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Abstract

Starting from a solution of the problem of a mechanical oscillator coupled to a scalar �eld

inside a re
ecting sphere of radius R, we study the behaviour of the system in free space

as the limit of an arbitrarily large radius in the con�ned solution. From a mathematical

point of view we show that this way of facing the problem is not equivalent to consider

the system a priori embedded in in�nite space. In particular, the matrix elements of

the transformation turning the system to principal axis, do not tend to distributions in

the limit of an arbitrarily large sphere as it should be the case if the two procedures

were mathematically equivalent. Also, we introduce "dressed" coordinates which allow

an exact description of the oscillator radiation process for any value of the coupling, strong

or weak. In the case of weak coupling, we recover from our exact expressions the well

known decay formulas from perturbation theory.
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1 Introduction

Since a long time ago the experimental and theoretical investigations on the polarization

of atoms by optical pumping and the possibility of detecting changes in their polariza-

tion states has allowed the observation of resonant e�ects associated to the coupling of

these atoms with strong radiofrequency �elds [1]. As remarked in [2], the theoretical un-

derstanding of these e�ects using perturbative methods requires the calculation of very

high-order terms in perturbation theory, what makes the standard Feynman diagrams

technique practically unreliable in those cases. The trials of treating non-perturbativelly

such kind of systems consisting of an atom coupled to the electromagnetic �eld, have

lead to the idea of "dressed atom", introduced in refs [3] and [4]. This approach consists

in quantizing the electromagnetic �eld and analyzing the whole system consisting of the

atom coupled to the electromagnetic �eld. Along the years since then, this concept has

been extensively used to investigate several situations involving the interaction of atoms

and electromagnetic �elds. For instance, atoms embedded in a strong radiofrequency �eld

background in refs. [5] and [6], atoms in intense resonant laser beans in ref. [7] or the

study of photon correlations and quantum jumps. In this last situation, as showed in refs.

[8], [9] and [10], the statistical properties of the random sequence of outcoming pulses

can be analyzed by a broadband photodetector and the dressed atom approach provides

a convenient theoretical framework to perform this analysis.

Besides the idea of dressed atom in itself, another aspect that desserves attention is

the non-linear character of the problem involved in realistic situations, which implies, as

noted above, in very hard mathematical problems to be dealt with. An way to circunvect

these mathematical di�culties, is to assume that under certain conditions the coupled

atom-electromagnetic �eld system may be approximated by the system composed of an



{ 2 { CBPF-NF-006/00

harmonic oscillator coupled linearly to the �eld trough some e�ective coupling constant

g.

In this sense, in a slightly di�erent context, recently a signi�cative number of works has

been spared to the study of cavity QED, in particular to the theoretical investigation of

higher-generation Schrodinger cat-states in high-Q cavities, as has been done for instance

in [11]. Linear approximations of this type have been applied along the last years in

quantum optics to study decoherence, by assuming a linear coupling between a cavity

harmonic mode and a thermal bath of oscillators at zero temperature, as it has been done

in [12] and [13]. To investigate decoherence of higher generation Schrodinger cat-states

the cavity �eld reduced matrix for these states could be calculated either by evaluating

the normal-ordering characteristic function, or by solving the evolution equation for the

�eld-resevoir state using the normal mode expansion, generalizing the analysis of [12] and

[13].

In this paper we adopt a general physicist's point of view, we do not intend to describe

the speci�c features of a particular physical situation, instead we analyse a simpli�ed linear

version of the atom-�eld system and we try to extract the more detailed information we

can from this model. We take a linear simpli�ed model in order to try to have a clearer

understanding of what we believe is one of the essential points, namely, the need of

non-perturbative analytical treatments to coupled systems, which is the basic problem

underlying the idea of dressed atom. Of course, such an approach to a realistic non-linear

system is an extremelly hard task and here we make what we think is a good agreement

between physical reality and mathematical reliability, with the hope that in future work

our approach could be transposed to more realistic situations.

