OBSERVATION OF A PAIR - BREAKING FIELD AT THE Ni SITE IN NON-SUPERCONDUCTING RENi₂B₂C

Dalber R. Sánchez, H. Micklitz¹, M.B. Fontes, S.L. Bud'ko, and E. Baggio-Saitovitch

Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro. 22290-180, Brazil.

ABSTRACT

⁵⁷Fe Mössbauer spectra of RENi₂B₂C (RE= Tb, Dy, Ho, Er) doped with 1 at. % ⁵⁷Fe show a magnetic hyperfine field B_{hf} at the ⁵⁷Fe nucleus in TbNi₂B₂C for T<T_N ~ 15K and in HoNi₂B₂C for 5.5K>T>4.2K. *No* B_{hf} is observed in superconducting DyNi₂B₂C and ErNi₂B₂C. Since TbNi₂B₂C is not superconducting at all and superconductivity disappears in HoNi₂B₂C for 6K>T>4.7K (reentrant state) we have to conclude that the observed B_{hf} at the ⁵⁷Fe nucleus, resulting from the non-collinear antiferromagnetic spin structure of the RE moments, acts as a pair-breaking field at the Ni site.

PACS: 74.70.Ad, 75.25.+z, 76.80.+y

¹Visitor from II. Physikalisches Institut, Universität zu Köln, D-50937 Köln, Germany

^{*}Accepted for publication in Physical Review Letters.

It is the interplay between magnetism and superconductivity occurring in the rare-earth (RE) nickel borocarbides (RENi2B2C) which makes this new class of compounds so interesting [1-4]. While all of these intermetallic layered compounds with magnetic RE have one or two magnetic phase transitions at low temperatures, not all of them show superconductivity. Simple de Gennes scaling seems to be appropriate to describe the change of the magnetic transition temperature in the various RENi₂B₂C systems. The same scaling arguments in principle could be used to explain the suppression of superconductivity in TbNi₂B₂C and GdNi₂B₂C. However, soon it was realized that collinear as well as non-collinear antiferromagnetic (AF) spin structures appear in the magnetically ordered phases: while there is a ferromagnetic coupling within the RE-C layers, two consecutive RE-C layers can be either aligned in opposite directions (collinear AF, e.g. DyNi₂B₂C [5]) or coupled in a more complicated way (e.g. helical in the case of HoNi₂B₂C [6,7]) leading to an incommensurate modulated magnetic structure. The latter, for example, seems to be responsible for the reentrant behavior, i.e. the suppression of superconductivity in HoNi₂B₂C in the temperature region 4.7K<T<6K [6,7]. From this point of view it is rather tempting to attribute the suppression of superconductivity to the appearance of a pair-breaking field in the Nilayer for the case of a non-collinear AF structure [6,7]. Such a field has not been observed until now. It may be big enough, however, to be detectable by a local probe sitting in the Ni-plane.

Mössbauer spectroscopy on ⁵⁷Fe doped RENi₂B₂C in principle offers the possibility to use ⁵⁷Fe as such a local probe. Since it is well established that Ni has no magnetic moment in RENi₂B₂C, it is very likely that Fe sitting at a Ni-site has also no magnetic moment, this is supported by additional ⁵⁷Fe ME experiments we have

-2-

performed on highly doped $Y(Ni_{0.93}Fe_{0.07})_2B_2C$ at low temperatures. No magnetic hf field was seen down to 4.2 K [8]. In this case one has the unique opportunity to study the occurrence of a pair-breaking field in the Ni-layer by the appearance of a magnetic hyperfine (hf) field (either transferred hf field via RKKY interaction or dipolar field) at the ⁵⁷Fe nucleus.

Our ⁵⁷Fe Mössbauer experiments, which are the first ones reported for RENi₂B₂C, clearly show that such a magnetic hf field indeed exists for HoNi₂B₂C in the "reentrance" region and for non-superconducting TbNi₂B₂C below T_N , but *not* for DyNi₂B₂C and ErNi₂B₂C where coexistence of magnetic ordering and superconductivity has been established.

Polycrystalline samples of RE(Ni_{0.99} 57 Fe_{0.01})₂B₂C, RE= Tb, Dy, Ho, Er, were prepared by melting stoichiometric amounts of high purity elements in arc-furnace in ~300 torr Ar atmosphere and subsequent annealing at ~1000°C for 2 days. X-ray diffraction shows that the expected ThCr₂Si₂-like structure is formed as a majority phase with a low (< 10%) level of impurities, characteristic for the polycrystalline samples of borocarbides. Obtained lattice parameters are consistent with the ones of pure RENi₂B₂C [3]. In addition, samples were characterized by AC susceptibility. No significant changes of magnetic ordering temperatures were induced by the introduction of 1 at. % of Fe, since T_N of 16.2, 8.8, 6.0, and 5.4 K were found for Tb, Dy, Ho and Er respectively. However T_C decreases sligthly with iron doping as expected [9], since T_C of 9.0 and 7.5K were obtained for Ho and Er respectively. ⁵⁷Fe Mössbauer effect (ME) spectra were taken with the RENi₂B₂C samples in a variable temperature helium

-3-

cryostat and the ⁵⁷Co:Rh source at room temperature, moving in a sinusoidal mode outside of the cryostat.

Fig 1. shows the ⁵⁷Fe ME spectra for all studied RENi₂B₂C compounds at room temperature (RT). All spectra were fitted with two quadrupole doublets, one main doublet (~80% of total absorption area) whose quadrupole splitting ΔE_Q is RE dependent (ΔE_Q decreases with increasing 4f-electron number from $\Delta E_Q=0.27(1)$ mm/s for TbNi₂B₂C to $\Delta E_Q=0.14(1)$ mm/s for ErNi₂B₂C) and an additional weak doublet whose quadrupole splitting is almost independent of RE ($\Delta E_Q \sim 0.40$ mm/s). We attribute the main doublet to ⁵⁷Fe in the RENi₂B₂C phase, while the additional weak doublet is probably due to an impurity phase also seen in the x-ray diffraction data. We want to mention already at this point that the weak doublet caused by the impurity phase was taken into account in all the low-temperature ⁵⁷Fe ME spectra shown below without any further discussion of its origin.

Cooling the RENi₂B₂C samples down to 4.2K results in quite different ⁵⁷Fe ME spectra for the various compounds. For this reason we will discuss in the following each of these low-temperature spectra separatly.

The ⁵⁷Fe ME spectra of DyNi₂B₂C and ErNi₂B₂C taken at 4.2K are given in fig.2. Comparing these spectra with the RT spectra shown in fig.1, there is no obvious difference: the value of the center shift is slightly more negative compared to the center shift at RT, due to second order Doppler shift, the quadrupole splitting is the same within the experimental errors ($\Delta E_O = 0.23(1)$ mm/s and 0.14(1)mm/s for DyNi₂B₂C and

ErNi₂B₂C, respectively). Additional spectra were taken at temperatures between the magnetic ordering temperature ($T_N = 10K$ and 6K for DyNi₂B₂C and ErNi₂B₂C, respectively) and 4.2K. *No* magnetic hf field was observed at any temperature below T_N ($B_{hf} < 0.1T$).

TbNi₂B₂C is known to show antiferromagnetic order below $T_N \sim 15 K$ [2]. As it is evident from the ⁵⁷Fe ME spectra shown in fig. 3, a magnetic broadening begins to appear below 15K resulting in an asymmetrically broadened ME spectrum whose width is increasing with decreasing temperature. The spectra have been fitted using the full hyperfine Hamiltonian including electrical quadrupole and magnetic interaction. Furthermore, the following assumptions have been made : (1) quadrupole asymmetry parameter $\eta=0$, as it is expected for ⁵⁷Fe on a regular Ni site, and (2) absence of spin texture in the polycrystalline powder sample. Linewidth, quadrupole interaction ($\Delta E_Q = 0.25$ mm/s) and center shift (CS= -0.10 mm/s relative to ⁵⁷Co:Rh at RT), as obtained from the paramagnetic 15K-spectrum, have been kept constant for all spectra between 15K and 3.0K. The sign of V_{ZZ} (main component of electrical field gradient tensor), the magnetic hf field $B_{\rm hf}\,$ and the angle θ between the directions of $B_{\rm hf}\,$ and V_{ZZ} were the only free fitting parameters. This fitting procedure yields : $V_{ZZ} < 0$, $\theta \approx 90 \pm 5^{\circ}$ for all ME spectra and a B_{hf} which increases with decreasing temperature from B_{hf} (T=15K) ~0T to B_{hf} (T=3K) ~1.0T. The temperature dependence of B_{hf} is given in fig. 5. The onset of magnetic ordering at $T_N \sim 15$ K is clearly seen.

-5-

-6-

The temperature dependence of the ⁵⁷Fe ME spectra in HoNi₂B₂C for T \leq 5.5K is more complicated than those of the spectra for RENi₂B₂C (RE=Er, DY, Tb). In fig. 4 we show the corresponding HoNi₂B₂C spectra: starting with a quite symmetric spectrum at T~5.5K, the spectra change their shape for 5.3K>T>4.2K and again become quite symmetric for T=3K. In order to fit these ⁵⁷Fe ME spectra we have made the same assumptions as in the case of TbNi2B2C but added one more: since we know that VZZ<0 for TbNi₂B₂C (see above) and assuming that the sign of V_{ZZ} is independent of RE, we have taken $V_{ZZ} < 0$ also for HoNi_2B_2C. Comparing the asymmetry of the $TbNi_2B_2C$ spectra with that of the HoNi₂B₂C spectra for 5.3K>T>4.2K, we see that these asymmetries are opposite, from which immediately follows that $\theta \sim 0^{\circ}$ for HoNi₂B₂C in this temperature regime. The values of the magnetic hf field obtained from this fitting procedure in the temperature region T≤6K are shown in fig. 5. The spectrum taken at the lowest temperature (T=3K) clearly is symmetric. It can be only fitted with a pure quadrupole interaction $[B_{hf}(3K) \le 0.1T]$, however with a slightly increased linewidth $[\Gamma(3K) \sim 0.32 \text{ mm/s compared to } \Gamma(8K) \sim 0.27 \text{ mm/s}]$ which may be caused by vibrations originating from the He-bath pump.

We want to discuss now why the ⁵⁷Fe ME spectra at low temperatures are so different in the different RENi₂B₂C systems. Our experiments show that there exists *no* measurable magnetic hf field (B_{hf} < 0.1T) at the ⁵⁷Fe nucleus for Fe, supposedly sitting at the Ni-site, in the case of ErNi₂B₂C and DyNi₂B₂C. For these two compounds the coexistence of superconductivity and magnetic order has been established. In the case of TbNi₂B₂C and HoNi₂B₂C, however, the situation is quite different: we observe a magnetic hf field in the case of TbNi₂B₂C below T_N~15K (see fig.5) and for HoNi₂B₂C between the first magnetic phase transition at T_{N1}~ 6K and the second one at T_{N2}~ 4.7K.

ty does not appear at

At the same time it is known that superconductivity does not appear at all in TbNi₂B₂C and disappears for HoNi₂B₂C in the temperature region $T_{N1}>T>T_{N2}$ (reentrance behavior) [10,11]. Taking these two facts together it is very reasonable to assume that (1) the observed magnetic hf field at the ⁵⁷Fe nucleus is a pure dipolar or a transferred hf field resulting from the neighboring RE moments (i.e. $\mu_{Fe} < 0.01 \mu_B$) and (2) this magnetic hf field acts as a pair-breaking field at the Ni site which leads to the suppression of superconductivity in some of the RENi₂B₂C compounds. Such a magnetic hf field obviously does not exist in the case of DyNi₂B₂C due to its simple collinear antiferromagnetic spin structure [5]. It exists, on the other hand , for HoNi₂B₂C with an incommensurate modulated spin structure between ~ 6K and ~ 4.7K and for TbNi₂B₂C which magnetic spin structure to our knowledge has not yet been determined.

The additional fact that the observed B_{hf} in TbNi₂B₂C and HoNi₂B₂C is of the same order of magnitude as the critical magnetic field B_{c2} measured for the superconducting RENi₂B₂C compounds (B_{c2} (T=0) ~ 0.2, 0.6 and 1.6T for RE=Ho,Dy and Er, respectively [12-14]) is a further support of our interpretation for the suppression of superconductivity as given above.

In the following, we want briefly to discuss why in the incommensurate modulated spin structure of $HoNi_2B_2C$ a magnetic hf field is observed while this is not the case for the incommensurate modulated spin structure in $ErNi_2B_2C$: in $HoNi_2B_2C$ the spin structure is modulated along the c-axis as well as along the a (b)-axis [6,7]. The modulation along the c-axis results in a c-axis spiral with a turn angle of approximately 165° between two successive Ho layers. As a consequence, the magnetic hf field at the

-8-

Fe (Ni) site resulting from the four nearest neighbor Ho atoms (two from the Ho layer above and two from the Ho layer below the Ni plane) will *not* cancel. In $\text{ErNi}_2\text{B}_2\text{C}$, on the other hand, there is only a modulation of the spin structure along the a (b)-axis [15,16]. This modulation seems to result in a much smaller (not measurable) magnetic hf field at the Fe (Ni) site.

Finally, further conclusions about the spin structure in TbNi₂B₂C and HoNi₂B₂C can be drawn from the measured angle θ between the directions of V_{ZZ} and $B_{hf}\!.$ In TbNi₂B₂C, with unknown exact spin structure, we find θ =90±5°. Following symmetry arguments, the direction of V_{ZZ} has to be in c-direction. Thus, we have to conclude that for TbNi₂B₂C B_{hf} lies in (a,b)-plane. Such a field direction is expected for a noncollinear AF spin structure, for example, with the Tb moments aligned parallel in each (a,b)-plane and a helical modulation of their direction along the c-axis. For HoNi₂B₂C, on the other hand, we find $\theta=0\pm5^{\circ}$ (assuming the sign of V_{ZZ} to be independent of RE), from which follows that now B_{hf} is in c-direction. This conclusion seems to be in contradiction to the spin structure as proposed from neutron scattering data [6,7]. Our result rather suggests that the Ho moments in the incommensurate magnetic phase $(T_{N_1} > T > T_{N_2})$ are slightly canted out of (a,b)-plane. It should be pointed out, however, that from neutron scattering it can only be concluded that the Ho-moments are very close to the (a,b)-plane [6,7]. It may be that the magnetic hf field measured in ⁵⁷Fe Mössbauer experiments is more sensitive to a small canting out of (a,b)-plane than neutron scattering.

In conclusion, our ⁵⁷Fe Mössbauer experiments on ⁵⁷Fe doped (~ 1 at. %) RENi₂B₂C (RE=Tb, Dy, Ho, Er) show a magnetic hyperfine field at the ⁵⁷Fe nucleus for

those two compounds where either no superconductivity is observed at all (TbNi₂B₂C) or where superconductivity disappears in a certain temperature region (HoNi₂B₂C, with "reentrance" behavior for 6K>T>4.7K). We interpret the observed magnetic hyperfine field as a field originating from the neighboring RE moments and acting as a pair-breaking field at the Ni site. The existence of such a pair-breaking field already has been proposed before by other authors [6,7] in order to explain the reentrance behavior of HoNi₂B₂C. While their suggestion is based on the spin structure as obtained from single crystal neutron scattering experiments, our experiments for the first time show that such a magnetic field at the Ni site *indeed exists* not only for HoNi₂B₂C in the "reentrance" region but also for non-superconducting TbNi₂B₂C.

