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abstract

We apply the causal interpretation of quantum mechanics to homogeneous quantum cos-
mology and show that the quantum theory is independent of any time-gauge choice and
there is no issue of time. We exemplify this result by studying a particular minisuperspace
model where the quantum potential driven by a prescribed quantum state prevents the
formation of the classical singularity, independently on the choice of the lapse function.
This means that the fast-slow-time gauge conjecture is irrelevant within the framework
of the causal interpretation of quantum cosmology.
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1 Introduction

The singularity theorems [1] show that, under reasonable physical assumptions, the Uni-
verse has developed an initial singularity, and will develop future singularities in the form
of black holes and, perhaps, of a big crunch. Until now, singularities are out of the scope
of any physical theory. If we assume that a physical theory can describe the whole Uni-
verse at every instant, even at its possible moment of creation (which is the best attitude
because it is the only way to seek the limits of physical science), then it is necessary
that the `reasonable physical assumptions' of the theorems be not valid under extreme
situations of very high energy density and curvature. We may say that general relativity,
and/or any other matter �eld theory, must be changed under these extreme conditions.
One good point of view is to think that quantum gravitational e�ects become important,
eliminating the singularities that should appear classically, similarly to what happens with
the quantum atom. We should then construct a quantum theory of gravitation, apply it
to cosmology, and see if it works. However, there is no established theory of quantum
gravity. Furthermore, any quantum theory when applied to cosmology presents new pro-
found conceptual problems. How can we apply the standard probabilistic Copenhaguen
interpretation to a single system? Where in a quantum Universe can we �nd a classical
domain where we could construct our classical measuring apparatus to test and give sense
to the quantum theory? Who are the observers of the whole Universe? This is not a
problem of quantum gravity alone because there is no problem with the concept of an
ensemble of black holes and a classical domain outside it. Finally, in quantum mechanics,
time is not treated as an observable (hermitean operator) but as an external evolution
parameter (c-number). In the quantum cosmology of a closed universe, there is no place
for an external parameter. So, what happens with time? Which internal variable will give
a sense of evolution of the quantum states?

In this paper we will close our attention to the interpretation and time issues in order
to study the singularity problem in quantum cosmology. The di�cult technical problems
coming from the quantization of the full gravitational �eld will be circumvented by taking
advantage of minisuperspace models which restrict the gravitational and matter �elds to
be homogeneous. In these models, all but a �nite number of degrees of freedom are frozen
out alleviating considerably the technical problems.

In the framework of these minisuperspace models, a number of papers have been writ-
ten showing how the issue of time is important for the singularity problem: di�erent
choices of time imply di�erent quantum theories, some of them still presenting singu-
larities, others not [2, 3]. The interpretation adopted is the conventional probabilistic
one. Here, we will adopt a non-probabilistic interpretation to quantum cosmology which
circumvents the measurement problem because it is an ontological interpretation of quan-
tum mechanics: it is not necessary to have a measuring apparatus or a classical domain
in order to recover physical reality; it is there \ab initio". It is the causal interpretation of
quantum mechanics [4, 5]. We will apply this interpretation to the minisuperspace mod-
els of homogeneous gravitational and matter �elds mentioned above, and show that the
question about the persistency of the singularities at the quantum level does not depend
on the choice of time but only on the quantum state of the system. A particular example
will be exhibited to bring home this fact.
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This paper is organized as follows: in the next section we make a summary of the
causal interpretation. In section 3, we apply this interpretation to quantum cosmology,
and show that, for the minisuperspace models of homogeneous gravitational and matter
�elds, the quantum theory is independent on the choice of time. We also call attention
to the fact that this result may no longer be valid for inhomogeneous �elds. In section 4,
we present a particular minisuperspace example where the classical singularities can be
removed by a choice of the quantum state, and show that this result does not depend on
the choice of time. We end with some comments and conclusions.

2 The causal interpretation of quantum mechanics

In this section, we will review the ontological interpretation of quantum mechanics, and
apply it to quantum cosmology. Let us begin with the Schr�odinger equation, in the coordi-
nate representation, for a non-relativistic particle with the hamiltonianH = p2=2m+V (x):

i�h
d	(x; t)

dt
= [� �h2

2m
r2 + V (x)]	(x; t): (1)

Writing 	 = R exp(iS=�h), and substituting it into (1), we obtain the following equations:

@S

@t
+

(rS)2
2m

+ V � �h2

2m

r2R

R
= 0; (2)

@R2

@t
+r:(R2rS

m
) = 0: (3)

The usual probabilistic interpretation takes equation (3) and understands it as a con-
tinuity equation for the probability density R2 for �nding the particle at position x and
time t. All physical information about the system is contained in R2, and the total phase
S of the wave function is completely irrelevant. In this interpretation, nothing is said
about S and its evolution equation (2). However, examining equation (3), we can see
that rS=m may be interpreted as a velocity �eld, suggesting the identi�cation p = rS.
Hence, we can look to equation (2) as a Hamilton-Jacobi equation for the particle with
the extra potential term ��h2r2R=2mR.

After this preliminary, let us introduce the ontological interpretation of quantum me-
chanics, which is based on the two equations (2) and (3), and not only in the last one as
it is the Copenhaguen interpretation:

i) A quantum system is composed of a particle and a �eld 	 (obeying the Schr�odinger
equation (1)), each one having its own physical reality.

ii) The quantum particles follow trajectories x(t), independent on observations. Hence,
in this interpretation, we can talk about trajectories of quantum particles, contrary to the
Copenhaguen interpretation where only positions at one instant of time have a physical
meaning.

iii) The momentum of the particle is p = rS.
iv) For a statistical ensemble of particles in the same quantum �eld 	, the probability

density is P = R2. Equation (3) guarantees the conservation of P .
Let us make some comments:
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a) Equation (2) can now be interpreted as a Hamilton-Jacobi type equation for a
particle submited to an external potential which is the classical potential plus a new
quantum potential

Q � � �h2

2m

r2R

R
: (4)

Hence, the particle trajectory x(t) satis�es the equation of motion

m
d2x

dt2
= �rV �rQ: (5)

b) Even in the regions where 	 is very small, the quantum potential can be very
high, as we can see from equation (4). It depends only on the form of 	, not on its
absolute value. This fact brings home the non-local and contextual character of the
quantum potential1. This is very important because Bell's inequalities together with
Aspect's experiments show that, in general, a quantum theory must be either non-local
or non-ontological. As Bohm's interpretation is ontological, it must be non-local, as it is.
The quantum potential is responsible for the quantum e�ects.

c) This interpretation can be applied to a single particle. In this case, equation (3) is
just an equation to determine the function R, which forms the quantum potential acting
on the particle via equation (5). The function R2 does not need to be interpreted as a
probability density and hence needs not be normalized. The interpretation of R2 as a
probability density is appropriate only in the case mentioned in item (iv) above. The
ontological interpretation is not, in essence, a probabilistic interpretation.

d) The classical limit is very simple: we only have to �nd the conditions for having
Q = 0.

e) There is no need to have a classical domain because this interpretation is ontolog-
ical. The question on why in a real measurement we do not see superpositions of the
pointer apparatus is answered by noting that, in a measurement, the wave function is a
superposition of non-overlaping wave functions [6]. The particle will enter in one region,
and it will be inuenced by the unique quantum potential obtained from the sole non-zero
wave function de�ned on this region.

Of course this interpretation has still some aws. It is di�cult to accomodate it with
the notion of spin, it works only in the coordinate representation [7], its generalization to
quantum �elds is not yet completely understood (see however [8]), just to mention some
of them. Nevertheless, as it is an interpretation which does not require a classical domain,
and which can be applied to a single system, we think it should be relevant to examine
what it can say about quantum cosmology.