We consider a non relativistic system composed of a harmonic oscillator coupled lin-

early to a scalar �eld in ordinary Euclidean 3-dimensional space. We start from an analysis
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of the same system con�ned in a re
ecting sphere of radius R, and we assume that the

free space solution to the radiating oscillator should be obtained taking a radius arbi-

trarily large in the R-dependent quantities. The limit of an arbitrarily large radius in

the mathematics of the con�ned system is taken as a good description of the ordinary

situation of the radiating oscillator in free space. We will see that this is not equivalent to

the alternative continuous formulation in terms of distributions, which is the case when

we consider a priori the system in unlimited space. The limiting procedure adopted here

allows to avoid the inherent ambiguities present in the continuous formulation. From a

physical point of view we give a non-perturbative treatment to the oscillator radiation

introducing some coordinates that allow to divide the coupled system into two parts,

the "dressed" oscillator and the �eld, what makes unecessary to work directly with the

concepts of "bare" oscillator, �eld and interaction to study the radiation process. These

are the main reasons why we study a simpli�ed linear system instead of a more realis-

tic model, to make evident some subtleties of the mathematics involved in the limiting

process of taking a cavity arbitrarily large, and also to exhibit an exact solution valid for

weak as well as for strong coupling. These aspects would be masked in the perturbative

approach used to study non-linear couplings.

We start considering a harmonic oscillator q0(t) of frequency !0 coupled linearly to a

scalar �eld �(r; t), the whole system being con�ned in a sphere of radius R centered at

the oscillator position. The equations of motion are,

�q0(t) + !20q0(t) = 2�
p
gc

Z R

0

d3r�(r; t)�(r) (1)

1

c2
@2�

@t2
�r2�(r; t) = 2�

p
gcq0(t)�(r) (2)

which, using a basis of spherical Bessel functions de�ned in the domain < jrj < R, may
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be written as a set of equations coupling the oscillator to the harmonic �eld modes,

�q0(t) + !20q0(t) = �

1X
i=1

!iqi(t) (3)

�qi(t) + !2i qi(t) = �!iq0(t): (4)

In the above equations, g is a coupling constant, � =
p
2g�! and �! = �c=R is the

interval between two neighbouring �eld frequencies, !i+1 � !i = �! = �c=R.

2 The transformation to principal axis and the eigen-

frequencies spectrum

2.1 - Coupled harmonic Oscillators

Let us consider for a moment the problem of a harmonic oscillator q0 coupled to N

other oscillators. In the limit N ! 1 we recover our original situation of the coupling

oscillator-�eld after rede�nition of divergent quantities, in a manner analogous as renor-

malization is done in �eld theories. In terms of the cuto� N the coupled equations (3) and

(4) are simply rewritten taking the upper limit N instead of 1 for the summation in the

right hand side of Eq.(3) and the system of N + 1 coupled oscillators q0 fqig corresponds

to the Hamiltonian,

H =
1

2

"
p20 + !20q

2
0 +

NX
k=1

p2k + !2kq
2
k � 2�!kq0qk

#
: (5)

The Hamiltonian (5) can be turned to principal axis by means of a point tranformation,

q� = tr�Qr ; p� = tr�Pr; (6)

performed by an orthonormal matrix T = (tr�), � = (0; k), k = 1; 2; ::: N , r = 0; :::N .

The subscript 0 and k refer respectively to the oscillator and the harmonic modes of the
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�eld and r refers to the normal modes. The transformed Hamiltonian in principal axis is

H =
1

2

NX
r=0

(P 2
r + 
2

rQ
2
r); (7)

where the 
r's are the normal frequencies corresponding to the possible collective oscil-

lation modes of the coupled system.

Using the coordinate transformation q� = tr�Qr in the equations of motion and explic-

itly making use of the normalization condition
PN

�=0(t
r
�)

2 = 1, we get,

trk =
�!k

!2k � 
2
r

tr0; (8)

tr0 =

"
1 +

NX
k=1

�2!2k
(!2k � 
2

r)
2

#� 1

2

(9)

and

!20 � 
2
r = �2

NX
k=1

!2k
!2k � 
2

r

: (10)

There are N + 1 solutions 
r to Eq.(10), corresponding to the N + 1 normal collective

oscillation modes. To have some insight into these solutions, we take 
r = 
 in Eq.(10)

and transform the right hand term. After some manipulations we obtain

!20 �N�2 � 
2 = �2
NX
k=1


2

!2k � 
2
(11)

It is easily seen that if !20 > N�2 Eq.(11) yelds only positive solutions for 
2, what means

that the system oscillates harmonically in all its modes. Indeed, in this case the left hand

term of Eq.(11) is positive for negative values of 
2. Conversely the right hand term is

negative for those values of 
2. Thus there is no negative solution of that equation when

