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Abstract

We formulate the finite temperature theory for the free thermal excitations of the bosonic string in the

anti-de Sitter (AdS) spacetime in the Thermo Field Dynamics (TFD) approach. The spacetime metric is

treated exactly while the string and the thermal reservoir are semiclassically quantized at the first order

perturbation theory with respect to the dimensionless parameter ε = α′H−2. In the conformal D = 2 + 1

black-hole AdS background the quantization is exact. The method can be extended to the arbitrary AdS

spacetime only in the first order perturbation. This approximation is taken in the center of mass reference

frame and it is justified by the fact that at the first order the string dynamics is determined only by the

interaction between the free string oscillation modes and the exact background. The first order thermal

string is obtained by thermalization of the T = 0 system carried on by the TFD Bogoliubov operator. We

determine the free thermal string states and compute the local entropy and free energy in the center of mass

reference frame.
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1 Introduction

The bosonic string in the anti-de Sitter (AdS) spacetime represents the first example of an exactly quantized
string theory on a curved spacetime manifold. As such, its classical and quantum dynamics have been extensively
studied since the pioneer works of [1, 2]. Some of the problems of the string theory in the AdS spacetime which
have attracted more attention during the years concern the understanding of the string spectrum, the unitarity
of the theory and, more recently, the implications of the conjectured relation between the superstring and the
supergravity in the AdS spacetime [3].

The differences between the string dynamics in the AdS and the Minkowski spacetimes are due to the fact
that, in general, the D-dimensional AdS spacetime is not a solution of the full β-function equations for the
string σ-model. Therefore, there are large classes of conformal and non-conformal AdS backgrounds in which
the physical properties of the quantum string are difficult to study. The conformally invariant backgrounds
are necessary to define consistent quantum string theories. However, many backgrounds interesting from the
physical point of view (among which some are derived from the AdS spacetime) do not satisfy this requirement.

Some time ago, a method for analysing the bosonic string dynamics in general spacetime was proposed in
[4, 5, 6]. There it was shown that by choosing appropriate boundary conditions for the bosonic string in an
arbitrary spacetime, the reparametrization invariance of the world-sheet theory can be recasted into coordinate
transformations between different frames in spacetime. The world-sheet holomorphic mappings depend on the
fundamental string length which is a new parameter and determines, e. g. the periodicity of the closed string
in the non-inertial frames. Also, a local light-cone gauge can be chosen in any non-inertial frame. In this
gauge one can locally split the string degrees of freedom into longitudinal, i. e. along the trajectory of the
string center of mass, and transversal, and show that the longitudinal degrees of freedom are functions of the
transversal ones. These facts led the authors of [4, 5] to developing an approximation scheme for the canonical
quantization of string theory in the conformally invariant backgrounds called semiclassical quantization in
which the metric is kept fixed while the perturbation is performed around the trajectory of the center of mass
[5, 7, 8, 12]. In the same papers the semiclassical quantization method was extended at the first order to the
non-conformal D-dimensional AdS background. The main idea behind this generalization was the observation
that the conformally invariant SL(2, R)-WZWN background can be mapped into the AdS spacetime with a non-
vanishing parallelizing torsion by a point identification and a reparametrization. (Previously, it had been shown
in [13] that the (2 + 1)-dimensional black-hole AdS background is an exact solution of the string theory.) Since
the first order string perturbations and the conformal generators from the theory defined in the conformally
invariant (2 + 1) black-hole AdS spacetime do not depend on the black-hole mass and this background is
asymptotically AdS, the results were naturally generalized to the non-conformal D-dimensional AdS spacetime.

One of the most attractive features of the semiclassical quantization is that it allows to study the free
transverse quantum string excitations interacting with the exact background metric. This is achieved by working
at the first order in the power expansion of the string coordinates with respect to a dimensionless parameter
which in the D = 2 + 1 black hole AdS background is ε = α′l−2 and l is the typical length scale. Starting
from the second order, the expansion coefficients display the interaction among the oscillators and with the
background. However, the expansion is still controlled by ordinary differential equations [7]. The quantization
is performed in a reference frame defined by the zeroth order term in the power expansion which is required
to be a solution of the geodesic equations, i. e. the trajectory of the string center of mass. The transverse
string oscillating modes can be quantized by canonical methods if one chooses a covariantly constant basis
for the polarization vectors. The longitudinal excitations differ from one reference frame to other. However,
the longitudinal degrees of freedom can be expressed in terms of transversal degrees of freedom by using the
vanishing of the energy-momentum tensor equation [4]. This method describes the low excitations of the bosonic
string as compared with the energy scale of the background metric. In the black-hole background it corresponds
to black-hole masses larger than the string energy, i. e. to a strong gravitational field [5].

