assumptions are perfectly valid in the reasonable regularization prescriptions, including the
DR. All we need, to extract from our results those of a speci�c technique, is to evaluate the divergent structures,
remaining at the �nal expression, according to the speci�c chosen prescription. Another important fact we call the
attention is that no shifts or expansions are used in the intermediary steps. We assume the more general routing for
all amplitudes. The potentially ambiguous terms are still present in the �nal result. Consequently, it is possible to
make contact with those results corresponding to explicit evaluation of surface's terms involved when shifts in the
integrating momenta are performed. This is an important aspect of our analysis because we want to make contact
with the traditional approach used to justify the triangle anomalies.
In order to clarify the above described method, to handle the divergences, let us apply the calculational strategy

in the treatment for some divergent integrals. For this purposes we take two of them that will play an important role
in our analysis. They are two-point function structures de�ned as follows�

I2; (I2)�

�
=

Z
d4k

(2�)
4

(1; k�)h
(k + k1)

2
�m2

i h
(k + k2)

2
�m2

i : (70)

The �rst one indicated above, the I2 integral, is a logarithmically divergent structure while (I2)� is linearly divergent.
In this structures k1 and k2 represents, in principle, arbitrary choices for the internal lines momenta. Then we can
expect a dependence on k1 and k2 other than the di�erence between them only for the (I2)� integral.
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Taken �rst the I2 integral we choose, in the identity (64), N = 1 to rewrite both denominators. Then we get

I2 =

Z
�

d4k

(2�)4
1

(k2 �m2)2
(71)

�

Z
d4k

(2�)4
(k21 + 2k1 � k)

2

[(k2 �m2)2][(k + k1)2 �m2]

�

Z
d4k

(2�)4
(k22 + 2k2 � k)

2

[(k2 �m2)2][(k + k2)2 �m2]

+

Z
d4k

(2�)4
(k21 + 2k1 � k)(k

2
2 + 2k2 � k)

[(k2 �m2)2][(k + k1)2 �m2][(k + k2)2 �m2]
:

The right hand side exhibits the desirable form. The divergent term is located in an internal momenta independent
structure which we can identify as Ilog

�
m2
�
; de�ned in eq.(68). The remaining structures are �nite ones and we

use what we call the connection limit existence to drop the � subscript on the integral, or, equivalently, to remove
the eventual regulating distribution under the argumentation that the integration and the connection limit can be
perfectly interchanged. The thus obtained �nite Feynman integrals can be solved without any problem. The answer
can be written as

I2 = Ilog(m
2)�

�
i

(4�)2

�
Z0((k1 � k2)

2;m2); (72)

where we have introduced (in short hand notation) the two-point functions structures [7]

Zk(�
2
1; �

2
2; q

2;�2) =

Z 1

0

dzzkln

�
q2z(1� z) + (�21 � �22)z � �21

(��2)

�
: (73)

Analytical expressions can be easily obtained but for our present purposes this is not necessary.
Following the procedure we can evaluate also the I�2 integral. The �rst step is the same: the use of the identity

(64) to rewrite the integrand, now to the form

(I2)� = �
1

2
(k1 + k2)

�

Z
�

d4k

(2�)4
4k�k�

(k2 �m2)3
(74)

+

Z
d4k

(2�)4
(k21 + 2k1 � k)

2k�
[(k2 �m2)3][(k + k1)2 �m2]

+

Z
d4k

(2�)4
(k22 + 2k2 � k)

2k�
[(k2 �m2)3][(k + k2)2 �m2]

+

Z
d4k

(2�)4
(k21 + 2k1 � k)(k

2
2 + 2k2 � k)k�

[(k2 �m2)2][(k + k1)2 �m2][(k + k2)2 �m2]
:

In the above expression, we have dropped two odd k integrals, by virtue of the even character of the implicit regulating
distribution as well as the � subscript in the last three terms due to the �nite character. After the integration of the
�nite terms we are lead to the result

(I2)� = �
1

2
(k1 + k2)

� (���)�
1

2
(k1 + k2)�

�
Ilog(m

2)�

�
i

(4�)2

�
Z0((k1 � k2)

2;m2)

�
(75)

= �
1

2
(k1 + k2)

� (���)�
1

2
(k1 + k2)� (I2) :

It is important, at this point, to emphasize the general aspects of the method. No shifts has been performed and,
in fact, no divergent integrals calculated. All the �nal results produced by this approach can be mapped in those of
any speci�c technique. The �nite parts are the same as should be by physical reasons. The divergent parts can be
easily obtained. All we need is to evaluate the remaining divergent structures according to the chosen prescription.
By virtue of this general character, the present strategy can be used simply to systematize the procedures, even if one
wants to use traditional techniques. Let us now to use the above obtained results to calculate the physical amplitudes
involved in our present discussions.
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VI. DIVERGENCES, AMBIGUITIES AND WARD IDENTITIES