!20 > N�2. On the other hand it can be shown that if !20 < N�2, Eq.(11) has a single

negative solution 
2
�. In order to prove it let us de�ne the function

I(
2) = (!20 �N�2)� 
2 � �2
NX
k=1


2

!2k � 
2
(12)
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Accordingly Eq.(11) can be rewritten as I(
2) = 0. It can be noticed that I(
2)!1 as


2 ! �1 and

I(
2 = 0) = !20 �N�2 < 0 (13)

Furthermore I(
2) is a monotonically decreasing function in that interval. Consequently

I(
2) = 0 has a single negative solution when !20 < N�2 as we have pointed out. This

means that there is an oscillation mode whose amplitude varies exponentially and that

does not allows stationary con�gurations. We will not care about this last situation. Thus

we assume !20 > N�2 and de�ne the renormalized oscillator frequency �! [14],

�! =
q
!20 �N�2: (14)

In terms of the renormalized frequency Eq.(10) becomes,

�!2 � 
2
r = �2

NX
k=1


2
r

!2k � 
2
r

: (15)

From Eqs. (8), (9) and (15), a straightforward calculation shows the orthonormality

relations for the transformation matrix (tr�).

We get the transformation matrix elements for the oscillator-�eld system by taking

the limit N ! 1 in the above equations. Recalling the de�nition of � from Eqs. (3)

and (4), we obtain after some algebraic manipulations, from Eqs. (15), (8) and (9), the

matrix elements in the limit N !1,

tr0 =

rq

R
2�gc (


2
r � �!2)2 + 1

2(3

2
r � �!)2 + �gR

2c 

2
r

(16)

and

trk =
�!k

!2k � 
2
r

tr0: (17)



{ 7 { CBPF-NF-006/00

2.2 - The eigenfrequencies spectrum

Let us now return to the coupling oscillator-�eld by taking the limit N ! 1 in

the relations of the preceeding subsection. In this limit it becomes clear the need for the

frequency renormalization in Eq.(14). It is exactly the analogous of a mass renormalization

in �eld theory, the in�nite !0 is chosen in such a way as to make the renormalized frequency

�! �nite. Remembering Eq.(15) the solutions with respect to the variable 
 of the equation

�!2 �
2 =
2�gc

R

1X
k=1


2

!2k � 
2
; (18)

give the collective modes frequencies. We remember !k = k �c
R
, k = 1; 2; :::, and take a

positive x such that 
 = x�c
R
. Then using the identity,

1X
k=1

x2

k2 �
2
=

1

2
(1 � �x cot�x); (19)

Eq.(18) may be rewritten in the form,

cotg�x =
c

Rg
x+

1

�x
(1� R�!2

�gc
): (20)

The secant curve corresponding to the right hand side of the above equation cuts only

once each branch of the cotangent in the left hand side. Thus we may label the solutions

xr as xr = r + �r, 0 < �r < 1, r = 0; 1; 2:::, and the collective eigenfrequencies are,


r = (r + �r)
�c

R
; (21)

the �'s satisfying the equation,

cot(��r) =

2
r � �!2


r�g
+

c


rR
: (22)

The �eld �(r; t) can be expressed in terms of the normal modes. We start from its

expansion in terms of spherical Bessel functions,

�(r; t) = c

1X
k=1

qk(t)�k(r); (23)
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where

�k(r) =
sin!k

c
jrj

r
p
2�R

: (24)

Using the principal axis transformation matrix together with the equations of motion

we obtain an expansion for the �eld in terms of an orthonormal basis associated to the

collective normal modes,

�(r; t) = c

1X
s=0

Qs(t)�s(r); (25)

where the normal collective Fourier modes

�s(r) =
X
k

tsk
sin!k

c
jrj

r
p
2�R

(26)

satisfy the equation

(�
2
s

c2
��)�s(r) = 2�

r
g

c
�(r)ts0; (27)

which has a solution of the form

�(r; t) = �
r
g

c

ts0
2jrjsin�s sin(


s

c
jrj � �s): (28)

To determine the phase �s we expand the right hand term of Eq.(28) and compare with

the formal expansion (26). This imply the condition

sin(

s

c
R � �s) = 0: (29)

Remembering from Eq.(21) that there is 0 < �s < 1 such that 
s = (s+ �s)
�
R
, it is easy

to show from the condition in Eq.(29) that the phase 0 < �s < � has the form

�s = �s�: (30)

