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Abstract

We show the natural relation between the Wigner Hamiltonian and the con-

formal Hamiltonian. It is presented a model in (super)conformal quantum me-

chanics with (super)conformal symmetry in the Wigner-Heisenberg algebra picture

[x; px] = i(1 + cP) (P being the parity operator). In this context, the energy spec-

trum, the Casimir operator, creation and annihilation operators are de�ned. This

superconformal Hamiltonian is similar to the super-Hamiltonian of the Calogero

model and it is also an extension of the super-Hamiltonian for the Dirac Oscillator.
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1 Introduction

The problem of unifying quantum mechanics and gravity is one of the greatest un-

solved problems in physics. In this context, the quantum mechanical black holes provide

an arena in which quantum mechanics and gravity meet head on. The conformally-

invariant quantum mechanical model was investigated �rstly by Alfaro et al. [1] and an

extended superconformal quantum mechanics has recently been discovered as a supercon-

formal structure in multi black-hole quantum mechanics (see [2, 3, 4, 5] and references

therein). Also, some super-conformal models are sigma models that describe the propa-

gation of a non-relativistic spinning particle in a curved background [6]. It was recently

conjectured by Gibbons and Townsend that large n limit of an N = 4 superconformal

extension of the n particle Calogero model [7] might provide a description of the extreme

Reissner-Nordstr�om black hole near the horizon. In addition, the relation between the

superconformal mechanics and the nonlinear supersymmetry we can see in [8].

In 1950, Wigner[9] proposed the interesting question, "Do the equations of motion

determine the quantum-mechanical commutation relations?" and he found as an answer

a generalized quantum rule for the one-dimensional harmonic oscillator. In the next year,

Yang [10] found the coordinate representation for the linear momentum operator which re-

alizes this aforementioned generalized quantum rule. Yang's wave mechanical description

was further studied by Ohnuki et al. [11] and Mukunda et al. [12]. Jayaraman-Rodrigues

have identi�ed the free parameter of the Celka-Hussin's model with that of the Wigner

parameter of a related super-realized general 3D Wigner oscillator system satisfying a

generalized (super) quantum commutation relation of the �3-deformed Heisenberg alge-

bra [13, 14]. Recently, the deformed Wigner-Heisenberg (WH) oscillator algebra has been

investigated in the context of the generalized statistics (introduced in physics in the form

of parastatistics as an extension of the Bose and Fermi statistics) [15, 16]. On the other

hand, the elements of the conformal group can be represented in terms of ladder operators

of deformed quantum oscillators [17] and the WH-algebra has also been investigated in

connection with noncommutative geometry [18, 19].

In this paper, �rstly we found the simple connection between the Wigner Hamiltonian

and the conformal Hamiltonian of Ref. [2]. We proceed by showing the interesting new

structures in conformal quantum mechanics in the WH picture. It is introduced the new

well de�ned conformal Hamiltonian (22), its energy spectrum, the Casimir operator, rais-

ing (or creation) and the lowering (or annihilation) operators using the Wigner-Heisenberg

algebra. It is shown, for example, that the eigenvalues of this conformal Hamiltonian is
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dependent of the Wigner parameter c and the eigenvalues of the parity operator P . When

c=0 we obtain the usual conformal Hamiltonian structure. Moreover, we present the new

superconformal Hamiltonian with Wigner-Heisenberg algebra structure. In the same way,

we study the energy spectrum and construct the supersymmetric Casimir operator. Our

motivation is its potential application in (multi) black-hole quantum mechanics [2, 7] with

the possibilities to introduce new structures in this subject.

This work is organized as follows. In Sec. II we start by summarizing the essential fea-

tures of the formulation of P-deformed Wigner-Heisenberg oscillator algebra. We discuss

the connection between the usual conformal Hamiltonian and the Wigner Hamiltonian.

In Sec. III we present the conformal quantum mechanics based on the WH-algebra and

discuss the eigenvector problem by de�ning the Casimir operator, the ladder and the

annihilation operators. In Sec. IV we present the superconformal Hamiltonian based on

the WH-algebra picture and de�ne the supercharged operator in the Yang representation.

We compute the superconformal algebra and discuss the eigenvalue and the eigenvector

problems in the supersymmetric context. As in the bosonic case, in the supersymmetric

case we de�ned the raising and the lowering operators and then we discuss the eigen-

value problem for the well de�ned superconformal Hamiltonian. In �gures 1 and 2 the

supersymmetric potentials for each speci�c parity operator eigenvalue are plotted.