The exact anomaly free quantization is guaranteed only in the D = 2+1 black hole AdS spacetime. However,
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the solutions of the classical equations of motion can be expanded around the geodesic of the center of mass
in the arbitrary dimension AdS spacetime. The parameter of the expansion in this case is ε = α′H2. Here,
α′ = (2πTs)−1, Ts is the string tension and H = l−1 is the Hubble constant related to the cosmological constant
Λ by Λ = −(D − 1)(D − 2)H2/2. Since the first order string excitations and the conformal generators in
D = 2 + 1 do not depend on the black hole parameters, one can reconstruct them from the corresponding first
order quantities in the D-dimensional AdS spacetime. In this case, the transverse string excitations are spanned
by (D − 1) physical polarizations which introduce an SO(D − 1) gauge group. Thus, the interpretation of the
D = 2 + 1 quantum theory can be maintained in the D-dimensional AdS spacetime as long as we limit the
analysis to the first order terms only [12], i. e. the spacetime typical radius is much larger than the Planck
scale. (Hence the explanation of the adjective of semiclassical.) If higher order terms are taken into account,
the quantization method is no longer valid since these terms contain the interaction among string modes and
between the string and the metric. Thus, the physical string states are no longer fixed by the generators of
the conformal symmetry alone which is another way of seeing the breaking of the conformal symmetry. The
semiclassical quantization has proved its usefulness in investigating problems such as the string dynamics in
black hole, cosmological, gravitational wave and supergravity backgrounds (see [8] and the references therein.)

In this paper we are going to construct the thermalized free excitations of the bosonic string in the black-hole
AdS spacetime [9] within the TFD framework [10, 11]. The bosonic string partition function in this background
was discussed in the past by using the Matsubara formalism (see e. g. [12]). However, our goal is different in
that by applying the TFD method we provide the thermal free string states in the unperturbed background.
Since the free string excitations are available in the first order perturbation of the semiclassical quantization,
in our approach we are going to consider this approximation. However, note that our results are valid in
the full quantum theory in D = 2 + 1 black-hole AdS background as well as in SU(2, R) background. In
this case, the TFD method shows the breaking of the conformal symmetry at finite temperature. Our first
order construction in arbitrary D-dimensional AdS background is justified by the extension of the semiclassical
quantization method in the first order to the non-conformal AdS background as discussed above. However,
the results are formally the same in the two cases. The breaking of the conformal invariance in the first order
semiclassical quantization is irrelevant in D > 2 since the full theory is not conformally invariant. Also, we are
going to calculate the entropy and the free energy of the thermal string in the string center of mass reference
frame.

The TFD was employed previously in the study of the thermal string field in the Minkowski spacetime in
[14]-[19] and the first quantized string and superstring in [20]-[26]. More recently, the thermal bosonic open
string states were discussed in [27]. In [28, 29] the string entropy from the TFD in the pp-wave background
was calculated. An important result was obtained in [30] where it was shown the equivalence between the
TFD and the Matsubara formalisms, respectively, in the string theory (see also [31, 32].) In [33, 34, 35], a new
method for obtaining thermal boundary states from bosonic D-brane states was proposed (see for reviews and
related problems [36, 37, 38].) The method was generalized to the supersymmetric Green-Schwarz superstring
for which thermal boundary states were obtained from the Bogomolny-Prasad-Sommerfeld D-branes [39, 40].
The present paper represents a generalization of the previous works and opens the possibility to use the TFD to
study locally the microscopic formulation of the thermal D-branes in the AdS and black-hole AdS backgrounds
in an perturbative approach. (For interesting recent discussions of the perturbative string in the AdS spacetime
and the calculation of the string partition function using the random walks method in static backgrounds see
[41, 42].)

The paper is organized as follows. In the next section we review the semiclassical quantization of the bosonic
string in the black-hole AdS background. We thermalize the string in the first order of the power expansion
around the geodesic in Section III. Here, we derive the general form of the thermal string states. In Section
IV we compute the entropy and the free energy of the thermal bosonic string. The last section is devoted to
discussions.
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2 Semiclassical Quantization of the Bosonic String in the Black-Hole

AdS Background

In this section we are going to review the semiclassical quantization of the bosonic string in the black-hole
AdS background following [7]. The results are exact for the full quantum theory in the conformal D = 2 + 1
black-hole AdS background. However, as shown in [12], they can be extended to the arbitrary dimensional
AdS background in the first order of the perturbation series to be given below. Since our approach is in this
approximation in which the results are formally the same regardless the dimension of the AdS, our notation
will be for the arbitrary AdS spacetime. For details of the extension from D = 2 + 1 to arbitrary D we reefer
the reader to the paper [12].

The action of the bosonic string in the D-dimensional AdS spacetime is given by the following functional

S =
1

2πα′

∫
d2σ

√
hhαβgab(x)∂αxa∂βxb, (1)

where σ = (σ0, σ1) are the world-sheet coordinates, hαβ is the world-sheet metric, gab(x) is the spacetime metric
and xa(σ0, σ1) are the string coordinates in the spacetime. Here, α, β = 1, 2 are the world-sheet indices and
a, b, = 1, 2, . . . , D are the spacetime indices. The energy-momentum tensor is obtained by deriving the action
(1) with respect to the world-sheet metric

Tαβ ≡ 2√
h

δS

δhαβ
= gab(x)

(
∂αxa∂βxb − 1

2
hαβ∂γxa∂γxb

)
. (2)

By the equations of motion of hαβ the energy-momentum tensor vanishes Tαβ = 0. One can use the reparame-
trization invariance of the action to fix the world-sheet conformal symmetry

hαβ(σ) = eΛ(σ)ηαβ . (3)

In the conformal gauge the classical string dynamics is determined by the equations of motion and the constraints
arising from the vanishing of the energy-momentum tensor

ẍa − x′′a + Γa
bc(x)

(
ẋbẋc − x′bx′c) = 0, (4)

gab(x)ẋax′b = gab(x)
(
ẋaẋb + x′ax′b) = 0, (5)

where σα = (τ, σ).
The semiclassical quantization method was developed for studying the quantum string excitation in the

exact classical background [4, 5, 7]. Its starting point is expanding the string fields xa(τ, σ) around the exact
solution of the equation of motion of its center of mass (the geodesic) denoted by ηa