Comparing Eqs.(24) and (26) and using the explicit form (16) of the matrix element ts0

we obtain the expansion for the �eld in terms of the normal collective modes,

�(r; t) = �
p
gc

2

X
s

Qssin(

s
c
jrj � �s)

jrj
q
sin2�s + (�R2c )

2(1 � sin�scos�s

sR=c

)
(31)
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3 The limit R!1 - mathematical aspects

3.1 - Discussion of the mathematical problem

Unless explicitly stated, in the remaining of this paper the symbol R ! 1 is to

be understood as the situation of a cavity of �xed, arbitrarily large radius. In order to

compare the behaviour of the system in a very large cavity to that it would be in free

space, let us �rstly consider the system embedded in an a priori in�nite Euclidean space;

in this case to compute the quantities describing the system means essentially to replace

by integrals the discrete sums appearing in the con�ned problem, taking direcltly R =1.

An alternative procedure is to compute the quantities describing the system con�ned

in a sphere of radius R and take the limit R ! 1 afterwards. This last approach to

describe the system in free space should keep in some way the "memory" of the con�ned

system. To be physically equivalent one should expect that the two approachs give the

same results. We will see that at least from a mathematical point of view this is not

exactly the case. We remark that a solution to the problem of a system composed of an

oscillator coupled to a �eld in free space, is already known since a long time ago [15] in

the context of Bownian motion. This solution is quite di�erent from ours, in the sense

that it not concerns the system con�ned to a box and also that it is limited to the dipole

term from the multipolar expansion to the �eld.

In the continuous formalism of free space the �eld normal modes Fourier components

(analogous to the components �s in Eq.(26)) are,

�
 = h(
)

Z 1

0

d!
!

!2 � 
2

sin!
c
jrj

jrj ; (32)

where

h(
) =
2g
p

(
2 � �!2)2 + �g2
2
(33)
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and where the we have taken the appropriate continuous form of Eqs.(16) and (17).

Splitting !=(!2 � 
2) into partial fractions we get

�
 = h(
)

Z +1

�1

d!
1

! �


sin!
c
jrj

jrj : (34)

The pole at ! = 
 prevents the existence of the integral in Eq.(34). The usual way

to circumvect this di�culty is to replace the integral by one of the quantities,

Lim�!0

Z +1

�1

d!
1

! � (
� i�)

sin!
c
jrj

jrj �
Z +1

�1

d!��(! � 
)
sin!

c
jrj

jrj ; (35)

where

��(! � 
) =
1

�
P (

1

! � 

)� i�(! � 
); (36)

with P standing for principal value. In our case this rede�nition of the normal modes

Fourier components may be justi�ed by the fact that both integrals in Eq.(35) are solutions

of the equations of motion (1) and (2) for r 6= 0, and so the solution should be a linear

combination of them. The situation is di�erent if we adopt the point of view of taking the

limit R!1 in the solution of the con�ned problem. In this case the Fourier component

�
 is obtained by taking the limit R ! 1 in the expression for the �eld, Eq(28), what

allows to obtain an uniquely de�ned expression to the normal modes Fourier components,

to each �
 corresponding a phase �
 (the limit R!1 of �s in Eq.(22) given by

cot�
 =
1

�g


2 � �!2



: (37)

Also, comparing Eqs.(35), (36) and (26) we see that the adoption of the continuous formal-

ism is equivalent to assume that in the limitR!1 the elements tsi of the transformation

matrix should be replaced by �+(!�
) or by ��(!�
). This procedure is, from a math-

ematical point of view, perfectly justi�ed but at the price of loosing uniqueness in the

de�nition of the �eld components.
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If we take the solution of the con�ned problem and we compute the matrix elements tsi

for R arbitrarily large, we will see in subsection 3.2 that these elements do not tend to dis-

tributions in this limit. As R becomes larger and larger the set of non-vanishing elements

tsi concentrate for each i in a small neighbourhood of !i. In the limit R !1 the whole

set of the matrix elements tsi contains an arbitrarily large number of elements quadrat-

ically summables [16]. For the matrix elements ts0 we obtain a quadratically integrable

expression.

In the continuous formulation the unit matrix, corresponding to the absence of cou-

pling, has elements E

! = �(! � 
), while if we start from the con�ned situation, it can

be veri�ed that in the limit g ! 0, R!1, the matrix T = (ts�) tends to the usual unit

matrix of elements E!;
 = �!;
.