2 The P-Deformed Heisenberg Algebra

In order to make the paper self-contained we present a short discussion of the P -

deformed Heisenberg algebra. The Wigner Hamiltonian expressed in the symmetrized

bilinear form in terms of the mutually adjoint operators â�; is de�ned by

ĤW =
1

2
(p̂2x + x̂2) =

1

2
[â�; â+]+ =

1

2
(â�â+ + â+â�); (1)

where

â� =
1p
2
(�ip̂x � x̂): (2)

Wigner showed that the Heisenberg's equations of motion

[ĤW ; â
�]� = � _̂a

�
; (3)

do not necessarily entail in the usual quantum rule
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[â�; â+]� = 1) [x̂; p̂x]� = i; �h = 1; (4)

but a more general quantum rule [10, 11, 12] given by

[â�; â+]� = 1 + cR̂ =) [x̂; p̂x]� = i(1 + cR̂); (5)

where c is a real constant, called Wigner parameter, related to the ground state energy

E
(0)
W � 0 by virtue of the positive semi-de�nite form of ĤW

�

jcj = 2E
(0)
W � 1: (6)

The basic (anti-)commutation relations (1) and (3), together with the derived relation

(5) constitute P-deformed Wigner-Heisenberg algebra or in short the WH-algebra. The

WH-algebra can also be obtained by the requirement that x̂ satis�es the classical equation

of motion (�̂x+ x̂ = 0).

Note that R̂ is an abstract operator satisfying the properties

[R̂; â�]+ = 0) [R̂; ĤW ]� = 0; R̂y = R̂�1 = R̂; R̂2 = 1: (7)

Also, we have

ĤW = â+â� +
1

2
(1 + cR̂)

= â�â+ � 1

2
(1 + cR̂): (8)

In the mechanical representation �rst investigated by Yang [10], R̂ is realized by the parity

operator P :

Pjx >= j � x >) [P; x]+ = 0; [P; px]+ = 0; P
y = P

�1 = P; P
2 = 1: (9)

Indeed, Yang [10] found the coordinate representation for the momentum operator px as

given by

p̂x �! px = p+ i
c

2x
P; x̂ �! x; p = �i d

dx
(10)

�Note that the case c = 0 corresponds to the usual oscillator with E(0) = 1
2 ; �h = ! = 1:
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â� �! a�c
2

=
1p
2

 
� d

dx
� c

2x
P� x

!
: (11)

Yang's wave mechanical description was further investigated in [11, 12].

The P-deformed Heisenberg algebra is based on the following general quantum rule

[10]

[â�; â+]� = 1 + cP =) [x̂; p̂x]� = i(1 + cP); (12)

where

[P; â�]+ = 0) [P; ĤW ]� = 0: (13)

When we replace the equation (10) into the equation (1) for the Wigner Hamiltonian we

obtain

ĤW� =
1

2

�
p2 + x2 +

1

4x2
(c2 + 2c)

�
(14)

where the parity operator has been taken the value �1.
If we consider the following conformal Hamiltonian (equation (2.6) of ref. [2])

L0 =
p2

2
+

g

2x2
+
x2

2
; (15)

and choose c2 + 2c = 4g in (14) then the Wigner Hamiltonian is equal the conformal

Hamiltonian (15) in the coordinate representation

L0 = ĤW
�

; (16)

for the case P ! �1: This is a simple observation but leads to new interesting results.

Note that introducing the more general quantum rule (5) we are providing conformal

symmetry to the Wigner Hamiltonian. The energy spectrum of the Hamiltonian L0 (or

ĤW�) is well de�ned. The eigenstates of L0 form an in�nite tower above the ground state,

in integer steps [1, 2].

On the other hand, it is important to comment that there exists a hidden supersymme-

try in the WH-algebra structure. If we de�ne as the bosonic generators fĤW ; (â
+)2; (â�)2g

and the fermionic ones as fâ+; â�g then they close the osp(1=2) superalgebra.
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3 Conformal symmetry in theWigner-Heisenberg pic-

ture

In this section we study the Hamiltonian with conformal symmetry in the WH-algebra

picture. This is a modi�ed version of the usual conformal Hamiltonian with a standard

canonical quantum rule [x̂; p̂x] = { [1, 2]. Let us de�ne the new Hamiltonian

H =
p2x
2
+

g

2x2
; (17)

where g is a coupling constant and px is de�ned in (10) with new quantum rule (12). This

Hamiltonian (17) commutes with the parity operator P:

Next let us introduce the operators

D =
pxx + xpx

2
;

K =
x2

2
: (18)

We can demonstrate that these three operators satisfy the following SL(2,R) algebra

[H;D] = �2iH; [H;K] = �iD; [K;D] = 2iK; (19)

where D is known to be the generator of dilatation (it generates the re-scalings x! x,

px ! px=) and K is the generator of special conformal transformations. Since D and K

do not commute with the Hamiltonian H, they do not generate symmetries in the usual

sense of relating the degenerate states. Rather they can be used to relate states with

di�erent eigenvalues of H (17).

