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Abstract

Using a quantization process, independent of Lagrangians and Hamilto-

nians, we quantize a linearly damped particle, a van der Pol system and a

Du�ng system. In order to provide logical consistence to this quantization

scheme we also evaluate the classical limit �h! 0.
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I. INTRODUCTION

The state of a dynamical system at time t is speci�ed byN variables z1(t); z2(t); :::; zN(t)

whose time evolution is given by a set of N �rst order ordinary di�erential equations

dependent explicitly of time and generally nonlinear

_zi �
dzi
dt

= Ki(z1; :::; zN; t); (i = 1; :::; N): (1)

An important property of Eq.(1) lies in the existence and uniqueness theorem of its

solutions which de�nes a dynamical system as deterministic [1]. Another property is the

existence of a set of admissible transformations (zi) 7! (Zi) holding invariant a given

feature inherent in (1) [2].

Geometrically, the dynamical system (1) may be studied making use of the phase space

� concept. Then, once de�ned the state (zi), the dynamics ( _zi = Ki) and the geometric

arena (�) we can establish a criterion characterizing the conservative or nonconservative

nature of a certain dynamical system. It is straightforward to show that the behaviour

in time of a given region D of � is the responsible for the classi�cation of the dynamical

systems as conservative or nonconservative. So, the system (1) is conservative, for any

region D, if and only if

r:K � divK �
NX
i=1

@Ki

@zi
= 0 (2)

and nonconservative if and only if

r:K � divK �
NX
i=1

@Ki

@zi
6= 0: (3)

In the case div K < 0, on average at time t, that is,

hdivKit =
1

t

Z t

0

divKd� < 0;

the sistem is considered dissipative [3,4].

Now in order to endow the criterion (2) or (3) with an objective character we require

that the admissible transformations (zi) 7! (Zi), from variables zi to Zi, are those holding

invariant the divergence sign, i.e.,
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sgn(divK(z1; z2; :::; zN; t)) = sgn(div�K(Z1; Z2; :::; ZN; t)): (4)

As an example of dynamical system (1) let us consider the Newtonian mechanical systems

_p = f(p; q; t) (5)

_q =
p

m
; (6)

where q is the position, p the linear momentum, m the mass and f an arbitrary force.

The divergence associated with (5) and (6) is equal to @f=@p, so that when f is derived

of a potencial function V (q; t) we have a conservative system.

As a subclass of the Newtonian systems (5) and (6) there exist the Hamiltonian me-

chanical systems

_x =
@H

@�
(7)

_� = �
@H

@x
; (8)

� being the generalized momentum canonically conjugated to the generalized coordinate

x. Since the divergence of (7) and (8) is always null the Hamiltonian 
ux is essentially

conservative, while the admissible transformations, which hold this property invariant,

are the canonical transformations.

On the basis of the criterion (2-4) we can criticize some procedures which aim to de-

scribe nonconservative systems using the Hamiltonian formalism. The Bateman Hamil-

tonian

H(x; �; t) =
�2

2m
e��t + V (x)e�t; (9)

where � = pe�t and x = q, does never describe a dissipative system becauser:K(x; �; t) =

0, even though it is erroneously interpreted in the literature as the Hamiltonian of a

nonconservative system [5-9]. Indeed, the Hamiltonian (9) describes a conservative system

either with variable frequency [10], or variable mass [11] or a system at a non-inertial
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frame [9]. This ambiguity (null divergence) inherent in Eq.(9) is not a particular case,

it also occurs for its equivalent [8] H = �(�q�)=2 + (1=2)ln[(q2=4)(4k2 � �2)] with � =

(2=q)(4k2��2)�1=2tg�1[(2 _q=q+�)(4k2��2)�1=2], for a damped harmonic oscillator (m = 1)

V = k2q2=2, k2 =const. . In fact, it occurs for all Hamiltonians built after the method of

integrating factors developed by Havas [6].

A correct way of studying dissipation analitically is to begin with the Hamiltonian

equations modi�ed by a dissipative term [7,12]

_q =
@H

@p
(10)

_p = �
@H

@q
�F(q; p; t) (11)

which can be derived from a modi�ed Hamilton principle or from the Newton equations

together with the d'Alembert principle. Here, H = T + V (kinetic energy plus potential

energy) and the canonical momentum coincides with the kinetic momentum. It is easy to

verify that the divergence asssociated with (10) and (11) is given by

r:K = �
@F

@p
: (12)

This shows that we are really dealing with a dissipative system in the Hamiltonian for-

malism. However the main feature of this formalism is lost: p and q do not necessarily

possess any link of canonicity.

The Dekker procedure [13,14] of generalizing the Hamiltonian theory in terms of com-

plex variables

_x =
@H

@�

_� = �
@H�

@x

generates a divergence di�erent from zero, since H� 6= H. Enz [15], in turn, generalizes

the sympletic structure

_q = D11
@H

@q
+D12

@H

@p
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_p = D21
@H

@q
+D22

@H

@p

so that the divergence is also not null.