The basic quantity describing the system, the transformation matrix T = (ts�) has,

as we will see, di�erent properties in free space, if we use the continuous formalism or

if we adopt the procedure of taking the limit R ! 1 from the matrix elements in the

con�ned problem . In the �rst case we must de�ne the matrix elements t
! linking free

�eld modes to normal modes, as distributions. On the other side adopting the second

procedure we will �nd that the limiting matrix elements LimR!1 t
s
i are not distributions,

but well de�ned �nite quantities. The two procedures are not equivalent, the limitR!1

does not commute with other operations. In this note we take as physically meaningfull

the second procedure, we solve �rst the problem in the con�ned case (�nite R) and take

afterwards the limit of in�nite (in the sense of arbitrarily large) radius of the cavity. In the

next subsection we perform a detailed analysis of the limit R!1 of the transformation

matrix (tr�).
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3.2 - The transformation matrix in the limit R!1

From Eqs. (16) and (17) we obtain for R arbitrarily large,

tr0 ! Lim�
!0 t


�!

p
�
 = Lim�
!0

p
2g


p
�
p

(
2 � �!2)2 + �2g2
2
: (38)

and

trk =
2g!k�!

(!k + 
r)(!k � 
r)


rp
(
2

r � �!2)2 + �2g2
2
r

; (39)

where we have used the fact that in this limit �! = �
 = �c
R
. The matrix elements t
�!

are quadratically integrable to one,
R
(t
�!)

2 d
 = 1, as may be seen using Cauchy theorem.

For R arbitrarily large (�! = �c
R
! 0), the only nonvanishing matrix elements tri are

those for which !i � 
r � �!. To get explicit formulas for these matrix elements in the

limitR !1 let us consider R large enough such that we may take �! � �
 and consider

the points of the spectrum of eigenfrequencies 
 inside and outside a neighbourhood �

(de�ned in Eqs.(3) and (4) of !i. We note that R > 2�c
g

implies �
2 > �!, then we may

consider R such that the right (left) neighbourhood �
2 of !i contains an integer number,

�, of frequencies 
r,

��! =
�

2
=

r
g�!

2
: (40)

If R is arbitrarily large we see from (40) that �
2 is arbitrarily small, but � grows at the same

rate, what means �rstly that the di�erence !i�
r for the 
r's outside the neighbourhood

� of !i is abitrarily larger than �!, implying that the corresponding matrix elements tri

tend to zero (see Eq.(39)). Secondly all frequencies 
r inside the neighbourhood � of !i

are arbitrarily close to !i, being in arbitrarily large number. Only the matrix elements tri

corresponding to these frequencies 
r inside the neighbourhood � of !i are di�erent from

zero. For these we make the change of labels,

r = i� n (!i � �

2
< 
r < !i) ; r = i+ n (!i > 
r > !i +

�

2
); (41)
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i = 1; 2; :::. We get, from Eq.(39)

tii =
g!ip

(
2
r � �!2)2 + �2g2!2i

1

�i
(42)

and

ti�ni =
�g!ip

(
2
r � �!2)2 + �2g2!2i

1

n� �i
; (43)

where �i satis�es Eq.(22) in this case,

cot(��i) =
!2i � �!2

!i�g
: (44)

Using the formula

�2cosec2(��i) =
1

�i
+

1X
n=1

�
1

(n+ �i)2
+

1

(n� �i)2

�
; (45)

it is easy to show the normalization condition for the matrix elements (42) and (43),

(tii)
2 +

1X
n=1

(ti�ni )2 + (ti+ni )2 = 1 (46)

and also the orthogonality relation,

X
r

tri t
r
k = 0 (i 6= k) (47)

in the limit R!1.
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3.3 - The transformation matrix in the limit g = 0

From Eq. (16) we get for arbitrary R,

Limg!0 t
r
0 =

(
1; if 
r = �!;

0; otherwise.
: (48)

From Eqs.(42) and (43) we see that the matrix elements tri for i 6= r all vanish for g = 0.

Also, using Eqs.(21) and (??) we obtain for small g,

tii �
2g
i!i

(
2
i � �!2)(!i + 
i)

1

�i
; (49)

or, expanding �i for small g from Eq.(44)

tii(g = 0) = 1 (50)

We see from the above expressions that in the limitR!1 the matrix (tr�) remains an

orthonormal matrix in the usual sense as for �nite R. With the choice of the procedure

of taking the limit R ! 1 from the con�ned solution, the matrix elements do not

tend to distributions in the free space limit as it would be the case using the continuous

formalism. All non- vanishing matrix elements tri are concentrated inside a neighbourhood

� of !i, their set is a quadratically summable enumerable set. The elements (tr0) tend to

a quadratically integrable expression.

4 The Radiation Process

We start this section de�ning some coordinates q00, q
0
i associated to the "dressed" mechan-

ical oscillator and to the �eld. These coordinates will reveal themselves to be suitable to

give an appealling non-perturbative description of the oscillator-�eld system. The gen-

eral conditions that such coordinates must satisfy, taking into account that the system is

rigorously described by the collective normal coordinates modes Qr, are the following:
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- In reason of the linear character of our problem the coordinates q00, q
0
i should be linear

functions of the collective coordinates Qr

- They should allow to construct ortogonal con�gurations corresponding to the sepa-

ration of the system into two parts, the dressed oscillator and the �eld.

- The set of these con�gurations should contain the ground state, �0.

The last of the above conditions restricts the transformation between the coordinates

q0�, � = 0; i = 1; 2; ::: and the collective ones Qr to those leaving invariant the quadratic

form, X
r


rQ
2
r = �!(q00)

2 +
X
i

!i(q
0
i)
2 (51)

Our con�gurations will behave in a �rst approximation as independent states, but they

will evolve as the time goes on, as if transitions among them were being in progress,

while the basic con�guration �0 represents a rigorous eigenstate of the system and does

not change with time. The new coordinates q0� describe dressed con�gurations of the

oscillator and �eld quanta.

4.1 - The dressed coordinates q0�

The eigenstates of our system are represented by the normalized eigenfunctions,

�n0n1n2:::(Q; t) =
Y
s

"
NnsHns(

r

s

�h
Qs)

#
�0e

�i
P

s
ns
st; (52)

where Hns is the ns-th Hermite polynomial, Nns is a normalization coe�cient,

Nns = (2�nsns!)
� 1

2 (53)

and �0 is a normalized representation of the ground state,

�0 = exp

"
�
X
s


sQ
2
s

2�h
� 1

4
ln

s

��h

#
: (54)

To describe the radiation process, having as initial condition that only the mechanical

oscillator, q0 be excited, the usual procedure is to consider the interaction term in the
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Hamiltonian written in terms of q0, qi as a perturbation, which induces transitions among

the eigenstates of the free Hamiltonian. In this way it is possible to treat approximatelly

the problem having as initial condition that only the bare oscillator be excited. But as

is well known this initial condition is physically not consistent due to the divergence of

the bare oscillator frequency if there is interaction with the �eld. The traditional way to

circumvect this di�culty is by the renormalization procedure, introducing perturbativelly

order by order corrections to the oscillator frequency. Here we adopt an alternative

procedure, we do not make explicit use of the concepts of interacting bare oscillator and

�eld, described by the coordinates q0 and fqig, we introduce "dressed" coordinates q00 and

fq0ig for, respectivelly the "dressed" oscillator and the �eld, de�ned by,

r
�!�
�h
q0� =

X
r

tr�

r

r

�h
Qr; (55)

valid for arbitrary R, which satisfy the condition to leave invariant the quadratic form

(51) and where �!� = �!; f!ig. In terms of the bare coordinates the dressed coordinates

are expressed as,

q0� =
X
�

���q�; (56)

where

��� =
1p
�!�

X
r

tr�t
r
�

p

r: (57)

As R becomes larger and larger we get for the various coe�cients � in Eq.(57):

a) from Eq.(38),

LimR!1 �00 =
1p
�!

Z 1

0

2g
2
p

d


(
2 � �!2)2 + �2g2
2
� A00(�!; g): (58)

b) To evaluate �0i and �0i in the limit R ! 1, we remember from the discussion in

subsection 3.2 that in the the limit R ! 1, for each i the only non-vanishing matrix

elements tri are those for which the corresponding eigenfrequencies 
r are arbitrarily near
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the �eld frequency !i. We obtain from Eqs. (38), (42) and (43),

LimR!1 �i0 = Lim�!!0
1p
!i

(2g2!5i�!)
1

2

(!2i � �!2)2 + �2g2!2i
(
1X
n=1

2�i
n2 � �2i

� 1

�i
) (59)

and

LimR!1 �0i = Lim�!!0
1p
�!