It is possible to show in any quantum mechanics with operators obeying the SL(2,R)

algebra (19), that if j�i is a state of energy E, then e{�D is a state for the energy e2�E:

Thus, if there is a state of nonzero energy then the spectrum is continuous. Note that

this result provides the spectrum of Hamiltonian H (17) to be continuous and then its

eigenstates are not normalizable.

Let us consider the following linear combinations

L+ =
1

2
(H �K + iD);

L� =
1

2
(H �K � iD);
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L0 =
1

2
(H +K): (20)

The generators (20) satisfy the SL(2,R) algebra (Virasoro form), with the following com-

mutation relations

[L�; L+] = 2L0; [L0; L+] = +L+ [L0; L�] = �L�: (21)

With the de�nition (18), (19) and (20), we have

L0 =
p2x
4
+

g

4x2
+
x2

4
: (22)

The potential energy for this operator (22) have an absolute minimum, then it has a

discrete spectrum with normalized eigenstates. If L0 satis�es the following eigenvalue

equation

L0jn >= �njn >; (23)

and using the algebra (21) we see that L� and L+ form the creation and annihilation

operators for the Hamiltonian L0; so that

�n = �0 + n; n = 0; 1; 2; � � �: (24)

In other words, the eigenvalues of L0 form an in�nite tower above \the ground state",

in integer steps.

The SL(2,R) Casimir operator is given by

L2 = L0(L0 � 1)� L+L�; (25)

where

[L2; L+] = [L2; L�] = [L2; L0] = 0: (26)

This Casimir operator in terms of the generators of the conformal group becomes

L2 =
HK +KH

2
� D2

4
: (27)

Using the WH-algebra, the action of this Casimir operator on the eigenstates jn > gives

us
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L2 =
1

16
[4g � 3� c(2P� c)] (28)

or

L2 =

8<
:

1
16
[4g � 3� 2c+ c2]; P! +1;

1
16
[4g � 3 + 2c+ c2]; P! �1: (29)

De�ning l0 by L
2 = l0(l0�1), from the relation (29) we obtain the \ground state" for this

Casimir operator

`0 =

8><
>:

1�
p
g+ 1

4
(1�c)2

2
; P! 1

1�
p
g+ 1

4
(1+c)2

2
; P! �1

(30)

and one can see that the coupling constant de�ned in (17) must satisfy ( g > �1
4
(1� c)2).

When the constant c vanishes the Casimir operator becomes L2 = 1
16
(4g � 3); so that

the ground state has the eigenvalue `0 =
1
2
(1�

q
g + 1

4
); which is a well known result for

the usual conformal mechanics with the canonical commutation relation [x; p] = i [2].

Note that �0 = `0, or �0 = 1� `0 and

L+jn; `0 > =
q
(�n + `0)(�n � `0 + 1)jn+ 1; `0 >;

L�jn; `0 > =
q
(�n � `0)(�n + `0 � 1)jn� 1; `0 > : (31)

From Eqs. (12) and (20), we can express L+ and L� in terms of the operators â+ and

â�

L+ = �1

2
â2+ +

g

4x2
; (32)

L� = �1

2
â2� +

g

4x2
: (33)
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4 The superconformal quantum mechanics

The superconformal quantum mechanic has been examined in [2]-[6]. Conformal sigma

models may have applications in the context of AdS=CFT correspondence with AdS2�M
background [20]. Another application for these models is in the study of the radial motion

of test particle near the horizon of extremal Reissner-Nordstr�om black holes [6, 7]. Also,

another interesting application of the superconformal symmetry is the treatment of the

Dirac oscillator [21, 22].