The Caldirola [16] and Tarasov [17] procedures are not correct. The former does

introduce an inadmissible transformation in order to convert an initially nonconservative

system into a conservative one, while Tarasov uses a generalized form of the least action

principle

_x =
@H

@�
�
@!

@�

_� = �
@H

@x
+
@!

@x
;

where H � H = T + V and ! = !(x; �), with divergence equal to zero.

In brief, the Hamiltonian formalism is not unique for describing nonconservative sys-

tems. This fact makes a possible quantization of these systems, using conventional meth-

ods, entirelly blurred. On the contrary, our aim in this paper is to quantize a linearly

damped particle, a Du�ng system and a van der Pol system without using any Lagrangian

or Hamiltonian function. We call dynamic quantization such quantization process, start-

ing directly from the equations of motion [18-21]. Thus, we organize our article as follows.

In Section II, by starting with the Liouvillian formalism, we introduce the Wigner repre-

sentation of classical mechanics from which we de�ne quantization conditions. In Section

III we calculate the classical limit of quantum dynamics and we make our concluding

remarks in Section IV.
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II. DYNAMIC QUANTIZATION

In the Liouvillian formulation of classical mechanics the state is speci�ed by the prob-

ability density F (z1; :::; zN; t) and the dynamics is given by the deterministic Liouville

equation [4,22]

@F

@t
+

NX
i=1

Ki
@F

@zi
= �F

NX
i=1

@Ki

@zi
(13)

generated by the dynamical system (1). In the case of the Newtonian system (5) and (6),

we have

@F

@t
+
p

m

@F

@q
�
@V

@q

@F

@p
= �

@

@p
(FF ): (14)

where f(p; q; t) was split into a conservative force �@V (q; t)=@q and a nonconservative

force F(q; p; t).

We now introduce the Wigner representation of classical mechanics using the following

Fourier transform [20]

�(q +
`�

2
; q �

`�

2
; t) =

Z
Fe{p�dp: (15)

Because the Wigner factor e{p� is an adimensional term and `� has dimension of position,

it follows that ` should have dimension of action. Inserting the classical Wigner function

(15) into Eq.(14), we obtain

{`
@�

@t
+

`2

2m

�
@2�

@q21
�
@2�

@q22

�
� [ V (q1; t)� V (q2; t)�O(q1; q2; t)]� = �{`
� (16)

where

O(q1; q2; t) = �
1X

n=3;5;7;:::

2

n!

�
q1 � q2

2

�n�
@

@q1
+

@

@q2

�n

V (q1; q2; t); (17)


� =

Z
@

@p
(FF )e{p�dp (18)

and

q1 = q +
`�

2
; q2 = q �

`�

2
: (19)
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In order to quantize Eq.(16) we impose the conditions [20]

( q1 � q2)
4 � ( q1 � q2) (20)

`! �h =
h

2�
: (21)

Thus, we arrive at the nonconservative von Neumann equation

{�h
@�

@t
+

�h2

2m

�
@2�

@q21
�
@2�

@q22

�
� [ V (q1; t)� V (q2; t)]� = �{�h~
� (22)

with ~
 being obtained from 
 after using (20) and (21), and � the called \density matrix".

(Let us note that for conservative systems Eq.(22) is the usual von Neumann equation

giving rise to a Schr�odinger equation at point q1 and its complex-conjugate at point q2).

For conservative systems the admissiblemathematical procedure (20) can be physically

justi�ed by using the concept of equilibrium entropy [32]. However for nonconservative

systems we do not know still the physical reason behind Eq.(20). Together (20) and (21)

have to imply ` > �h so that the quantum domain is characterized by the smallness of the

Planck constant with respect to the classical actions.

Below we apply the dynamic quantization method to the following deterministic non-

conservative systems: a particle with linear friction, a van der Pol system and a Du�ng

system.

(i) Linearly damped particle. The Newton equations for this dissipative system are

given by

_p = �
@V

@q
� �p (23)

_q =
p

m
(24)

with divergence equal to ��. The correspondent generalized Liouville equation is

@F

@t
+

p

m

@F

@q
�

�
�p+

@V

@q

�
@F

@p
= �F; (25)
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while in terms of the classical Wigner function we have

{`
@�

@t
+

`2

2m

�
@2�

@q21
�
@2�

@q22

�
+
{`�

2
( q1 � q2)

�
@�

@q1
�
@�

@q2

�
�A� = 0 (26)

where

A = V (q1; t)� V (q2; t)�
1X

n=3;5;7;:::

2

n!