Given the results obtained in the preceding section we can evaluate the combination of Feynman integrals which
revealed being crucial for all the Ward identities we have studied. Substituting the results (72) and (75) in the
expression (23) we get

�I� = (k1 + k2)
� (4��) ; (76)

and consequently,

T V S
� (k1; k2;m) = �4m(k1 + k2)

� (4��) ; (77)

TAV
�� (k1; k2;m) = 2"����(k1 � k2)

�
n
(k1 + k2)

�
�
4�

�

�o
: (78)

The Ward identities we studied in the sections II, III and IV can be written into the following form

iq��1loop� (p; q) = i� (k1 � k2)
�
(k1 + k2)

�
(4��) ; (79)

q�TA!V V
��� = �2mi[TP!V V

�� ] + 2"����
�
(k1 � k3)

�(k1 + k3)
� + (k2 � k1)

�(k1 + k2)
�
� �
4�

�

�
(80)

�2"����
�
(l1 � l3)

�(l1 + l3)
� + (l2 � l1)

�(l1 + l2)
�
� �
4�

�

�
;

p�TA!V V
��� = 2"����

�
(k2 � k1)

�(k1 + k2)
� + (k3 � k2)

�(k2 + k3)
�
� �
4�

�

�
(81)

+2"����
�
(l3 � l1)

�(l1 + l3)
� + (l2 � l3)

�(l2 + l3)
�
� �
4�

�

�
;

p0�TA!V V
��� = 2"����

�
(k3 � k1)

�(k1 + k3)
� + (k2 � k3)

�(k2 + k3)
�
� �
4�

�

�
(82)

+2"����
�
(l2 � l1)

�(l1 + l2)
� + (l3 � l2)

�(l2 + l3)
�
� �
4�

�

�
;

p�TS!V V
�� = 4m(k3 � k1)

� (4��) + 4m(l1 � l2)
� (4��) = 8mp� (4��) ; (83)

p0�TS!V V
��� = 4m(k1 � k2)

� (4��) + 4m(l3 � l1)
� (4��) = 8mp0� (4��) : (84)

There are two types of unde�ned quantities in the expressions above. This means that in order to get de�nite results
for the involved amplitudes it becomes necessary to assume some (arbitrary) choices for them. Such choices must be
obviously guided by the consistency we want to get in perturbative calculations, in spite of the divergent character.
Having this in mind we can ask for the existence of eventual physical constraints to be used in order to get the
adequate choices for the arbitrariness present in the results above. Clearly, there are two types of constraints which
we must ful�ll. The �rst one refers to the Ward identities themselves, i.e., we want to make choices that lead, in
principle, to their preservation. For the second, we cannot forget that the conditions (79)-(84) are obtained after
the evaluation of the AV and SV two-point functions, so that our choices for the arbitrariness must not imply in
non-physical results for these amplitudes. In addition, we note that these two amplitudes are deeply related. There
is an identity at the traces level relating them, namely (see �g.9):

TAV
�� = �

1

2m
"����(k1 � k2)

�
�
T V S

��
: (85)

=� �
�

-k + ki

k + kj

i�5 �
1
2m"����(kj � ki)

� � �
�

-k + ki

k + kj

1 �

Fig.9: Diagrammatic representation for the identity (85).

The identity is valid before any calculations have been made, i.e., independent of the divergences related aspect
involved. It must be valid after all the calculations are performed independent of the adopted regularization philosophy.
Within our calculational strategy, the above identity is preserved before any choices for the arbitrariness involved.
Both amplitudes are, in principle, ambiguous quantities. The identity (85) is not ambiguous and should be maintained
after the adopted interpretations for the arbitrariness involved. Given this observation it is natural to start by the
analysis of the SV and AV two-point functions. First, by unitarity reasons (Cutkosky's rules), both two-point
functions should have an imaginary part arising at the kinematical point (k1� k2)

2 = 4m2. If a nonzero value for the
referred amplitudes is attributed, independent of the possible choices involved, such a threshold will not be present.
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For the second, Lorentz and CPT arguments also require the vanishing value. Otherwise, a transition between a
vector into a scalar particle and between an axial into a vector particle seems to be possible through the SV and AV
two-point functions respectively. We can also add some arguments coming from Ward identities. The SV amplitude
carries a vector Lorentz index in such a way the contraction with the external momentum of the respective vertex
should vanish, in order to maintain the vector current conserved. Given the expression (77), the contraction with
(k1 � k2)