In this section we introduce the explicit supersymmetry for the conformal Hamiltonian

in the WH-algebra picture. Consider the supersymmetric generalization of H (Eq. (17))

given by

H =
1

2
fQc; Q

y
cg; (34)

where the new supercharge operators are given in terms of the momentum Yang repre-

sentation

Qc =

 
�ipx +

p
g

x

!
	y;

Qy
c = 	

 
ipx +

p
g

x

!
;

(35)

with 	 and 	y being Grassmannian operators so that its anticommutator is f	;	yg =

		y +	y	 = 1:

Explicitly the superconformal Hamiltonian becomes

H =
1

2
(1p2x +

1g +
p
gB(1� cP)

x2
) (36)

where

B =
h
	y;	

i
; (37)

so that the parity operator is conserved, i.e., [H;P] = 0:

When one introduces the following operators

S = x	y;

Sy = 	x; (38)
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it can be shown that these operators together with the conformal quantum mechanics

operators D and K

D =
1

2
(xpx + pxx);

K =
1

2
x2; (39)

satisfy the deformed superalgebra osp(2j2)y, viz.,

[H; D] = �2{H;
[H; K] = �{D;
[K;D] = 2{K;

fQc; Q
y
cg = 2H;

fQc; S
yg = �{D � 1

2
B(1 + cP) +

p
g;

fQy
c; Sg = +{D � 1

2
B(1 + cP) +

p
g;h

Qy
c; D

i
= �{Qy

c;h
Qy
c; K

i
= Sy;h

Qy
c; B

i
= 2Qy

c;

[Qc; K] = �S;
[Qc; B] = �2Qc;

[Qc; D] = �{Qc;

[H;S] = Qc;
h
H;Sy

i
= �Qy

c;h
B; Sy

i
= �2Sy; [B; S] = 2S;

[D;S] = �{S;
h
D;Sy

i
= �{Sy;

fSy; Sg = 2K; (40)

where, H;D;K;B are bosonic operators and Qc; Q
y
c; S; S

y are fermionic operators. This

superalgebra was introduced by Plyushchay in the bosonization of supersymmetry context

[23]. The supersymmetric extension of the conformal Hamiltonian L0 (presented in the

previous section) is

yActually, this superalgebra is osp(2j2) when we �x P = 1 or P = �1.
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H0 =
1

2
(H +K); [H0;P] = 0: (41)

The super-HamiltonianH0 is similar to the supersymmetric Calogero interaction Hamilto-

nian associated with two-particle interaction. The possibility that the n-particle Calogero

model z might be relevant for a microscopic description of the extreme Reissner-Nordstrom

black hole, has been discussed in Refs. [7, 25]. Speci�cally, it was conjectured by Gibbons

and Townsend that the large n limit of N = 4 superconformal version of the n-particle

Calogero model might provide microscopical description of the Reissner-Nordstrom black

hole near to the horizon [7]. Continuing with our discussion, now we are able to build up

the ladder operators for the spectral resolution of the super-Hamiltonian H0. Note that

de�ning

M = Qc � S; (42)

Q = Qc + S; (43)

h � 1

2
fM;M yg = 2H0 +

1

2
(1 + cP)B �pg;

~h � 1

2
fQ;Qyg = 2H0 � 1

2
(1 + cP)B +

p
g; (44)

we obtain

h
h;Qyi = �2Qy;

[h;Q] = 2Q; (45)

and

h
~h;M yi = 2M y;h
~h;M

i
= �2M: (46)

Thus we see that Q and Qy; M and M y are ladder operators associated to the SUSY

Hamiltonian operators h and ~h, respectively. We remark that since h; ~h and H0 commute

with each other, they form a set of mutually commuting operators. The superhamiltonian

zCalogero model [24] describes the system of n bosonic particles interacting through the inverse square

and harmonic potential, it is completely integrable (at classical and quantum levels).
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h and ~h are extensions of the ones in references [21, 22] for the superconformal Dirac

oscillator.

The supersymmetric generalizations of the ladder operators de�ned in (20) in the

bosonic case, are given by

L� � �1

4
fM;Qyg = �1

2
(H �K � {D);

L+ � �1

4
fM y; Qg = �1

2
(H �K + {D) (47)

with the following commutation relations of the so(2; 1) algebra

[L+;H0] = �L+;

[L�;H0] = +L�;
[L+;L�] = �2H0: (48)

The supersymmetric Casimir operator is given by

L2 = H0(H0 � 1)� L+L�: (49)

Thus, the energy spectrum becomes

H0 j m; s > = �m j m; s >;
L2 j m; s > = s(s� 1) j m; s >; (50)

with �m = �0 +m.

Since the eigenket j m; s > is normalized, from (49) and (50) we obtain s = s0 = �0:

In this case, we may write the analogous representations to the ladder operators given by

Eq. (31)

L+ j m; s > = �m+1 j m+ 1; s >;

L� j m; s > = �m�1 j m� 1; s > (51)

where �m+1, and �m�1 have a similar form to the bosonic case, given in the equations

(31).