0 (τ)

xa(τ, σ) =
∞∑

n=0

εnηa
n(t, σ), (6)

with the initial condition ηa
0 (τ, σ) = ηa

0 (τ) satisfying the following equations of motion and constraint

η̈a
0 + Γa

bc(η0)η̇b
0η̇

c
0 = 0, (7)

gab(η0)η̇a
0 η̇b

0 = −m2α′2. (8)

The relation (8) defines the string mass operator which spectrum was discussed in [4]. In the D-dimensional AdS
spacetime there are D − 1 physical polarizations of string perturbation around the geodesic ηa

0 . Consequently,
D − 1 transverse normal vectors na

µ, µ = 1, 2, . . . , D can be introduced

gab(η0)na
µη̇b

0 = 0, (9)

gab(η0)na
µnb

ν = δµν . (10)
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The choice of the set {na
µ} is not unique since there is a local gauge group SO(D − 1) corresponding to the

rotations of {na
µ}. This gauge symmetry is fixed by requiring that the normal vectors be covariantly constant

η̇a
0∇anb

µ = 0. (11)

In this gauge most of relations among the normal vectors take a simpler form. In particular, the vectors from
{na

µ} satisfy the following completeness relation

gab = − 1
m2

η̇a
0 η̇b

0 + na
µnb

νδµν . (12)

The first order co-moving string perturbations from the expansion (6) can be written in the following form

ηa
1 (τ, σ) = δxµ(τ, σ)na

µ. (13)

In the non-rotating black-hole AdS spacetime, the solution of the equations of motion (4) in the first order in ε

has the following Fourier expansion [4]

δxµ(τ, σ) =
∑
n�=0

√
2|n|Ωn

α′
[
αµ

ne−in(Ωnτ−σ) + βµ
ne−in(Ωnτ+σ)

]
+

√
l

2m

[
αµ

0 e−i mα′
l τ + βµ

0 e+i mα′
l τ
]
. (14)

Here, the frequencies of the string oscillators in � = 1 units are ω0 = mα′/l and ωn = ω−n = |n|Ωn for
n = ±1,±2, . . .. Also, we are using the following notation

Ωn =

√
1 +

m2α′2

n2l2
. (15)

It can be shown that the first order perturbations from the relation (14) satisfy the equation of motion derived
from the action given in the relation (1) truncated at second order [4]

S2 = − 1
2πα′

∫
dσdτ

D−1∑
µ=1

(
ηαβ∂αδxµ∂βδxµ +

m2α′2

l2
δxµδxµ

)
. (16)

The next step is to impose the constraints from the relation (5). This can be done by solving the equations of
motion (4) for the first and second order perturbations [4]. In the world-sheet light-cone gauge σ± = (τ ± σ)
the lower order components of the energy-momentum tensor have the following form

T±± = gab∂±xa∂±xb = 0. (17)

In the D = 2 + 1, the contribution from T±∓ = 0 by the conformal invariance. Since the components T±± are
conserved, they can be written as

T−− =
1
2π

∑
n

L−
n e−in(σ−τ), (18)

T++ =
1
2π

∑
n

L+
n e−in(σ+τ). (19)

The coefficients L−
n and L+

n are the conformal generators. They can be expressed in terms of the Fourier
coefficients of the first order perturbations given in the relation (14). Thus, the classical constraints have the
form

L−
n = L+

n = 0. (20)

In D = 2 + 1 AdS spacetime the string mass operator can formally be obtained from L−
0 and L+

0 which have
the following form

L−
0 = πα′∑

n>0

[
(ωn − n)2

2nΩn
β†

n · β†
n +

(ωn + n)2

2nΩn
α†

n · α†
n

]
+

πmα′2

2l
α†

0 · α0 − πm2α′2

2
, (21)

L+
0 = πα′∑

n>0

[
(ωn + n)2

2nΩn
β†

n · β†
n +

(ωn − n)2

2nΩn
α†

n · α†
n

]
+

πmα′2

2l
α†

0 · α0 − πm2α′2

2
, (22)



CBPF-NF-005/07 5

where · stands for the sum over µ = 1, 2. Upon quantization, the Fourier coefficients are turned into operators
that obey the standard commutation relations

[αµ
m, α†ν

n ] = [βµ
m, β†ν

n ] = δµνδmn , [αµ
m, βν

n] = 0 , [αµ
0 , α†ν

0 ] = δµν , (23)

where αµ
−n = α†µ

n , αµ
−n = α†µ

n , and βµ
0 = α†µ

0 . As a matter of notation, in what follows the quantities with
an over bar will denote the β oscillators, while the ones without an over bar will denote the α oscillators. The
constraints arising from zero modes generators are

(
L−

0 − 2πα′) |Ψphys〉 = 0 ,
(
L+

0 − 2πα′) |Ψphys〉 = 0, (24)

The generators of the world-sheet translations σ → σ + ξ and τ → τ + ζ are P = L+
0 − L−

0 and H = L+
0 + L−

0 ,
respectively. By introducing the number operators

Nn =
n

2

D−1∑
µ=1

α†µ
n αµ

n , Nn =
n

2

D−1∑
µ=1

β†µ
n βµ

n , (25)

for αn and βn oscillators, respectively, we obtain the following relations

H = 2πα′∑
n≥1

(
Ω2

n + 1
Ωn

)(
Nn + Nn

)
+

πmα′2

l
α†

0 · α0 − πm2α′2, (26)

P = 4πα′∑
n≥1

(
Nn − Nn

)
. (27)

The momentum constraint takes the form of the level matching condition for the closed bosonic string

4πα′∑
n≥1

(
Nn − Nn

) |Ψphys〉 = 0. (28)

The constraints (24) and (28) must be imposed on the Hilbert space of the bosonic string in order to project
the dynamics in to the physical subspace.