� gives us

(k1 � k2)
�T V S

� = �4m(k1 � k2)
�(k1 + k2)

�[4��]; (86)

which is not automatically zero. On the other hand, the AV amplitude should also exhibit a conserved vector current.
The contraction of the expression (78) with (k1 � k2)

�, due to the symmetry properties of the "���� tensor, gives us

(k1 � k2)
�TAV

�� = 0: (87)

This is therefore a good property. However, by the same reasons put above, we get

(k1 � k2)
�TAV

�� = 0; (88)

which means that the axial current is also conserved, if a nonzero value for the AV structure is assumed. This is bad
because the correct result is a proportionality between the axial and pseudo-scalar current, as it is well-known. Only
the zero value for both mathematical structures allows the correct symmetry content of both considered two-point
functions. Given this conclusion the question immediately raised is: how can we use the arbitrariness remaining in
the expressions (77) and (78) in order to obtain the desirable results? Looking at the structure of the results (77)
and (78) we see that there are two basic possibilities. First, due to the fact that the value for k1 + k2 is not �xed
by the energy-momentum conservation, we can choose k1 = q=2 and k2 = �q=2 where q is the external momentum.
Within this procedure the value for the object ��� is not constrained and all regularizations can be used to evaluate
it. Secondly, since we need to calculate the value for ��� , i.e., to adopt a regularization, we can select it in such
a way that �reg

�� =0. Both choices should impose a price to be paid in other calculations if we want to construct a
procedure, i.e., if we assume that all the amplitudes in all theories and models must be treated in the same way.
The �rst possibility pointed above implies in the assumption that the amplitudes may emerge ambiguous from the
calculations, i.e., dependent on the choices for the internal lines labels. This is bad because the predictive power
of QFT in the perturbative approach is destroyed and, as a consequence, we can use the theory only to produce
adjustments to well-known phenomenologies. The predictions cannot be stated in general because the amplitudes
may have unde�ned pieces. In addition, in adopting this way, we are assuming that the space-time homogeneity is
broken in the calculations. If, on the other hand, we take the second option there are also some implications. Speci�c
properties for the divergent integrals are assumed and they need to be used in all other calculations with the same
value and exhibiting the same consistency, which, in fact, should be veri�ed.
After these important remarks we return to the Ward identities (79)-(84). Looking at the Ward identities for the

complex scalar �eld we note that there are two types of arbitrariness involved; the presence of the unde�ned piece
� and the ambiguous combination of the external lines momenta k1 + k2. We have both options described above in
order to get a symmetry preserving result. A di�erent situation occurs in the SV V symmetry relation. Even that
the condition for the symmetry preservation was put in terms of four potentially ambiguous terms they appear in
non-ambiguous combinations. So all the choices for the internal arbitrary momenta lead us to the same result. Only
the choice �reg

�� = 0 will give us the desirable result. We note that these two problems, the scalar �eld and SV V
process, can be treated within the DR. In fact, the strategy we have used to perform the calculations, with the choice
�reg
�� = 0, becomes identical to the DR in theories with only bosonic �elds and mappable one-by-one in theories with

fermions. The SV amplitude is trivially obtained identically zero in the DR. Then, it seems obvious that all the
physical requirements are ful�lled by the choice �reg

�� = 0, which maps the DR results. What are the reasons for
hesitation in assuming this option? The answer can be extracted from the consequences of this choice for the Ward
identities (79)-(84): they become

iq��1loop� (p; q) = 0; (89)

p0�TS!V V
�� = 0; (90)

p�TS!V V
�� = 0; (91)

and

p0�TA!V V
��� = 0; (92)

p�TA!V V
��� = 0; (93)

q�TA!V V
��� = �2miTP!V V

�� ; (94)
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i.e., all the Ward identities become preserved and all the ambiguities are automatically eliminated. At �rst sight this
fact can be understood as a trouble because, apparently, we are forbidding any violation of symmetry relations in the
AV V triangle amplitude which is well known should present an anomaly to be consistent with the electromagnetic
pion decay. At least this is the line of reasoning which we can �nd in many QFT textbooks. In order to justify the
anomaly it is assumed that the unde�ned terms on the right hand side of the eqs.(80)-(82), which are in the last
instance AV physical amplitudes, are non-vanishing and ambiguous. In order to make clear the last sentence let us
consider the recovering of the results corresponding to what we call the traditional treatment from the ones of the
adopted calculational strategy. The referred results can be easily found in the literature about the subject or in many
textbooks of QFT. It is a very simple job to pass from our results to the ones corresponding to the surface's terms
evaluation due to the fact that no shifts have been made in the intermediary steps. All we need is: �rst to state the
identities (56)-(58), and then to evaluate the two-point function structures thus obtained, with the help of the results
(72) and (75), which lead us to the expression