Explicitly
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L2 =
1

16
[(4g � 3� c(2P� c))l2�2 + 4

p
gB(1� cP)] (52)

where

l2�2 =

2
4 1 0

0 1

3
5 ; B =

2
4 �1 0

0 1

3
5 = ��3; (53)

and the parity operator must be substituted by its eigenvalues on the eigenstates j m; s > :

In the case P! +1; on gets

L2 =
1

16

2
4 4g � 3� 2c+ c2 � 4

p
g(1� c) 0

0 4g � 3� 2c+ c2 + 4
p
g(1� c)

3
5 ; (54)

with the following eigenvalues

s(s� 1) =
1

16
(4g � 3� 2c+ c2 � 4

p
g(1� c)) (55)

s0(s0 � 1) =
1

16
(4g � 3� 2c+ c2 + 4

p
g(1� c)): (56)

From equation (41) and (53) we obtain the SUSY conformal Hamiltonian in the coordinate

representation

H01 =
1

4

2
4 p2 + x2 +

c2+2c+4g�4pg(1�c)
4x2

0

0 p2 + x2 +
c2+2c+4g+4g

p
g(1�c)

4x2

3
5 ; (57)

with the following superconformal potential

V01(x) �
2
4 V01(+) 0

0 V01(�)

3
5 =

1

4

 
(x2 +

c2 + 2c+ 4g

4x2
)12x2 � �3

p
g(1� c)

x2

!
: (58)

In Fig. 1 we plot V01(+), the bosonic part of this supersymmetric potential.

In the case P! �1 we get

L2 =
1

16

2
4 4g � 3 + 2c+ c2 � 4

p
g(1 + c) 0

0 4g � 3 + 2c+ c2 + 4
p
g(1 + c)

3
5 : (59)
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Also, in this case

H02 =
1

4

2
4 p2 + x2 +

c2�2c+4g�4pg(1+c)
4x2

0

0 p2 + x2 +
c2�2c+4g+4

p
g(1+c)

4x2

3
5 (60)

with superconformal potential

V02(x) =
1

4

 
(x2 +

c2 � 2c+ 4g

4x2
)12x2 � �3

p
g(1 + c)

x2

!
: (61)

In Fig. 2 we plot V02(+), the bosonic part of this supersymmetric potential.

Observe that we are using the convention that the operator number Nf has the fermion

number nf = 0 and is associated to the bosonic state and this eigenstate is given by

0
@ 1

0

1
A : (62)

Similarly, the eigenstates of Nf with the fermion number nf = 1 is associated to the

fermionic state, and is given by

0
@ 0

1

1
A : (63)

Finally, observing the supersymmetric Hamiltonians H01 and H02 we recall that the

parameter c is real and g must be positive. With appropriate choice of these parameters we

can recover various cases, for example the oscillator type superhamiltonian (without the

presence of the proportional term 1=x2) although the bosonic part without supersymmetry

has this term (g 6= 0). In this case the supersymmetric potential will not have a singularity

at the origin of coordinates.

5 Conclusion

In this work, we have analyzed the connection between the conformal quantum mechan-

ics [1, 2] and the Wigner-Heisenberg algebra [10, 11, 13]. With an appropriate relationship

between the coupling constant g and real constant c one can identify the Wigner Hamil-

tonian with the conformal Hamiltonian L0. The important result is that the introduction

of the Wigner-Heisenberg algebra in the conformal quantum mechanics is still consistent

with the conformal symmetry. The spectrum for the Casimir operator, the Hamiltonian
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L0 and the ladder operators depend on the parity operator. We also investigated the

supersymmetrization of this model, in that case we obtain a new spectra for the super-

symmetric and conformal Hamiltonian of the Calogero interaction's type. In this case the

spectrum for the super-Casimir operator and the superhamiltonian depend also on the

parity operator. One motivation for this work is the future applications in the problems

related to black holes [2, 7] and the construction of a supersymmetric quantum mechanics

with conformal symmetry for the n-particles in the Wigner-Heisenberg picture. Let us

point out that one can consider the same analysis implemented in this work for the Dirac

oscillator, getting a generalization of the works [21, 26, 27].

Finally, it would be interesting to investigate the possible connection between the

hidden supersymmetry in the WH-algebra structure and the explicit supersymmetry im-

plemented in the section 4, work in this direction is under current research.
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Fig 1. The bosonic part of the supersymmetric potential V01; for P = +1; c = 2; g = 1:
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Fig 2. The bosonic part of the supersymmetric potential V02; for P = �1; c = 2; g = 1:


