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I. INTRODUCTION

The fermion dispersion relation to one-loop order at high temperature has been studied

several times in the literature [1,2]. The dispersion relation of a fermion, which gives

its energy ! as it propagate through the medium as a function of its momentum k, is

very important in di�erent kinds of physical situations [3{5] and has been focused on

various approximations and limits [6,7]. During the last few years, there has been some

controversy if the damping rate is gauge dependent or not and other problems [8]. It

has been proposed that a proper resummation cures such problems found in most one-

loop calculations [9]. In this article we reinvestigate the self-energy of massless fermions

interacting with massless bosons at high temperature in the framework of the linear sigma

model. This is the simpler, but instructive situation of fermions interacting with scalar

and pseudoscalar �elds. We calculate the fermion dispersion relation for massless bosons

and fermions in the limit k0; k � T and compute the fermion damping rate at rest, k = 0,

for the case where the e�ective dressed boson mass is considered.

In a recent paper [10] we proposed a modi�ed self-consistent resummation (MSCR)

which resums higher-order terms in a non-perturbative way in order to cure the problem

of breakdown of the perturbative expansion at �nite temperature up to one-loop order in

the perturbative expansion. We have shown that the MSCR, when applied to the study

of the chiral fermion meson model, has the essential features which lead to the satisfaction

of Goldstone's theorem and renormalization of the UV divergences, in the low and high

temperature regions. We have explicitly shown that the scheme breaks down around Tc

i.e., in the region of intermediate temperatures, since quantum 
uctuations are known to

play a major role there. In this region higher-order terms in the perturbative expansion

are required.

It is well known that at high temperature the perturbative expansion can also be

broken in theories with spontaneous symmetry breaking (SSB) or in massless �eld theories

because powers of the temperature can compensate for powers of the coupling constant,

even if the strength of the coupling is small [11,12]. Infrared divergence appears. When

a set of infrared-divergent diagrams is summed up one gets an infrared-�nite result. This

is implemented in the MSCR by the recalculation of the self-energy. So, a motivation

to study the fermion dispersion relation and damping rate at high temperature is the

fact that the MSCR showed itself an e�cient method to execute the resummation in a

divergence-free way in this region. Thus, in the computation of the damping rate of the

fermion, we shall use the dressed by interactions boson mass obtained in [10] rather than
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the zero mass parameter of the Lagrangian. In this way, this calculation is interesting

since it provides another simple example for the application of the MSCR method.

This paper is organized as follows. In Section II we study the fermion self-energy and

obtain the dispersion relation of the fermion with some of its interesting limits. In Section

III we compute the fermion damping rate at rest. Section IV is devoted to conclusions.

II. THE FERMION SELF-ENERGY

We describe the fermion-bosons vertex by the interaction Lagrangian extracted from

the linear sigma model [13]

Lint: = �g �� + i
5~� � ~�� ; (1)

where  , �, and � represent the quark, sigma and pion �elds, respectively, and g is a

non-dimensional positive coupling constant.

The fermion self-energy is de�ned by

D(!n;k)�1 = D0(!n;k)
�1 + �(!n;k); (2)

where D0(!n;p) is the tree-level fermion propagator, expressed as

D0(!n;k)
�1 = 
�k

� �m ; (3)

and � = �s + 
���, with �s, �0 and ~� being the contributions proportional to the unit,


0 and ~
 matrices respectively.

To one-loop order the fermion self-energy expression is given [14] by

�(k0; ~k) =

 
� lnZ2�loop

I

�D0 

!
1PI

= (4)

�g2T
X
n

Z
d3p

(2�)3
D0�(!n+l;p+ k)D0 (!n;p) +

�3g2T
X
n

Z
d3p

(2�)3
D0�(!n+l;p+ k)D0 (!n;p);

since the logarithm of the two-loop interaction partition function is found to be [10]:

lnZ2�loop
I =

1

2
g2
Z �

0

d�1d�2

Z
d3x1d

3x2

R
[d�]eS0[( � )2+ ( i
5~� � ~� )2]R

[d�]eS0
: (5)

In eq.(4) !n are the Matsubara frequencies, de�ned as !n = 2n�T for bosons and

!n = (2n+ 1)�T for fermions. The one-loop fermion self-energy is shown in Fig.1.
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An evaluation of eq.(4) at zero three momentum gives

�(k0; jkj = 0) = (�0 + �s)� + 3(�0 + �s)� = (6)

g2

2

Z 1

0

dpp2

�2
n�
!�

[k0(�k20 + !2
� + !2

 ) +m (�k20 � !2
� + !2

 )]

[k20 � (! � !�)2][k20 � (! + !�)2]
+

g2

2

Z 1

0

dpp2

�2
n 
! 

[2k0!2
 +m (k20 � !2

� + !2
 )]

[k2
0
� (! � !�)2][k20 � (! + !�)2]

+ 3(m� $ m�);

where !2
�;� � p2 +m2

�;� and !
2
 � p2 +m2

 .