In the arbitrary AdS spacetime the unitarity is achieved by imposing spin-level restrictions on the allowed
representations of the Virasoro algebra (see e. g. [43] and the references therein), beside the Virasoro constraints,
since the later in general do not eliminate completely the negative norm state [1]. However, since the formulas
obtained above for the D = 2 + 1 black-hole AdS do not depend on the black-hole mass, and this background
is asymptotically AdS, following [12] we generalize the above relations to the arbitrary AdS in the first order of
perturbation from (6) and take µ, ν = 1, 2, . . . , D−1 in the above formulas. It is important to note, however, that
L+

n and L−
n do not generate an exact symmetry in the arbitrary AdS spacetime. Nevertheless, the corresponding

Hamiltonian and level matching condition operators are obtained from the generalization of the D = 2+1 case.
Therefore, by an abuse of notation, we will use P for level matching condition in what follows.

Note that in the AdS spacetime the string excitations oscillate in time. However, the possible instabilities
do not develop due to the negativeness of the local gravity. The string states can be organized as eigenstates of
the mass operator which is obtained from the constraints (24). For more details on this construction we refer
the reader to [4, 5, 12].
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3 Thermal String in the TFD Approach

In order to obtain the first order thermal bosonic string we are going to apply the TFD formalism [10, 11] to
the semiclassicaly quantized string from the previous section. In the first subsection we are going to discuss the
TFD ansatz for the bosonic string and calculate its thermal partition function Z(βT ) and the thermal vacuum
|0(βT )〉〉, where βT = (kBT )−1 and kB is the Boltzmann constant. In the calculation of Z(βT ) there are formal
differences between working in the total Hilbert space H and the physical subspace Hphys ∈ H, respectively.
From the form of the partition function in the physical subspace we conclude that the Bogoliubov operator is
of the known form and the string thermalization can be performed straightforwardly. The general form of the
thermal string states is given.

3.1 Thermal String Vacuum

The thermalization is the physical process in which a system is put in contact with a thermal reservoir to heat
it up from T = 0 to some T > 0. In the TFD formalism, this process is described as follows [10, 11]. Each
independent quantum oscillation mode of the initial system interacts with an identical degree of freedom of the
reservoir. The specific interaction is expressed by the Bogoliubov operator which mixes the pair of oscillators.
The result are two new degrees of freedom which are temperature dependent. Thus, the heating of the original
system is the result of the interaction of all oscillators one by one with identical degrees of freedom of the
reservoir and the dynamics of the finite temperature system is described in terms of new pairs of oscillators that
mix zero temperature system and reservoir oscillating modes, respectively. Isolating the system oscillators and
the reservoir oscillators is called doubling the system.

The TFD ansatz states that the statistical average of any observable O should be expressed as an expectation
value in a state |0(βT )〉〉 that characterizes the system at equilibrium at finite temperature called the thermal
vacuum. This statement is expressed by the following relation

〈O〉 = Z−1(βT )Tr
[
e−βT HO

] ≡ 〈〈0(βT )|O|0(βT )〉〉, (29)

where H is the Hamiltonian of the system. As discussed in [30, 31, 39], the above ansatz should be modified
when applying the TFD to string theory to the following relation

〈O〉 = Z−1(βT )Tr
[
δ(P = 0)e−βT HO

] ≡ 〈〈0(βT )|O|0(βT )〉〉, (30)

which takes into account the world-sheet reparametrization invariance. The relation (30) holds after the string
symmetries have been fixed. It implies that only the physical states contribute to the trace. In a more general
situation, the full set of constraints should be implemented into the trace in order to guarantee that it is
calculated in the physical subspace Hphys and not in the full string Hilbert space H.

Let us apply these ideas to the bosonic string in the D = 2+1 black-hole AdS background from the previous
section. Denote all the physical quantities and the degrees of freedom of the thermal reservoir that correspond
to the string oscillating modes by a tilde. Then the total system at T = 0 has the full Hilbert space Ĥ = H⊗H̃.
According to the TFD, the thermal vacuum state |0(βT )〉〉 should have the following form

|0(βT )〉〉 =
∑
w

∑
w

fw,w(βT )|w〉|w〉, (31)

where w and w are multi-indices corresponding to the α and β modes, respectively. We introduce the following
notations for the eigenvalues of the number operators

Nn = n

D−1∑
µ=1

kµ
n , Nn = n

D−1∑
µ=1

k
µ

n, (32)
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where kµ
n, k

µ

n are eigenvalues of the number operators Nµ
n = α†µ

n αµ
n and N

µ

n = β†µ
n βµ

n , respectively, for any
µ = 1, 2, . . . , D − 1 and n = 1, 2, . . . i. e. they satisfy the following relations

Nµ
n | · · ·kµ

n · · ·〉 = nkµ
n| · · ·kµ

n · · ·〉, , N
µ

n| · · · k
µ

n · · ·〉 = nk
µ

n| · · · k
µ

n · · ·〉. (33)