FIGURE CAPTIONS:

- Fig.1 :⁵⁷Fe Mössbauer spectra of RENi₂B₂C (RE=Tb, Dy, Ho, Er) at 300K. For TbNi₂B₂C the two subspectra, corresponding to two doublets, explicitly are shown.
- Fig. 2 :⁵⁷Fe Mössbauer spectra of DyNi₂B₂C and ErNi₂B₂C at T=4.2K.
- Fig. 3 :⁵⁷Fe Mössbauer spectra of TbNi₂B₂C in the temperature region $15K \ge T \ge 3K$.
- Fig. 4 :⁵⁷Fe Mössbauer spectra of HoNi₂B₂C in the temperature region $6K \ge T \ge 3K$.
- Fig. 5 : Temperature dependence of magnetic hf field B_{hf} at the ⁵⁷Fe nucleus in TbNi₂B₂C and HoNi₂B₂C as obtained from least-squares fittings to the spectra shown in figs. 3 and 4, respectively. The dashed lines through the data points are only a guide for the eyes.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

REFERENCES:

- [1]R. Nagarajan, C. Mazumdar, Z. Hossain, S.K. Dhar, K.V. Gopalakrishnar, L.C. Gupta, C. Godart, B.D. Padalia, and R. Vijayaraghavan, Phys. Rev. Lett. 72, 274 (1994)
- [2]R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, Jr., T. Siegrist,B. Batlogg, R.B. van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, and S. Uchida, Nature 367, 252 (1994).
- [3]T. Siegrist, H.W. Zandbergen, R.J. Cava, J.J. Krajewski, and W. F. Peck, Jr., Nature 367, 254 (1994).
- [4]R.J. Cava, H. Takagi, B. Batlogg, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, Jr.,R.B. van Dover, R.J. Felder, T. Siegrist, K. Mizuhashi, J.O. Lee, H. Eisaki, S.A.Carter, and S. Uchida, Nature 367, 146 (1994).
- [5]P. Dervenagas, J. Zarestky, C. Stassis, A.I. Goldman, P.C. Canfield, and B.K. Cho, Physica B 212, 1 (1995).
- [6]A.I. Goldman, C. Stassis, P.C. Canfield, J. Zarestky, P. Dervenagas, B.K. Cho, and D.C. Johnston, Phys. Rev. B50, 9668 (1994).
- [7]T.E. Grigereit, J.W. Lynn, Q. Huang, A. Santoro, R.J. Cava, J.J. Krajewski, and W.F. Peck, Jr., Phys. Rev. Lett. 73, 2756 (1994).
- [8]E.Baggio-Saitovitch, M.B.Fontes and S.L.Bud'ko, Proceedings of LACAME'94, to be published.
- [9]S.L. Bud'ko, M. Elmassalami, M.B. Fontes, J. Mondragon, W. Vanoni,B. Giordanengo, and E.M. Baggio-Saitovitch, Physica C 243 (1995) 183-186.
- [10]H. Eisaki, H. Takagi, R.J. Cava, K. Mizuhashi, J. O. Lee, B. Batlogg, J.J. Krajewski, W.F. Peck, Jr., and S. Uchida, Phys. Rev. B50, 647 (1994).

^{*}Accepted for publication in Physical Review Letters.

- -17-
- [11]H. Schmidt, M. Weber and H.F. Braun Physica C 246, 177 (1995).
- [12]P.C. Canfield, B.K. Cho, D.C. Johnston, D.K. Finnemore and M.F. Hundley, Physica C 230, 397 (1994).
- [13]B.K. Cho, P.C. Canfield and D.C. Johnston (to be published).
- [14]B. K. Cho, P.C. Canfield, L.L.Miller, D.C. Johnston, W.P. Beyermann and A. Yatskar (to be published).
- [15]J. Zaretzky, C. Stassis, A.I. Goldman, P.C. Canfield, P. Dervenagas, B.K. Cho and D.C. Johnston, Phys. Rev. B51, 678 (1995).
- [16]S.K. Sinha, J.W. Lynn, T.E. Grigereit, Z. Hossain, L.C. Gupta, R. Nagarajan, and C. Godart, Phys. Rev. B51, 681 (1995).