Based on the facts that the linear sigma model serves as an e�ective model for the low

energy phase of QCD and we are working in the high temperature limit (T > 200MeV ),

we shall consider in the calculations through this paper massless fermions (m = 0), which

may be thought as the up and down quarks.

A. The Dispersion Relation Of Massless Fermions Interacting With Massless

Bosons

As a �rst approximation, in this subsection by considering the interaction of massless

fermions with massless bosons we get an e�ective thermal fermion mass and also calculate

the dispersion relation of the fermions.

The poles of the massless fermion propagator (m = �s = 0) gives the dispersion

relation which occurs at the positive-energy root of

[k0(k) + �0(k0; k)]
2 =

���~k + ~�(k0; ~k)
���2 ; (7)

where k � j~kj.
For our intentions, it is su�cient to evaluate eq.(4) in the limit k0; k � T , and consider

the interaction of massless bosons and fermions in order to obtain an e�ective fermion

thermal mass and dispersion relation. Thus,

�0(k0; k) = �1

8
g2
T 2

k
ln

����k0 + k

k0 � k

���� ; (8)

~�(k0; k) = �1

4
g2
T 2

k2

�
k0
2k

ln

����k0 + k

k0 � k

����� 1

�
~k � �e�~k; (9)

where we have de�ned 1

4
g2 T

2

k2

h
k0
2k
ln
���k0+k
k0�k

���� 1
i
� e�.

Some limits of expressions (8) and (9) are [15]:
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�0(k0 = 0; k) = 0; (10)

�0(k0; k = 0) = �g
2T 2

4k0
:

~�(k0; k = 0) = 0; (11)

~�(k0 = 0; k) =
g2T 2

4k
k̂:

De�ning the fermion mass as the location of the pole in the limit k = 0, we have

k0 + �0(k0; k! 0) = 0, which implies

M2

 =
g2T 2

4
: (12)

From (7), we see that the fermion dispersion relation is given by k0 + �0 = k(1 + e�),
that is

k0 � 1

2

M2
 

k
ln

����k0 + k

k0 � k

���� = k � M2
 

k

�
k0
2k

ln

����k0 + k

k0 � k
����� 1

�
; (13)

which has the following well known form in the low momentum expansion [1,15]

k0 =M +
1

3
k +

k2

3M 

: (14)

III. THE FERMION DAMPING RATE

Let us now proceed with the computation of the damping rate at rest (k = 0). These

calculations will be done considering the dressed boson mass in the internal lines of the

fermion self-energy rather than the zero boson mass parameter of the Lagrangian. In the

high temperature region, the bosons dressed masses (given by the MSCR) to be used in

internal lines of the fermion self-energy read

m2

� = m2

� �M2

B =
g2

3
T 2: (15)

So, eq.(6) may be written as

�0(k0; jkj = 0) = �2g2k0
�2

Z 1

0

dpp2
nB
!B

k20 �M2
B � 2p2

[k20 �M2
B]

2 � 4k20p
2
+ (16)

4g2k0
�2

Z 1

0

dpp4
n 
! 

1

[k20 �M2
B]

2 � 4k20p
2
;
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where nB and n are the usual distribution functions for bosons and fermions given

respectively by

nB(!B;T ) =
1

e�!B � 1
; (17)

n (! ;T ) =
1

e�! + 1
: (18)

with !B �
p
p2 +M2

B and ! � jpj.
It is worth to note that for k0 � MB in eq.(16), it is easy to see that �0(k0; jkj = 0)

reduces to eq.(10-b) which is a stable state without singularities and we have that there

is no decay.

An explicit evaluation of eq.(16) furnishes

�0 = � g2

4�2
�

Z 1

0

dx
nB(e!B)e!B

�
1 +

��

4

�
1

x� � �
2

� 1

x+ � �
2

��
+ (19

�3g2

8�2
�

Z 1

0

dxn (e! )� 1

x� � �
2

+
1

x+ � �
2

�
� 3g2T 2

�2�

Z 1

0

dxx2
nB(e!B)e!B � 3g2T 2

�2�

Z 1

0

dxx2
n (e! )e! ;

with the de�nitions � � k0 � M2

B

k0
, e!B � p�2p2 + �2M2

B, e! � j�pj and �p � x. The

interesting physics happens when k0 > MB. Otherwise (if k0 < MB) one would get

imaginary (forbidden) frequency.

The expression for �0 in (19) has singularities, and now we adopt the prescription

� = !� i
, since in general k0 is complex, where ! is the real frequency and 
 is the real

damping constant. With this assumption for �, eq.(19) is expressed as

�0 = � g2

4�2
�

Z 1

0

dx
nB(e!B)e!B

2641 + �

2

0B@ 2x

�
� !�

2x

�
� !

�2
+ 
2

�
2x

�
+ !�

2x

�
+ !

�2
+ 
2

1CA
375 + (20)

i
g2

8�2
�2
Z 1

0

dx
nB(e!B)e!B

264 
�
2x

�
� !