Then the following orthogonality relation holds

f∗
w′,w′(βT )fw,w(βT ) = Z−1(βT )δ(w′, w)δ(w′, w)

exp
(
βT πm2α′2

)
[
1 − exp

(
−βT πmα′2

l

)]D−1
×

+1/2∫
−1/2

ds exp

[
2πα′∑

n

(
λn(βT , s)Nn + λn(βT , s)Nn

)]
, (34)

where δ(w′, w) and δ(w′, w) are short hand notations for the product of delta functions for each pair of indices
in the corresponding multi-index and

λn(βT , s) = −βT ωn − is

α′ , λn(βT , s) = −βT ωn +
is

α′ . (35)

The constraint has been written using the following analytic representation of the delta function

δ(P = 0) ≡ δ(N − N) =

+1/2∫
−1/2

ds e2πis(N−N). (36)

The orthogonality relation (34) shows that, as in the case of the Minkowski spacetime, the coefficients in the
expansion of the thermal vacuum are vectors from a Hilbert space identical with the string Hilbert space, i. e.
the Hilbert space H̃ of the reservoir degrees of freedom. Also, the relation (34) shows that in the expansion of
|0(βT )〉〉 in the full Hilbert space Ĥ = H⊗ H̃, these vectors are tensored with Columbeau functionals [44], i. e.
the square root of the delta function. This suggests that the thermal vacuum is actually a state from the total
physical space Ĥphys ∈ Ĥ rather than the full space. Indeed, there is no delta function factor if the trace from
(30) is taken over Ĥphys instead of Ĥ and, consequently, there is no dependence of the thermal vacuum on the
constraints. For simplicity, we will work in what follows in the physical space. Then the relation (31) takes the
following form

|0(βT )〉〉 = Z− 1
2 (βT )δ(w′, w)δ(w′, w)

exp
(

βT πm2α′2

2

)
[
1 − exp

(
−βT πmα′2

l

)]D−1
2

×

∑
w

∑
w

exp

[
−βT πα′

∞∑
n=1

ωn

(
Nn + Nn

)] |w, w〉|̃w, w〉. (37)

Here, the multi-index states are |w, w〉 ∈ Hphys and |̃w, w〉 ∈ H̃phys, respectively. The partition function can be
obtained by requiring that the norm of the thermal vacuum be equal to one and taking the trace of the identity
operator in the physical subspace

Z(βT ) =
exp

(
βT πm2α′2

)
[
1 − exp

(
−βT πmα′2

l

)]D−1

∞∏
n=1

(
1 − e−βT πα′nωn

)2(1−D)

. (38)

Here, the factor of 2 in the exponential comes from the equal contributions of both α and β oscillators, respec-
tively.

In the arbitrary AdS spacetime, there is no need to impose the momentum constraint in the calculation of
the trace. However, since the level matching condition still holds at first order in the expansion (6), we impose
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it in the general case, too. Thus, the above considerations are valid for arbitrary AdS in the approximation
considered. The relations (37) and (38) show that the decomposition of the thermal vacuum in terms of physical
states is similar to that of a free quantum field in the Minkowski spacetime. However, there are two important
differences. The first one is the contributions of zero mode and square mass to the exponential. The second
one is deeper and concerns the validity of the above state as a thermal string vacuum only locally, in the free
falling reference frame of the center of mass, i. e. along the geodesics of the AdS spacetime.

3.2 Thermal String States

The form of the thermal vacuum and the partition function obtained in the previous subsection show that the
TFD program can be carried to the semiclassical string bosonic string in the AdS background. The thermal
string states belong to the Hilbert space H(βT ) and are generated by thermal creation operators acting on the
thermal vacuum. The mapping from the theory at T = 0 to the theory at T 	= 0 is generated by the temperature
dependent Bogoliubov operator corresponding to all oscillators of the total system

G = G0 + G + G, (39)

where the zero mode Bogoliubov operator G0 has the following form

G0 = −iθ0(βT )
D−1∑
µ=1

(
α̃µ

0αµ
0 − α†µ

0 α̃†µ
0

)
, (40)

and the parameter θ0 is related to the distribution function by the following relation

cosh θ0(βT ) =
(
1 − e−βT ω0

)− 1
2 . (41)

Here, the zero mode frequency is

ω0 =
πmα′2

l
. (42)

The operators G and G are the Bogoliubov operators for α and β modes, respectively, and take the following
form

G0 =
∞∑

n=1

Gn = −i

∞∑
n=1

θn(βT )
D−1∑
µ=1

(
α̃µ

nαµ
n − α†µ

n α̃†µ
n

)
, (43)

G0 =
∞∑

n=1

Gn = −i

∞∑
n=1

θn(βT )
D−1∑
µ=1

(
β̃µ

nβµ
n − β†µ

n β̃†µ
n

)
. (44)

The coefficients θn(βT ) = θn(βT ) are equal for all n = 1, 2, . . . and µ = 1, 2, . . . , D − 1 since the oscillators are
identical in both sectors and along all directions of the transverse tangent space. Their relation with the bosonic
distribution is given by the following relation

cosh θn(βT ) = cosh θn(βT ) =
(
1 − e−βT ωn

)− 1
2 , (45)

where

ωn = ωn = πα′n
(

Ω2
n + 1
Ωn

)
. (46)

The thermal vacuum obtained in (37) is the image of the total vacuum given by the following relation

|0〉〉 ≡ |0〉 ˜|0〉 = |0〉〉0 ⊗n |0〉〉n ⊗n |0〉〉n, (47)

under the unitary transformation generated by the Bogoliubov operator

|0(βT )〉〉 = e−iG |0〉〉. (48)
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Since |0〉〉 belongs to the total physical space, the Bogoliubov operator maps Ĥphys to the thermal Hilbert space
H(βT ). The total vacuum is annihilated by all annihilation operators and it is translational invariant.

The thermal vacuum (48) can be defined in the same way if thermal operators are constructed by acting
upon the set of all oscillator operators

O ≡ {O} = {αµ
0 , α†µ

0 , α̃µ
0 , α̃†

0; α
µ
n, α†µ

n , α̃µ
n, α̃†

n; βµ
n , β†µ

n , β̃µ
n , β̃†

n}, (49)

through the similarity transformations generated by the Bogoliubov operator

O(βT ) = e−iGOeiG = {e−iGOeiG}. (50)

The space H(βT ) has a Fock space structure. The thermal vacuum state satisfies the relations

αµ
0 (βT )|0(βT )〉〉 = αµ

n(βT )|0(βT )〉〉 = βµ
n(βT )|0(βT )〉〉 = 0, (51)

α̃µ
0 (βT )|0(βT )〉〉 = α̃µ

n(βT )|0(βT )〉〉 = β̃µ
n(βT )|0(βT )〉〉 = 0. (52)

Since the Bogoliubov operator mixes zero temperature oscillating modes from all sectors, the finite tempera-
ture non-tilde and tilde oscillators do not represent anymore string and reservoir degrees of freedom, respectively.
They rather describe thermal oscillations of the heated system which results from the interaction of zero tem-
perature string and reservoir. A thermal string state will contain an arbitrary number of thermal excitations
from all sectors and it general form is given by the following relation

|Ψµ1...ν1...ρ1...τ1
m1...ν1...p1...q1

(βT )〉〉 =[
α†µ1

m1
(βT )

]kµ1
m1 · · · [β†ν1

n1
(bT )

]kν1
n1 · · · [α̃†ρ1

p1
(βT )

]sρ1
p1 · · ·

[
β̃†τ1

q1
(βT )

]sτ1
q1 · · · |0(βT )〉〉. (53)

The above state contains, kµ1
m1

thermal excitations of type αm1 in the direction µ1, k
ν1

n1
thermal excitations of

type βn1 in the direction ν1 etc.

3.3 Constraints of the Thermal String in D = 2 + 1

The symmetries of the thermal string should be checked by verifying the conformal algebra on the thermal
states. However, it is a simple exercise to show that the operators Ln and Ln do not commute with the
Bogoliubov operator. Thus, the conformal algebra is broken at finite temperature. Nevertheless, it is natural to
ask whether there are any symmetries and constraints left that should be imposed on the thermal string states
obtained in the previous section. To answer this question, note that the string dynamics at finite temperature
can be derived from the following Lagrangian

L2(βT ) = e−iGL̂2e
iG , (54)

where L̂2 = L2 − L̃2, L2 is the Lagrangian corresponding to the truncated action given in the relation (16) and
L̃2 is its reservoir counterpart. From the above Lagrangian one can build the following Hamiltonian and the
world-sheet momentum

Ĥ = H − H̃ , P̂ = P − P̃ , (55)

and show that the following commutation relations hold[
Ĥ,G

]
=
[
P̂ ,G

]
= 0. (56)

Since Ĥ is the total Hamiltonian of the bosonic string, one can interpret P̂ as being its total momentum. Thus,
any physical state |Ψphys〉〉 = |Ψphys〉 ˜|Ψphys〉 can be mapped to the following thermal state

|Ψphys(βT )〉〉 = e−iG |Ψphys〉〉, (57)
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the latter being invariant under the world-sheet translation of the total string

P̂ |Ψphys(βT )〉〉 = 0. (58)

The above relation is on equal footing of importance with the Hamiltonian invariance and therefore it can be
used as the definition of the thermal physical states. Note that the operators in (58) are at zero temperature
while the state are at finite temperature. It is a simple exercise to write (58) in terms of objects at finite
temperature only.

4 Thermodynamical Functions of the Thermal String

In this section we are going to compute the entropy and the free energy of the bosonic string at finite temperature.
The basic hypothesis is that the semiclassical thermal string is at equilibrium in the free falling reference system
of the center of mass. Then the free thermal string excitations are created out of the thermal equilibrium
vacuum |0(βT )〉〉 by the temperature dependent creation operators and the average string energy 〈H〉 is equal
to the 〈H̃〉 [10, 11]. Thus the thermal equilibrium states can be understood as states in which pairs of tilde
and non-tilde excitations fluctuate such that when an excitation of one type is created another excitation of the
other type is annihilated and subjected to the relation (58) from the previous section.

Consider the string oscillation modes in the physical Hilbert space as discussed in the previous section. Then
the string entropy in kB units can locally be defined as the expectation value of the following operator in the
thermal vacuum [11]

K = −
∞∑

n=1

D−1∑
µ=1

[(
αµ†

n αµ
n + βµ†

n βµ
n

)
log sinh2 θn(βT ) − (αµ

nαµ†
n + βµ

nβµ†
n

)
log cosh2 θn(βT )

]

−
D−1∑
µ=1

[
αµ†

0 αµ
0 log sinh2 θ0(βT ) − αµ

0αµ†
0 log cosh2 θ0(βT )

]
. (59)

By using the expectation value of the zero temperature number operator in the thermal vacumm

〈〈0(βT )|αµ†
n αµ

n|0(βT )〉〉 = 〈〈0(βT )|βµ†
n βµ

n |0(βT )〉〉 = sinh2 θn(βT ), (60)

for all oscillators, we can write the entropy of the bosonic string in the following form

S = 2(D − 1)kB

∞∑
n=1

[βT πα′nωnf(πα′nωn) + log(1 + f(πα′nωn))]

+ (D − 1)kB

[
βT

πmα′2

l
f(

πmα′2

l
) + log

(
1 + f(

πmα′2

l
)

)]
, (61)

where
f(ωn) =

1
eβT ωn − 1

, (62)

is the bosonic distribution function for all n = 0, 1, 2, . . .. Now let us compute the thermal string free energy. By
definition, its general expression is given by the expected value in the thermal vacuum of the following operator

F = − 1
kB

K + H. (63)

By using the above calculations and the explicit form of the local Hamiltonian we arrive at the following form
of the free energy

〈〈F 〉〉 = (D − 1)
∞∑

n=1

[
4πα′nωnf(πα′nωn) +

2πmα′2

l
f(

πmα′2

l
)

]

+
(D − 1)

βT

[
2

∞∑
n=1

log (1 + f(πα′nωn)) + log

(
1 + f(

πmα′2

l
)

)]
− πm2α′2, (64)
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where the last two terms represent the contribution of the zero modes and string mass, respectively.
The factor of 2 in the formula (61) denotes the contribution of α and β oscillators for n > 1, respectively.

The last two terms in the entropy define a function S0 on the string tension and the cosmological constant. At
constant temperature and

T 2
s >>

mβT

4π

√−Λ, (65)

S0 depends on temperature as

S0 ≈ 1 + log
(

1 +
1

βT ω0

)
(66)

Thus, we can expect this contribution be relevant at high temperatures

T >>
m

4πkB

√−Λ. (67)

At values of the string constant

T 2
s <<

mβT

4π

√−Λ, (68)

the last two terms in the entropy depend on the temperature as

S0 ≈ log(2 − βT ω0) + βT ω0 − (βT ω0)2. (69)

In this case there is a critical temperature

Tc =
8πkB

mT 2
s

√−Λ
. (70)

For T < Tc the zero mode entropy is no longer well defined. This result may be interpreted as a failure of the
semiclassical quantization procedure in the tensionless limit of the string theory. In this limit, the interaction
among string oscillators may induced effects beyond the first order approximation of the perturbative expansion
in ε. The string effects are reduced in the large tension limit in which the string behaves more like a particle.
Similar conclusions can be drawn for the string free energy.

5 Conclusions and Discussions

In this paper we have constructed the locally free thermal semiclassical string excitations in the AdS spacetime
in the presence of the exact metric. The semiclassical quantization allows to study the free oscillation modes
which appear at the the first order in the power expansion of the string fields in the dimensionless parameter ε.
From physical point of view, this expansion corresponds in D = 2+1 black-hole AdS spacetime to the expansion
in ω/M where ω is a typical string oscillation frequency scale and M is the black-hole mass. Therefore, the
approximation holds for strings in strong gravitational field [5]. The truncated theory at zero temperature
displays the conformal invariance and has the level matching condition constraint which define the physical
subspace of the Hilbert space. By fixing the gauge symmetries of the theory we were able to map the string
theory from T = 0 to T 	= 0 by a Bogoliubov operator constructed within the TFD formalism. To this end, we
have assumed that the semiclassical string is in contact with a thermal reservoir in the chosen reference frame.
Then application of the TFD to the physical Hilbert space of the local transverse oscillation to the geodesic is
quite straightforward. Also, in this setup we have calculated the entropy and the free energy of the thermal
string.

The relations obtained in this paper are valid for the free thermal string in arbitrary AdS spacetime just in
the first order approximation of the semiclassical quantization. In that case there is no conformal symmetry
of the vacuum. However, as pointed out in [12], the level matching condition and the Hamiltonian should be
the same in this approximation. For arbitrary dimension of the AdS, our result show that there are terms in
the entropy that depend on the cosmological constant Λ. Also, there is a critical temperature under which the
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thermalization based on the semiclassical quantization is not well defined in the large string tension limit, i. e.
away from the particle approximation of the string theory.

Our results were derived in the physical Hilbert space. However, it is possible to work in the full Hilbert
space, too, in which case the level matching condition will show up in the corresponding formulas explicitly.
The thermal partition function Z(βT ) has the following form in the full Hilbert space

Z(βT ) =
exp(βT πm2α′2)[

1 − exp
(
−βT

πmα′2
l

)]D−1

+1/2∫
−1/2

ds

∞∏
n=1

[(
1 − eπα′nλn(βT ,s)

)(
1 − eπα′nλn(βT ,s)

)]1−D

. (71)

The thermal vacuum state has the following expansion in terms of the full Hilbert space basis

|0(βT )〉〉 =
Z− 1

2 (βT ) exp(βT πm2α′2)
2[

1 − exp
(
−βT

πmα′2
l

)]D−1
2

∑
w

∑
w

⎡
⎢⎣

+1/2∫
−1/2

ds exp

(
iπns

D−1∑
µ=1

(
kµ

n − k
µ

n

))⎤⎥⎦
− 1

2

× exp

(
−βT πα′

∞∑
n=1

nωn

D−1∑
µ=1

(
kµ

n + k
µ

n

))
|w, w〉|̃w, w〉, (72)

where the partition function is now the one given in (71). To compute the entropy and the free energy one has
to take the expectation value of the entropy operator K and the Hamiltonian in the state (72) and to perform
the integral over s parameter, too. Note that in the full Hilbert space the Hamiltonian has the form