(2g2!5i�!)
1

2

(!2i � �!2)2 + �2g2!2i
(

1X
n=1

2�i
n2 � �2i

� 1

�i
) (60)

c) Since in the limitR!1 the only non-zero matrix elements tri corresponds to 
r = !i,

the product tri t
r
k vanishes for !i 6= !k. Then we obtain from Eqs.(57) and (46)

LimR!1 �ik = �ik: (61)

Thus, from Eqs.(56), (61), (59), (60) and (58) we can express the dressed coordinates q0�

in terms of the bare ones, q� in the limit R!1,

q00 = A00(�!; g)q0; (62)

q0i = qi: (63)

It is interesting to compare Eqs.(56) with Eqs.(62), (63). In the case of Eqs.(56)

for �nite R, the coordinates q00 and fq0ig are all dressed, in the sense that they are all

collective, both the �eld modes and the mechanical oscillator can not be separeted in

this language. In the limit R ! 1, Eqs.(62) and (63) tells us that the coordinate q00

describes the mechanical oscillator modi�ed by the presence of the �eld in a indissoluble

way, the mechanical oscillator is always dressed by the �eld. On the other side, the dressed

harmonic modes of the �eld, described by the coordinates q0i are identical to the bare �eld

modes, in other words, the �eld keeps in the limit R ! 1 its proper identity, while

the mechanical oscillator is always accompanied by a cloud of �eld quanta. Therefore we

identify the coordinate q00 as the coordinate describing the mechanical oscillator dressed by

its proper �eld, being the whole system divided into dressed oscillator and �eld, without
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appeal to the concept of interaction between them, the interaction being absorbed in the

dressing cloud of the oscillator. In the next subsections we use the dressed coordinates to

describe the radiation process.

4.2 - Dressed con�gurations and the radiation process

Let us de�ne for a �xed instant the complete orthonormal set of functions,

 �0�1:::(q
0) =

Y
�

"
N��H��(

r
�!�
�h
q0�)

#
�0; (64)

where q0� = q00; q
0
i, �!� = �!; !i and N�� and �0 are as in Eq.(52). Using Eq.(55) the

functions (64) can be expressed in terms of the normal coordinates Qr. But since (52)

is a complete set of orthonormal functions, the functions (64) may be written as linear

combinations of the eigenfunctions of the coupled system (we take t = 0 for the moment),

 �0�1:::(q
0) =

X
n0n1:::

T n0n1:::
�0�1:::

(0)�n0n1n2:::(Q; 0); (65)

where the coe�cients are given by,

T n0n1:::
�0�1:::

(0) =

Z
dQ �0�1:::�n0n1n2 :::; (66)

the integral extending over the whole Q-space.

We consider the particular con�guration  in which only one dressed oscillator q0� is

in its N -th excited state,

 0:::N(�)0:::(q
0) = NNHN (

r
�!�
�h
q0�)�0: (67)

The coe�cients (66) can be calculated in this case using Eqs.(66), (64) and (55) with the

help of the theorem [17],

1

m!

"X
r

(tr�)
2

#m
2

HN (

P
r t

r
�

q

r
�h QrqP

r(t
r
�)

2
) =

X
m0+m1+:::=N

(t0�)
m0(t1�)

m1:::

m0!m1!:::
Hm0

(

r

0

�h
Q0)Hm1

(

r

1

�h
Q1):::

(68)
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We get,

T n0n1 :::
0:::N(�)0::: = (

m!

n0!n1!:::
)
1

2 (t0�)
n0(t1�)

n1:::; (69)

where the subscripts � = 0; i refer respectivelly to the dressed mechanical oscillator and

the harmonic modes of the �eld and the quantum numbers are submited to the constraint

n0 + n1 + ::: = N .

In the following we study the behaviour of the system with the initial condition that

only the dressed mechanical oscillator q00 be in the N -th excited state. We will study

in detail the particular cases N = 1 and N = 2, which will be enough to have a clear

understanding of our approach.