1This fact becomes evident when we generalize the causal interpretation to a many particle system.
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3 The application of the causal interpretation to

quantum cosmology

The hamiltonian of General Relativity (GR) without matter is given by:

HGR =
Z
d3x(NH+NjHj); (6)

where

H = Gijkl�
ij�kl � h1=2R(3); (7)

Hj = �2Di�
ij: (8)

The momentum �ij canonically conjugated to the space metric hij of the spacelike hy-
persurfaces which foliate spacetime is

�ij =
�L

�(@thij)
= �h1=2(Kij � hijK); (9)

where

Kij = � 1

2N
(@thij �riNj �rjNi); (10)

and

Gijkl =
1

2
h�1=2(hikhjl + hilhjk � hijhkl); (11)

which is called the DeWitt metric. The quantity R(3) is the intrinsic curvature of the
hypersurfaces and h is the determinant of hij. The lapse function N and the shift function
Nj are the Lagrange multipliers of the super-hamiltonian constraint H and the super-
momentum constraint Hj , respectively. They are present due to the invariance of GR
under spacetime coordinate transformations. Their speci�cations �x the coordinates.

If we follow the Dirac quantization procedure, these constraints become conditions
imposed on the possible states of the quantum system, yielding the following quantum
equations:

Dj
�	(hij)

�hij
= 0 (12)

(Gijkl �

�hij
�

�hkl
+ h1=2R(3))	(hij) = 0 (13)

(we have set �h = 1).
The �rst equation has a simple interpretation. It means that the value of the wave

function does not change if the spacelike metric changes by a coordinate transformation.
The second one is the Wheeler-DeWitt equation, which should determine the evolution

of the wave function. However, time has disappeared from it. There should exist one
momentum which is canonically conjugate to some intrinsic time in which the quantum
dynamics takes place. In the time reparametrization invariant formulation of the quantum
mechanics of a non-relativistic particle, this particular momentum is easily distinguishable
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from the others because it appears linearly in the quantum equation analogous to (13),
while the others appear quadratically. However, in equation (13), there is no momentum
which appears linearly; all of them appear quadratically. Hence, where is time? This is
the famous issue of time. This fact makes people advocates another quantization scheme,
the ADM approach, where time is chosen before quantization by a gauge �xing procedure.
However, di�erent choices of time lead to inequivalent quantum theories [2, 3] and there
is no criterium to choose one of them.

Others say that the fact that it is not easy to �nd what should play the role of time
in the Wheeler-DeWitt equation simply means that there is no time at all in quantum
gravity [9, 10]. In fact, the good analogy with the time reparametrization invariant
quantum mechanics of non-relativistic particles is via the Jacobi action:

S =
Z
d�
q
FET; (14)

where FE � E�V and T = 1
2

Pn
i=1mi

dxi

d�
dxi

d�
. This is the appropriate action when a closed

conservative system is studied. The conserved energy is E, and V and T are the potential
and kinetic energies of the system. This action yields Newton's equations of motion if a
suitable choice of the parameter � is made such that T = FE. The hamiltonian can be
calculated in the same way as before and it turns out to be proportional to the following
constraint:

1

2

nX
i=1

pipi

mi

� FE � 0: (15)

Following the Dirac quantization scheme, this constraint yields the following quantum
equation:

1

2
(

nX
i=1

p̂ip̂i

mi
+ V )	(xi) = E	(xi); (16)

which is the time independent Schr�odinger equation. This is the correct analogous equa-
tion to the Wheeler-DeWitt equation (13) because it is also quadratic in all momenta.
Consequently, we should consider the Wheeler-DeWitt equation as a time-independent
Schr�odinger equation with zero energy. This is consistent with the fact that a closed
Universe has, by de�nition, a null total energy.

