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ABSTRACT

The members of the class of rotating universes considered
in the preceding paper and their antipodals, obtained by an inver-
sion of the vorticity of the matter, are indistinguishable by gra-
vitational observations. It is shown that massless neutrinos pro-
duced by weak interaction processes can be used as a probe to dis-
tinguish physically such antipodal universes. This is so because the

transformation of a universe into its antipodal is not a symmetry

of the system universe-plus-neutrinés'Sf a gliven helicity.

Key—-words: Neutrinos and rotating universes; Parity asymmetry;

Neutrinos in antipodal universes.
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1 INTRODUCTION

In a companion paper we have introduced on the group
manifolds S3xR and H¥xR a two parameter family of left- invariant
gL and riggh—invariant 9g metrics, and we have exhibited a co-
ordinate system where left-invariant metrics and right-invariant
metrics are connected by a cdoxdinate inversion yx += ¥ or
n += 1. We have denoted these universes antipodal. From the.poinﬁ
_6f view of pure gravitational interaction the two : . geometries
should be indistinguishable unfess inproperftransfornatjx.ms are ex-
cluded.from the covariance group of gravitation theory (general
coordinate transformations).

The aim of the present note is to show that improper
transformations are no longer symmetries of the system when.
we include neutrinos of a given helicity as test particles in
these universes. In other words the sysﬁem< universe-plus-neu-
trinos of a given helicity is not symmetric under the exchange
of g, and §R. Therefore neutrinos could. be used as a=probe to
distinguish antipodal universes physically. This idea is due to
the fact that - as prescribed by weak interaction processes -
a massless neutrino is an absolute left-handed screw and can
be used to define an absolute sense of rotation, aboutla given
direction. In our discussion we formuléte Dirac's egquation on
the space-times with left~invariant and right-invariant metrics
and a careful analysis of its transformation properties  urder
parity transformations is made. Our result follows immediately

from this analysis.
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2 DIRAC'SIEQUATION FOR NEUTRINOS AND INVARIANT MODES OF NEU-

TRINO FIELDS

Let us introduce neutrinos as test particles in these
antipodal universes. Neutrinos in interaction with gnmdtatkmﬁl
fields - are-described by spinor fields in the curved space-
time. For a general review of spinors on a Riemannian space-
time see Refs.[1,2].. Here we use four-component spinors from
the point of view of the tetrad formalism [3]. We choose a

tetrad field ein)(x) such that the line element is expressed

as [4]

g = T-IABBABB " CZ-]-) .

A

where © =-egA)dxa. The neutrino wave function ¢ provides a

"splnorial representation of the local Lorentz group

1A

0 .=L§.cx1e‘* Y- (2.2)

with
A B B ‘
Ly &) a,pLp(x) = npo v (2.3)

Under (2.2)-(2.3) spinors ¢ transform as

V' (x) = S(x)y(x) (2.4)
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where the 4 x4 matrix S(x) must satisfy ES:I

wWhBx)y? = sayts™ )
On the other hand spinors ¢ transform as scalar functions with
respect to-general-coordinate transformations of the space-time.

Dirac's equation for neutrinos coupled to gravitation is ex-

pressed as
A, o -
y.geu)au—raw=o s (2.5)

where the I‘A are the Fock-Ivanenko coefficients |:6,7] ‘given

--1 8 B C
by Ty (B) a(c)e(A)Y vy . Introducing a new parameter A,
and coordinates x* = (X,n,r,z) defined by
g2 —g2g2 - - .
A='G_"E'_'B"_ ’ X = Bx ’ n=Rfn-,
g2

we. choose for the left- and right-invariant metrics (cf. Eq.

(2.16} of the preceding paper) the tetrad basis

| . )
80 =Ve2 4 Acoshz( )oosh{ )d + e Asinh”{er) an
dVe2? +1cosh? (%) cos (—325)

Ye2 +1 ginh(E-

ol = Yoo ) sinh(9) dn | (2.6)

eVe24+xcosh? (ex/2)

L -]
»
]

B/2 dr
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where g{e =-1) = g, and g{e = +1) = gy - The main advantage of

R
the choice (2.6) is to have a tetrad basis eéA)(x) diagonal when

ever A =0. In the basis (2.6) the Fock-Ivanenko coefficients are

given by

P, = A (r)y2y® + eh, (r)y2yl

rl = i3(r)7271 + eiz(»r)Yz'Yo P) (2.7)

f2.= e, (riy%! , r,=0,
where the functions ii(r), i=1,2,3 are given explicitly  -in
283
Dirac's equation for neutrinos assume then the form
= My 0.1 - 9.2 - 0.1 - Ov0.3
.‘I.Bx\tl 1{-My% 311 NyYy 3x ePyly a)‘ Qv y az +
+ (Aé -Allyoyz - eAzyzyl}w' (2.8)

where, for the sake of notation simplicity, we have introduced

A, = ii/eo ,

* (0)
P=c¢cel sel , Q=1/e% , (2.9)
(1) 7(0) (0)
M=-el se0 |, N = e, /el .
(1) (0) (2) (0)
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(A}

o (x) defined by (2.86)

The matrix (e%A)(x))'is the inverse of (e
and the quantities (2.9} are functions of r only, and do . not
depend on the parameter e Co]-

-Let us restrict our analysis to the cases a2 > 52, for
the hyperbolic family. In other cases the analysis still applies
for the regions of the space~times where the coordinate lines
associated to the vector.fields'a/ax and 3/3n have time-like and
space-like character, respectively. Since the metrics g{e) admit

the Killing vectors 23/3x, 3/m and-3/sz we consider neutrino figlds ip
the invariant global modes [[10,11]

o (Xem,T,2) = ¢(r)e TEXgTIKRgmEVZ (2.20)

where ¢(r) is a four-spinor depending on r only. These modes can
be interpreted [[10] as energy - and momentum invariant modes with
energy eigenvalue E and momenta eigenvaluesk and v. For the

modes (2.10), equation (2.8) can be reexpressed as

E$ = H¢ « (2.11)

where

Ho= {1y2y0(A -2, +N3/3r) =0yl (eEP +kM) ~iey2yla, +vQy%y?) .
| (2.12)

H can be identified with the Hamiltonian operator, acting on the
space of neutrino wave functions (2.10), in the sense that the
time development of any operator acting on the space of neutrino

functions (2.10) is proportional to the commutator of H and the
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operator. Since vy’ commutes with H we choose from (5.10) .simul

taneous eigenstates of H and Y3, namely

H¢(r,L) = E¢(r,L) ,
(2.13)
yS¢(r,L) = Lo (x,L) »

with L2 =1. The operator y5 is proportional to the helicity o-
perator for neutrinos [[127], in the local Lorentz frame de-
termined by (5.6), and the eigenvalue L is associated to the

helicity of the neutrino field.

3 SYMMETRY TRANSFORMATIONS OF THE SYSTEM NEUTRINO-UNIVERSE.

PARITY AND ASYMMETRIES

To begin with, let us define a symmetry transformation of a
system from the point of viewof passive and acf:ive transformations: .
we say that a coordinate transformation (passive transformation )
is a symmetry of the system if there exists a corresponding ac-
4ive¢ transformation of the system into another system ecuivalent
to it D.3:| . 1;1 the present case the passive transformation n>-n
(or x +-x) 1s a symmetry of the gravitational field (as far as
pure gravitational interaction is concerned) in the sense that
it is equivalent to inverting the rotation of the universe. Indeed,
as shdwn in the Appendix of the preceding paper, the solutions
gL and gp can be interpreted as describing universes whose

matter content has opposite vorticities relative .to the local
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compass of inertia (the axes of the compass of inertia being
determined, for instance, by gyroscopes) and are Indistinguishable
in the context of gravitational interaction only.