- N = 1: Let us call ��
1 the con�guration in which only the dressed oscillator q0� is in

the �rst excited level. The initial con�guration in which the dressed mechanical oscillator

is in the �rst excited level is �01. We have from Eq.(67), (65) (69) and (55) the following

expression for the time evolution of the �rst-level excited dressed oscillator q0�,

��
1 =

X
�

f��(t)��
1(0); (70)

where the coe�cients f��(t) are given by

f��(t) =
X
s

ts�t
s
�e
�i
st; (71)

That is, the initially excited dressed oscillator naturally distributes its energy among itself

and all others dressed oscillators, as time goes on. If the mechanical dressed oscillator is

in its �rst excited state at t = 0, its decay rate may evaluated from its time evolution

equation,

�01 =
X
�

f0�(t)��
1(0): (72)

In Eq.(72) the coe�cients f0�(t) have a simple interpretation: remembering Eqs.(62)

and (63), f00(t) and f0i(t) are respectivelly the probability amplitudes that at time t the
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dressed mechanical oscillator still be excited or have radiated a �eld quantum of frequency

!i. We see that this formalism allows a quite natural description of the radiation process

as a simple exact time evolution of the system. Let us for instance evaluate the oscillator

decay probability in this language. From Eqs.(38) and (71) we get

f00(t) =

Z 1

0

2g
2e�i
t d


(
2 � !2)2 + �2g2
2
: (73)

The above integral can be evaluated by Cauchy theorem. For large t (t >> 1
�!
), but

arbitrary coupling g, we obtain for the oscillator decay probability, the result,

jf00(t)j2 = e��gt(1 +
�2g2

4�!2
) + e��gt

8�g

��!4t3
(sin~�!t+

�g

2 < �! >
cos~�!t) +

16�2g2

�2�!8t6
; (74)

where ~�! =
q
�!2 � �2g2

4 . In the above expression the approximation t >> 1
�! plays a role

only in the two last terms, due to the di�culties to evaluate exactly the integral in Eq.

(73) along the imaginary axis. The �rst term comes from the residue at 
 = ~�! + i�g2 and

would be the same if we have done an exact calculation. If we consider the case of weak

coupling, g << �!, we obtain the well known perturbative exponential decay law for the

harmonic oscillator[18],

jf00(t)j2 � e��gt; (75)

but we emphasize that Eq.(74) is valid for all values of the coupling constant g, even large,

it is an expression valid for weak as well as strong couplings.

- N = 2

Let us call ���
11 the con�guration in which the dressed oscillators q0� and q0� are at

their �rst excited level and ��
2 the con�guration in which q0� is at its second excited level.

Taking as initial condition that the dressed mechanical oscillator be at the second excited

level, the time evolution of the state �02 may be obtained in an analogous way as in the
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preceeding case,

�02(t) =
X
�

[f��(t)]2 ��
2 +

1p
2

X
�6=�

f0�(t)f0�(t)���
11 ; (76)

where the coe�cients f�� and f0� are given by (71). Then it easy to get the following

probabilities:

Probability that the dressed oscillator still be excited at time t:

P0(t) = jf00(t)j4; (77)

probability that the dressed oscillator have decayed at time t to the �rst level by emission

of a �eld quantum:

P1(t) = 2jf00(t)j2(1� jf00(t)j2) (78)

and probability that the dressed oscillator have decayed at time t to the ground state:

P2(t) = 1 � 2jf00(t)j2 + jf00(t)j4: (79)

Replacing Eq.(74) in the above expressions we get expressions for the probabilities decays

valid for any value of the coupling constant. In the particular case of weak coupling we

obtain the well known perturbative formulas for the oscillator decay [18],

P0(t) � e�2�gt; (80)

P1(t) � 2e��gt(1 � e��gt) (81)

and

P2(t) � 1 � 2e��gt + e�2�gt: (82)
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5 Concluding Remarks

In this paper we have analysed a sympli�ed version of an atom-electromagnetic �eld

system and we have tried to give the more exact and rigorous treatment we could to the

problem. We have adopted a general physicist' s point of view, in the sense that we have

rennounced to approach very closely to the real behaviour of a complicated non-linear

system, to study instead a simple linear model. As a counterpart, an exact solution has

been possible. Our dressed coordinates give a description of the behaviour of the system

that is exact and valid for weak as well as for strong coupling. If the coupling between

the mechanical oscillator and the �eld is weak, we recover the well known behaviour from

perturbation theory.

6 In Memoriam

This paper evolved from umpublished work we have done and discussions we have had,

with Prof. Guido Beck when two of us (A.P.C.M. and N.P.A.) were his students at

Instituto de Fisica Balseiro in Bariloche (Argentina), in the late sixties and the early

seventies. We dedicate this article to his memory.
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