Using a non-ontological interpretation, we can understand this fact in another way.
Space geometry is like position in ordinary particle mechanics while spacetime geometry
is like a trajectory. Trajectories have no physical meaning in the quantum mechanics
of particles following a non-epistemological interpretation. Instantaneous positions have.
Analogously, spacetime has no physical meaning in quantum gravity, only space geome-
tries have. Hence, time makes no sense at the Planck scale. Space is the most primitive
concept [9, 10]. Therefore, it is quite natural that the Wheeler-DeWitt equation of closed
spaces be time independent. It is a time independent Schr�odinger equation for zero energy,
as it should be!

However, if we apply the ontological interpretation to quantum cosmology, we should
expect that the notion of a spacetime would have a meaning exactly like the notion of
trajectories have in the causal interpretation of quantum mechanics of non-relativistic
particles. Hence, we should expect that the notion of time would emerge naturally in this
interpretation. Indeed, following the steps we made in order to describe the ontological
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interpretation in the beginning of this section, we substitute 	 = R exp(iS=�h) into the
Wheeler-DeWitt equation (13), yielding the two equations (for simplicity we stay in pure
gravity):

Gijkl
�S

�hij

�S

�hkl
� h1=2R(3)(hij) + h1=2Q(hij) = 0; (17)

Gijkl
�

�hij
(R2 �S

�hkl
) = 0; (18)

where the quantum potential is given by:

Q = � 1

R
Gijkl

�2R

�hij�hkl
: (19)

As before, we postulate that hij(x; t) is meaningful even at the Planck length and set:

�ij = �h1=2(Kij � hijK) =
�S

�hij
; (20)

recalling that

Kij = � 1

2N
(@thij �riNj �rjNi): (21)

Hence, as Kij is essentially the time derivative of hij, equation (20) gives the time evo-
lution of hij. This time evolution will be di�erent from the classical one due to the
presence of the quantum potential in equation (17), which may prevent, among other
things, the formation of classical singularities. The notion of spacetime is meaningful in
this interpretation, exactly like the notion of trajectory is meaningful in particle quan-
tum mechanics following this interpretation. However, it is not clear if the spacetime
geometries constructed from the non-classical solutions hij(x; t) of equations (17-21) with
di�erent choices of N(x; t) and Ni(x; t) will be the same, as in the classical case. This
problem will be discussed in more details in the last section.

In the case of homogeneous models, however, the supermomentum constraint Hi is
identically zero, and the shift function Ni can be set to zero in equation (6) without
loosing any of the Einstein's equations. The hamiltonian (6) is reduced to:

HGR = N(t)H(p�(t); q�(t)); (22)

where p�(t) and q�(t) represent the homogeneous degrees of freedom coming from �ij(x; t)
and hij(x; t). Equations (17-21) become:

f��(q�)
@S

@q�

@S

@q�
+ U(q�) +Q(q�) = 0; (23)

Q(q�) = � 1

R
f��

@2R

@q�@q�
; (24)

p� =
@S

@q�
= f��

1

N

@q�
@t

; (25)

where f��(q�) and U(q�) are the minisuperspace particularizations ofGijkl and �h1=2R(3)(hij),
respectively.

Equation (25) is invariant under time reparametrization. Hence, even at the quantum
level, di�erent choices of N(t) yield the same spacetime geometry for a given non-classical
solution q�(t).
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4 The singularity problem

The question about the persistency of classical cosmological singularities at the quantum
level for homogeneous �elds has been studied extensively in the literature. In a �rst
approach, the dynamical evolution of the quantum states is obtained by �xing the time
gauge before quantization. As we mentioned above, di�erent choices of time gauge imply
di�erent quantum theories with di�erent answers to the question we are addressing [2, 3].
In the last section we have shown that this ambiguity in the choice of time does not arise
if we apply the causal interpretation to quantum cosmology in the case of minisuperspace
models of homogeneous �elds. In the present section, we will bring home this fact by
making use of a simple minisuperspace example, where the existence of cosmological
singularities at the quantum level does not depend on the choice of the time-gauge but
only on the choice of the quantum state of the system. This minisuperspace is the Bianchi
I model.

The minisuperspace metric is given by:

ds2 = �N2(t)dt2 + exp[2�0(t) + 2�+(t) + 2
p
3��(t)] dx

2 +

exp[2�0(t) + 2�+(t)� 2
p
3��(t)] dy

2 +

exp[2�0(t)� 4�+(t)] dz
2 (26)

The gravitational hamiltonian for this minisuperspace model is:

H =
N

24 exp (3�0)
(p20 � p2+ � p2�): (27)

where the p's are the canonical momenta of the �'s. The classical equations of motion
are:

p20 � p2+ � p2
�
= 0; (28)

_�0 =
@H
@p0

=
N

12 exp (3�0)
p0; (29)

_�+ =
@H
@p+

= � N

12 exp (3�0)
p+; (30)

_�� =
@H
@p�

= � N

12 exp (3�0)
p�; (31)

_p0 = �@H
@�0

= � N

8 exp (3�0)
(p20 � p2+ � p2

�
) = 0; (32)

_p+ = � @H
@�+

= 0; (33)

_p� = � @H
@��

= 0: (34)
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To discuss the appearance of singularities, we need the Weyl square tensor W 2 �
W ����W����. It is given by:

W 2 =
1

432
e�12�0(+2p0p

3
+ � 6p0p

2
�p+ + p4� + 2p2+p

2
� + p4+ + p20p

2
+ + p20p

2
�): (35)

Hence, the Weyl square tensor is proportional to exp (�12�0) because the p's are constants
(see Eqs (32-34)). Solving equation (29) in the gauge N = 12 exp(3�0), we can see that
�0 = p0t, and the singularity is at t = �1. It is a fast-time gauge in the terminology of
reference [3]. If we choose N = 1, then �0 =

1
3
ln(p0

4
t) and the singularity appears at t = 0.

It is a slow-time gauge. The classical singularity can be avoided only if we set p0 = 0. But
then, due to equation (28), we would also have p� = 0, implying that the Weyl square
tensor be identically zero, corresponding to the trivial case of Minkowski spacetime. The
conjecture stated in reference [3] says that the singularity persists at the quantum level
in the fast-time gauge but disappears in the slow-time gauge.

The Dirac quantization scheme yields the following Wheeler-DeWitt equation:

 
@2

@�20
� @2

@�2+
� @2

@�2�

!
	 = 0: (36)

In reference [11], a consistent inner product is constructed, and gauge invariant (Dirac)
observables which dependes on a parameter, which is nothing but �0, are constructed. In
this way, the Weyl square observable is built, exhibiting a singularity at �0 = �1, as in
the classical case. As �0 plays the role of time, this is equivalent to a quantization in the
fast-time gauge.

Let us now make use of the causal interpretation. Take the following solution to the
Wheeler-DeWitt equation (36):

	 = exp [i(
q
k2+ + k2� �o + k+ �+ + k� ��)] +

exp [�i(
q
l2+ + l2� �o + l+ �+ + l� ��)] (37)

where the k's and l's are real constants. Note that this function is not normalizable, but
this is not important for the ontological interpretation. Calculating @S

@�0
, @S

@�+
, and @S

@�
�

,

where S is the phase of the wave function (37), we obtain:

p0 � @S

@�0
=

1

2

q
k2+ + k2� �

1

2

q
l2+ + l2�; (38)

p+ � @S

@�+
=

1

2
k+ � 1

2
l+; (39)

p� � @S

@��
=

1

2
k� � 1

2
l�: (40)

It is easy to see in the above equations that is possible to have p0 = 0 and p� 6= 0. We
can also understand it by the fact that equation (28) is no longer valid at the quantum
level; the quantum potential must be added to it and thus p0 = 0 does not imply p� = 0.
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Hence, it is possible to �nd a curved spacetime without singularities, i.e., a spacetime
with a Weyl square tensor which is neither null nor in�nite, for the quantized Bianchi I
model. Note that this result is independent on the value chosen for N . In particular, we
could have chosen the fast-time gauge mentioned previously, and still have a non-singular
quantum spacetime. Hence, using the ontological interpretation, we have presented a
simple example where the appearance of singularities in the quantum regime depends
only on the state of the system, and not on the time-gauge choice we make.