�2
+ 
2

+

�

2x

�
+ !

�2
+ 
2

375 +

�3g2

4�2
�

�

Z 1

0

dxn (e! )
264 2x

�
� !�

2x

�
� !

�2
+ 
2

+

2x

�
+ !�

2x

�
+ !

�2
+ 
2

375 +

�i3g
2

4�2
�

�

Z 1

0

dxn (e! )
264� 
�

2x

�
� !

�2
+ 
2

+

�

2x

�
+ !

�2
+ 
2

375 +

�3g2T 2

�2�

Z 1

0

dxx2
nB(e!B)e!B � 3g2T 2

�2�

Z 1

0

dxx2
n (e! )e! :
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Now making use of the de�nition of the delta function

�(y) =
lim

�! 0
1

�

�

y2 + �2
; (21)

and the de�nitions

F (x; !) �
2x

�
� !�

2x

�
� !

�2
+ 
2

�
2x

�
+ !�

2x

�
+ !

�2
+ 
2

; (22)

and

G(x; !) �
2x
�
� !�

2x
�
� !

�2
+ 
2

+
2x
�
+ !�

2x
�
+ !

�2
+ 
2

; (23)

we get

�0 = � g2

4�2
�

Z 1

0

dx
nB(e!B)e!B

h
1 +

�

2
F (x; !)

i
+ i

g2

8�

24 !2q
!2

4
+M2

B

1

e
�

q
!2

4
+M2

B � 1

35+ (24)

�3g2

4�2
�

�

Z 1

0

dxn (e! )G(x; !) + i
3g2

4�

j!j
e
�j!j
2 + 1

+

�3g2T 2

�2�

Z 1

0

dxx2
nB(e!B)e!B � 3g2T 2

�2�

Z 1

0

dxx2
n (e! )e! :

Here we use some results from high temperature expansion of one-loop integrals derived

by Dolan and Jackiw in [12]:Z 1

0

dx
nB(e!B)e!B =

�T

2MB

+
1

2
ln

�
MB

4�T

�
+O

�
M2

B

T 2

�
' �

p
3

2g
; (25)

where in eq.(25) we have used from (15) that MB = gTp
3
. This means that the �rst term

in the r.h.s. of eq.(24) is g
p
3

8�
� 1. On the other hand, for the last two terms in the r.h.s.

of this same expression, we have

T 2

�2

Z 1

0

dxx2
nB(e!B)e!B +

T 2

�2

Z 1

0

dxx2
n (e! )e! =

�
T 2

6
� MBT

2�
+O(g2)

�
+

�
T 2

12

�
! T 2

4
:

(26)

The parts involving F (x; !) andG(x; !) are less important contributions in comparison

to the dominant term that is proportional to g2T 2

!
, mainly for small !. So, in a �rst glance

one can neglect them. Putting these results in eq.(24) and assuming weak damping

(
 � !), the leading terms of the real frequency and damping rate can be written

respectively as
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!2 =
9g2T 2

4
; (27)


 =
3g2

32�

24 !2q
!2

4
+M2

B

1

e
�

q
!2

4
+M2

B � 1

35+
9g2

16�

!

e
�!

2 + 1
' 3g2

32�

!

e
�!

2 � 1
+

9g2

16�

!

e
�!

2 + 1
:

(28)

Equations (27) and (28) has the following interpretation: The real frequency ! is

of order gT , in concordance with (12). The damping is proportional to the probability

n (
1

2
!) of having a fermion with energy 1

2
! and a probability nB(

1

2
!) of having a boson

with energy 1

2
!. These probabilities are weighted by numerical factors and the available

phase space ! [14]. The distribution functions can be expanded for low energies, nB(
1

2
!) '

2T=! and n (
1

2
!) ' 1=2 and the damping rate reduces to


 ' 3g2T

16�
+

27g3T

128�
: (29)

IV. CONCLUDING REMARKS

In this paper, we have considered the fermion boson interaction at �nite temperature.

First, we have calculated the self-energy of the fermions due the interaction with scalar-

bosons and pseudoscalar-bosons in the framework of the linear sigma model.

Next, we have calculated the fermion dispersion relation in the limit k0; k � T of

massless fermions interacting with massless bosons and some of its limits. Also, we have

obtained the thermal fermion mass which is of order gT .

Finally, we have computed the frequency and the damping rate of the fermion at rest,

considering the dressed boson masses in the internal lines of the fermion self-energy rather

than the zero mass parameter of the Lagrangian. The damping rate of the fermion was

found to be of order g2T from the boson internal line of the fermion self-energy plus a

part which is of order g3T from the fermion internal line of the self-energy.

The calculation of the fermion damping rate at rest constitutes another simple but

instructive application of the MSCR method.
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FIG. 1. The one-loop fermion self-energy. The pseudoscalar-boson contribution (a) and the

scalar-boson contribution (b).