H ′ = 2πα′∑
n≥1

[(
Ω2

n + 1
Ωn

)(
Nn + Nn

)
+ 2πis

(
Nn − Nn

)]
+

πmα′2

l
α†

0 · α0 − πm2α′2, (73)

which differs from (26) in that the level matching constraint has been added to it. This is in agreement to the
interpretation of the parameter s as a Langrange multiplier [30]. However, working in the full Hilbert space
implies manipulating the Columbeau’s generalized functionals [44]. It is an interesting problem to show that
the two formulations coincide.
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would like to thank to J. A. Helayël-Neto, S. A. Dias and A. M. O. de Almeida for discussions and hospitality
at LAFEX-CBPF where part of this work was being carried out.

References

[1] J. Balog, L. O’Raifeartaigh, P. Forgacs and A. Wipf, Nucl. Phys. B 325, 225 (1989).

[2] L. J. Dixon, M. E. Peskin and J. D. Lykken, Nucl. Phys. B 325, 329 (1989).

[3] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

[4] H. J. de Vega and N. Sanchez, Phys. Lett. B 197, 320 (1987).

[5] H. J. de Vega and N. Sanchez, Nucl. Phys. B 299, 818 (1988).

[6] N. G. Sanchez, Phys. Lett. B 195, 160 (1987).

[7] A. L. Larsen and N. Sanchez, Phys. Rev. D 50, 7493 (1994).

[8] H. J. de Vega, A. L. Larsen and N. G. Sanchez, Phys. Rev. D 58, 026001 (1998)

[9] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, Phys. Rev. D 48, 1506 (1993).



CBPF-NF-005/07 13

[10] Y. Takahasi and H. Umezawa, Collect. Phenom. 2, 55 (1975).

[11] H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics, (AIP New-York, 1993).

[12] A. L. Larsen and N. Sanchez, Phys. Rev. D 52, 1051 (1995).

[13] M. Banados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992)

[14] Y. Leblanc, Phys. Rev. D 36, 1780 (1987).

[15] Y. Leblanc, Phys. Rev. D 37 1547 (1988).

[16] Y. Leblanc, Phys. Rev. D 38, 3087 (1988).

[17] Y. Leblanc, Phys. Rev. D 39 1139 (1989).

[18] Y. Leblanc, M. Knecht and J. C. Wallet, Phys. Lett. B 237 357 (1990).

[19] Y. Leblanc, Phys. Rev. Lett. 64 831 (1990).

[20] H. Fujisaki, K. Nakagawa and I. Shirai, Prog. Theor. Phys. 81, 570 (1989).

[21] H. Fujisaki and K. Nakagawa, Prog. Theor. Phys. 82, 236 (1989).

[22] H. Fujisaki and K. Nakagawa, Prog. Theor. Phys. 82, 1017 (1989).

[23] H. Fujisaki and K. Nakagawa, Europhys. Lett. 14, 737 (1991).

[24] H. Fujisaki and K. Nakagawa, Europhys. Lett. 20, 677 (1992).

[25] H. Fujisaki, Europhys. Lett. 28, 623 (1994).

[26] H. Fujisaki, Europhys. Lett. 39, 479 (1997).

[27] M. C. B. Abdalla, E. L. Graca and I. V. Vancea, Phys. Lett. B 536, 114 (2002).

[28] D. L. Nedel, M. C. B. Abdalla and A. L. Gadelha, Phys. Lett. B 598, 121 (2004).

[29] M. C. B. Abdalla, A. L. Gadelha and D. L. Nedel, JHEP 0510, 063 (2005).

[30] M. C. B. Abdalla, A. L. Gadelha and D. L. Nedel, Phys. Lett. B 613, 213 (2005).

[31] M. C. B. Abdalla, A. L. Gadelha and D. L. Nedel, PoS WC2004, 020 (2004).

[32] M. C. B. Abdalla, A. L. Gadelha and D. L. Nedel, PoS WC2004, 032 (2004).

[33] I. V. Vancea, Phys. Lett. B 487, 175 (2000).

[34] M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, Phys. Rev. D 64, 086005 (2001).

[35] M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, Phys. Rev. D 66, 065005 (2002).

[36] M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, “D-branes at finite temperature in TFD,” [arxiv:hep-
th/0308114].

[37] M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, Int. J. Mod. Phys. A 18, 2109 (2003).

[38] M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, Nucl. Phys. Proc. Suppl. 127, 92 (2004).

[39] I. V. Vancea, Phys. Rev. D 74, 086002 (2006).



CBPF-NF-005/07 14

[40] I. V. Vancea, PoS WC2006, 036 (2006).

[41] J. J. Friess and S. S. Gubser, Nucl. Phys. B 750, 111 (2006).

[42] M. Kruczenski and A. Lawrence, JHEP 0607, 031 (2006).

[43] J. M. Evans, M. R. Gaberdiel and M. J. Perry, Nucl. Phys. B 535, 152 (1998).

[44] J. F. Columbeau, Elementary Introduction to New Generalized Functions, North Holland, 1985.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