5 Conclusion

In this paper we have shown that the application of the causal interpretation of quantum
mechanics to the quantum cosmology of homogeneous �elds yields de�nite predictions
without any ambiguity due to the arbitrariness in the time-gauge choice. As a conse-
quence, the slow-fast-time gauge conjecture about the persistency of cosmological singu-
larities at the quantum level is irrelevant within the causal interpretation. Taking the
minisuperspace of Bianchi I model, we have shown that the quantum potential of given
quantum states can prevent the formation of the classical singularity, yielding a non-trivial
regular four-geometry, independently on the choice of the lapse function.

One can argue on why we have obtained non-singular quantum solutions in the quanti-
zation of the Bianchi I model while in reference [11] it is shown that all quantum states of
this model are singular. The answer is that in order to have a Dirac observable which can
plays the role of time, Ashtekar et al. [11] had to take only positive frequency solutions of
equation (36), i.e., states with positive p0. In this way, the Dirac observable �̂0 becomes
proportional to the identity operator, the multiplying constant being time. In the causal
interpretation, however, the restriction to positive p0 is not necessary for having a notion
of time: it appears, as in the classical case, via equation (25). Hence, we can construct
wave functions which are superpositions of positive and negative frequency solutions as
in equation (37), and which does not present any singularity, as was demonstrated in
the last section. Note that any superposition of positive and negative solutions is not an
eigenstate of the operator �̂0 of reference [11]. Indeed, if the Hilbert space is enlarged
with the inclusion of negative frequency solutions, we cannot use �̂0 as a time operator
because it is no longer a multiple of the identity.

A very interesting and fundamental question is about the generalization of this result
to the general case of inhomogeneous �elds. In this case, the supermomentum constraint
Hi is not identically zero, and the shift function Ni must be present in the hamiltonian
(6). The simple time-reparametrization invariant equation (25) will no longer be valid.
We have to use the general equations (20) and (21), where S is a solution of the modi�ed
Hamilton-Jacobi equation (17).

One can see the problem more clearly by trying to construct a hamiltonian which
generates the non-classical evolution of hij . It would be given by the hamiltonian (6),
with H suplemented by the quantum potential (19):

~HGR =
Z
d3x(N ~H+NjHj) (41)
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where

~H = H� 1

R
Gijkl

�2R

�hij�hkl
(42)

However, it is not clear if the Poisson brackets of the constraints ~H and Hj close, and
it is sure that they do not close like the commutators of the generators of the deforma-
tions of three-dimensional spacelike slices cut through a Riemannian spacetime. Indeed,
in reference [12] it is shown that the potential term in the super-hamiltonian must be pro-
portional to the scalar curvature of the spacelike slices plus a cosmological term, exactly
like in General Relativity, in order that the dynamics of the �elds be consistent with the
kinematic of deformations. Hence, the dynamics of hij in the presence of the quantum
potential does not satisfy this requirement. This is a very important point which should
be investigated further.

Note that, for homogeneous quantum cosmology, the non classical evolution of the ho-
mogeneous degrees of freedom can be generated by a hamiltonian with a single constraint,

~HGR = N(t) ~H(p�(t); q�(t)); (43)

where ~H(p�(t); q�(t)) is the classical constraint suplemented by the quantum potential

Q(q�) = � 1

R
f��

@2R

@q�@q�
: (44)

As a single constraint commuteswith itself, the theory is invariant under time reparametriza-
tions and the problems mentioned above do not arise in this restricted case.
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