(k3 � k2)
�
TAV V
��� = �2mi[TPV V

�� ] + 2"����
�
(k1 � k3)

�(k1 + k3)
� + (k2 � k1)

�(k1 + k2)
�
� �
4�

�

�
; (95)

(k3 � k1)
� TAV V

��� = 2"����
�
(k2 � k1)

�(k1 + k2)
� + (k3 � k2)

�(k2 + k3)
�
� �
4�

�

�
; (96)

(k1 � k2)
�
TAV V
��� = 2"����

�
(k3 � k1)

�(k1 + k3)
� + (k2 � k3)

�(k2 + k3)
�
� �
4�

�

�
: (97)

Now we observe that, in order to give a de�nite value for the right hand side of the equations, two types of arbitrariness
need to be removed by taking choices. Such arbitrariness are the ambiguous combinations of internal momenta and
the unde�ned mathematical object. The di�erence between two logarithmically divergent integrals, however, can be
immediately identi�ed with a typical surface's term and easily evaluated as follows

�S�� =

Z
�

d4k

(2�)
4

@

@k�

 
k�

(k2 �m2)
2

!
=

Z
�

d4k

(2�)
4

�4k�k�

(k2 �m2)
3 +

Z
�

d4k

(2�)
4

g��

(k2 �m2)
2

=

 
i

(4�)
2

!�
1

2

�
g�� :

Note that the same result could be obtained by shifting the integrating momentum in one of the two-point function
structures in order to produce a cancellation with the other one. The price to be paid, which is well known, is
the addition of the corresponding surface's term which assumes exactly the value obtained above. The next step is
the removal of the unde�ned combination of internal momenta. We adopt then a parametrization for the internal
momenta in terms of the external ones 8<: k1 = ap0 + bp

k2 = bp+ (a� 1)p0

k3 = ap0 + (b+ 1)p:
(98)

where a and b are constants. Notice that : k1 � k2 = p0; k3 � k1 = p and k3 � k2 = p0 + p = q, where q is obviously
the momentum of the axial vector. After these substitutions we get

(k3 � k2)
�
TAV V
��� = �2miTPV V

�� �
(a� b)

8�2
i"����p

0�p�; (99)

(k3 � k1)
�TAV V

��� = �
(1� a)

8�2
i"����p

0�p�; (100)

(k1 � k2)
�TAV V

��� =
(1 + b)

8�2
i"����p

0�p�: (101)

In the expressions above it remains the arbitrariness related to the routing of internal lines now present in the
parameters a and b. In addition we note that there are no values for a and b in such a way that all the expected
relations among the involved Green's functions are simultaneously satis�ed. If we follow this line of reasoning and
include the contribution of the crossed diagram whose parametrization for the internal lines momenta can be assumed
as 8<: l1 = cp+ dp0

l2 = dp0 + (c� 1)p
l3 = cp+ (d+ 1)p0;

(102)

we will obtain
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(l3 � l2)
�TAV V

��� = �2miTPV V
�� �

(c� d)

8�2
i"����p

0�p�; (103)

(l1 � l2)
�TAV V

��� = �
(d+ 1)

8�2
i"����p

0�p�; (104)

(l3 � l1)
�TAV V

��� = �
(c� 1)

8�2
i"����p

0�p�: (105)

The addition of the two contributions gives us

q�TA!V V
��� = �2miTP!V V

�� �
(a� b+ c� d)

8�2
i"����p

0�p�; (106)

p�TA!V V
��� = �

(d� a+ 2)

8�2
i"����p

0�p�; (107)

p0�TA!V V
��� = �

(c� b� 2)

8�2
i"����p

0�p�: (108)

A closer contact with the usual results can be obtained if it is assumed the same signi�cance for the arbitrary internal
momenta, i.e., a = c and b = d in the eqs.(56)-(58): We get then

q�TA!V V
��� = �2miTP!V V

�� �
(a� b)

4�2
i"����p

0�p�; (109)

p�TA!V V
��� = �

(b� a+ 2)

8�2
i"����p

0�p�; (110)

p0�TA!V V
��� =

(b� a+ 2)

8�2
i"����p

0�p�: (111)