Let us consider now the neutrino fields
¥(E,k,v,L) = ¢(r,L)e tEXg ikngivz (2.14)

elgenstates of energy E, momenta k and v, anﬁ helicity L in the

space-times of (2.6). On the system universe with géomet&y gg =

g (e f-ll plus neuinrinos let us perform the following - active

(physicai) transformations P:

(1} fnversion of the rotation of the matter content of -the uni-
verse {(cf. Appendix of the preceding paper) ;

(i1) inversion of the momentum of neutrinos, associated to the
Killing symmetry a/om.

In Dirac's eéuation for 9p the effect of inverting the
rotation is obtained making e =+ ] in (2.11);(2.12), which cor-
responds to transforming the metric gg into the metric 9 " {as al-
?eady discussed gR and 9. describe uniber&mswith qpppsite vor-
fidityJ.On_ﬁhe other hand, the inversion of the momentum of neu-
trinosis 6btained by the substitution k +-=k in (2.12). The re-

sulting Dirac's equation after the operations P is given by
E¢' (L") = {ivzyotAl.-A3 +N3/3r) +y0yl (~EP +XkM) _;327271 +

+ vQy0y3ter (L) (2.15)
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The new spinor ¢'(L') is related to $ (L) (cf. (2.121 for e ==-1)
by

¢ (L',k) ='71¢(L,Fk) (2.16)

‘Since y! anticommutes with v5,the neutrino states ¢'(L') - and
¢ (L) have opposite'helicity. Theréfore,the physical operations
consisting in inverting the momentum k of neutrinos and the
rotation of the matter of the universe (transforming gL.'Vinto
gp and vice-versa) also transform neutrino states ¢{L) in g, into
neutrino sta;es with opposite helicity in gp - These active
transformations correspond to the passive. transformation n +-n
over the system universe with metric g, °r 9p plus neﬁtrinos.
If neutrinos in each of these universes can have both fypeé of he-
licity, the transformation is a symmetry of the ﬁystenlunbﬂuse—
plus-neutrinosfand the universes with metric 9L and gy are phy-=
sically indistinguishable. If however neu;rinos are assumed to
'have only one type of helicity (as prescribed by weak interac-
tions experiments) the transformations discussed above are no
longer a symmetry of the system. Indeed the configuratiop. gL
plus left~handed neutrinos is transformed undgr . the active
transformations P,into the cbnfiguration Ir plﬁs right-handed
neutrinos, which is forbidden. The sysumsigL plus ' left-handed
neutrinos and e plus left-handed neutrinos are therefore dis-
tinguishable. Of course a passive (coordinate transformation)

n +*-n is a mere change of labels and can always be performed
{even in the presence of weak interactions processes). It cor-

responds just to changing conventions as,for instance,the de-
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finition of the signal of the neutrino helicity, and does _not
‘produce ény physically distinct situation.

We must finally remark that, although .the'hyperbollici Class
of metrics with @2 < g2 are solutions of Einstein~Cartan theory
only |:l4] « the preceding analysis is also valid in this case because
it can be easily verified that the Fock-Ivanenko 'coefficients caléulated
for these cases in the context of Einstein-Cartan theory [15]
differ from (2.7) by constant terms added to Kz(r) only, cor-

responding to the associated torsion fields of the solutions.

'5 CONCLUSIONS

In the present paper we have shown that neutrino can be
used io distinguish physically the antipodal universes. We de-
fine active transformations corresponding to the passive opera
tion of coordinate inversion and show that these active trans-
formations are not.a symmetry of the system universe~-plus-left-
handed neutrinos (neutrinos considered = as test particles)
because a universe with metric 9y plus neutrinos of a  given
helicity is related to a universe with metric In plus neutrinos
of oﬁpbéiz% helicity. Weak interaction processes then allow

us to distinguish these universes physically.
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Since our only concern here are the symmetries - of Dirac's
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0 o'
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