Finally, we choose the value a = 1 in the above expression to get

q�TA!V V
��� = �2miTP!V V

�� �
(1� b)

4�2
i"����p

0�p�; (112)

p�TA!V V
��� = �

(1 + b)

8�2
i"����p

0�p�; (113)

p0�TA!V V
��� =

(1 + b)

8�2
i"����p

0�p�: (114)

The result this way obtained, can be immediately recognized as the traditional one [2], [10], [11], [12]. It is now clear
that there is no value for the b parameter in order to preserve all Ward identities. Following the usual arguments
and choosing the value b = �1 the U(1) gauge symmetry is maintained, but the axial one is violated. Which have
become clear in the discussion above is that the sources of the violating terms as well as of the anomalous term are
AV two-point function structures.

VII. FINAL REMARKS AND CONCLUSIONS

Considering the facts stated in the last two sections we, apparently, have created a problematic situation if we want
to look at all the problems on the same way, maintaining all the physical constraints simultaneously. The results
produced by our treatment preserve all the arbitrariness intrinsic to the problem. All the considered Ward identities
are put in terms of the same condition. So, the question is to choose what we need to choose in order to get the
desirable consistency. The arbitrariness, however, can be related to the SV two-point function which is related to
the AV amplitude in a non-ambiguous way. Due to physical reasons, and also in the DR, the SV amplitude must
be identically vanishing as well as the AV one. The complex scalar �eld Ward identity must be preserved, as well as
the two vector currents must be conserved in the SV V process. Undoubtedly, only the choice �reg

�� = 0 can ful�ll
all these requirements. However, this choice eliminates all the ambiguities in the AV V amplitude which are the
ingredients usually used to justify the anomaly involved, and, apparently, forbids any violation of symmetry relations
for this amplitude. How can we reconciliate this situation? In order to answer this question it is necessary to assume
a conceptual and philosophical point of view for the problem: the traditional way used to justify the AV V triangle
anomaly cannot be maintained if we want to look at all the problems in the same way and the ambiguities cannot
play a relevant role in a consistent interpretation of the perturbative amplitudes. In this line of reasoning we �rst
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need to break fundamental symmetries and general principles of QFT, by assuming the SV and AV structures as
non-vanishing ones, for only after this get a justi�cation for the perturbative origin of the anomalies. A powerful
philosophical argument can be added to these objective ones. The AV V anomaly phenomenon is predicted for the
exact amplitudes, i.e., it is a fundamental phenomenon. However, in the eventual exact solutions for the corresponding
QFT`s equations of motion certainly the in�nities and the associated ambiguities must be absent. So, we cannot expect
that the justi�cation of the origin of the anomaly phenomenon, even in perturbative solutions, resides in exclusive
ingredients of the perturbative calculations as the in�nities and ambiguities are. Given this argument, the answer for
the question put above is intrinsically contained in the problem. Being a fundamental and unavoidable phenomenon,
the anomaly should be present in any explicit expression for the AV V amplitude. This means that no choices for the
arbitrariness can eliminate the anomaly as well as no regularization prescription or equivalent philosophy. Then we
can expect that a point of view for the anomalies can be constructed in accordance with all the others in perturbative
calculations. For this purposes it is necessary to evaluate explicitly the AV V and PV V amplitudes imposing the
consistency conditions, and expecting that the violations emerge in a natural way. Which have become clear in the
discussions presented here is that in the context of traditional regularization procedures di�erent recipes are used for
the treatment of identical mathematical structures depending on the context they appear.
The present status of the problem can be summarized as follows. In the situations where the DR can be used,

eliminating the ambiguities, we certainly adopt it. In the situations where the involving mathematical structures
are not naturally extendable to any dimension, which is the case of triangle anomalies, we adopt the surface's terms
evaluation, attributing a meaning to the ambiguous character of the perturbative amplitudes. In a certain way, in
situations where these problems do not simultaneously occur this option represents a possible choice for the involved
arbitrariness. However, admitting the intention of looking at all the fundamental interactions as parts of a more
general and uni�ed theory, it seems a patently absurd idea because this means that in a certain amplitude of the
same theory a value is attributed for the objects 4�� , having in mind consistency reasons, while in other amplitudes
the value can be taken as di�erent without any crisis of conscience. Certainly it would be very frustrating for any
physicist who got interested in studying an exact science to accept this situation as a �nal one. This situation is clearly
unacceptable and additional e�orts in order to achieve consistent and universal interpretations for the mathematical
inde�nitions intrinsic of the perturbative calculations are required. The strategy described in the section V seems to
put the analysis in the right direction.
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