�
q1 � q2

2

�n�
@

@q1
+

@

@q2

�n

V (q1; q2; t): (27)

Quantizing according to Eqs.(20) and (21), we arrive at

{�h
@�

@t
+

�h2

2m

�
@2�

@q21
�
@2�

@q22

�
+
{�h�

2
( q1 � q2)

�
@�

@q1
�
@�

@q2

�
� [ V (q1; t)� V (q2; t)]� = 0:

(28)

This equation describes quantally a particle with linear friction. It is irreducible to any

Schr�odinger type equation. In particular, a damped harmonic oscillator does not possess

a wave function. This result is the same obtained by Dekker [14]. Note still that (28) is

the Caldeira-Leggett equation [20,23] without the 
uctuation term.

(ii) The van der Pol system. The van der Pol nonlinear di�erential equations are

_p = �
@V

@q
+ �p(1 � q2) (29)

_q =
p

m
: (30)

It is a system with nonlinear damping originally modelling an electric circuit [24,25]. Its

divergence is �(1� q2) whereas the Liouville equation has the form

@F

@t
+
p

m

@F

@q
+

�
�p(1 � q2)�

@V

@q

�
@F

@p
= ��(1� q2)F: (31)

In the Wigner representation this equation turns out to be

{`
@�

@t
+

`2

2m

�
@2�

@q21
�
@2�

@q22

�
�
{`�

2
( q1 � q2)

�
1�

�
q1 � q2

2

�
2

��
@�

@q1
�
@�

@q2

�
�A� = 0;

(32)

A being the same expression (27). In the quantum domain we get
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{�h
@�

@t
+

�h2

2m

�
@2�

@q21
�
@2�

@q22

�
�
{�h�

2
( q1 � q2)

�
1 �

�
q1 � q2

2

�
2

��
@�

@q1
�
@�

@q2

�
� B� = 0;

(33)

with

B� = [ V (q1; t)� V (q2; t)]�: (34)

In the case of a harmonic potencial this Eq.(33) describes a quantum van der Pol oscillator.

(iii) The Du�ng system. It is a linearly damped nonlinear system under the action of

a generalized potencial V + (�=4)q4. The nonconservative Liouville equation, associated

with the Du�ng equations

_p = �
@V

@q
� �p� �q3 (35)

_q =
p

m
; (36)

is

@F

@t
+
p

m

@F

@q
�

�
�p+ �q3

@V

@q

�
@F

@p
= �F; (37)

with divergence ��. The term �q3 is related to the sti�ness to which a given mechanical

system is submitted [25].

In terms of the classical Wigner function we �nd the equation

{`
@�

@t
+

`2

2m

�
@2�

@q21
�
@2�

@q22

�
+
{`�

2
( q1 � q2)

�
@�

@q1
�
@�

@q2

�
� �

�
q1 + q2

2

�
3 ( q1 � q2)��A� = 0

(38)

(A is given by (27)) the quantization of which is

{�h
@�

@t
+

�h2

2m

�
@2�

@q21
�
@2�

@q22

�
+
{�h�

2
( q1 � q2)

�
@�

@q1
�
@�

@q2

�
� �

�
q1 + q2

2

�
3 ( q1 � q2) � �B� = 0;

(39)

with B� given by (34).

In order to show that the quantum equations of motion above obtained are not a mere

artifact of the dynamic quantization method, in the next section we will evaluate their

classical limit.
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III. CLASSICAL LIMIT OF QUANTUM DYNAMICS

Inspired on the purely formal works by Hermann [26] we shall motivate the de�nition

of a classical limiting process starting with the one-dimensional Schr�odinger equation for

a particle with mass m subjected to an external scalar potential V = V (q; t)

��h �h(q; t) = 0; (40)

where ��h = (��h=2m)(@2=@q2)+V �{�h@=@t. Taking the limit �h! 0 directly about Eq.(40)

is just senseless. Our main idea then is to perform the following unitary transformation

 0�h = e�{�=�h �h ; �0

�h = e�{�=�h��he
{�=�h; (41)

so that Eq.(40) becomes(
��h2

2m

@2

@q2
�

{�h

2m

�
@2�

@q2
+ 2

@�

@q

@

@q
+ 2m

@

@t

�
+

"
1

2m

�
@�

@q

�2

+ V +
@�

@t

#)
 0�h = 0: (42)

Now we can take �h! 0 about Eq.(42) yielding (with � = S(q; t))

1

2m

�
@S

@q

�2

+ V +
@S

@t
= 0 (43)

which in turn may be put in the form �@S=@t = H(@S=@q; q; t), because

lim�h!0

�
p̂

0

= e�{S=�h (�{�h@=@q) e{S=�h
	

= @S=@q � p. Note that once obtained the

classical equation (43), we can also evaluate the classical limit of quantum kine-

matics, e.g., for the Heisenberg relations [p̂; q̂] = p̂q̂ � q̂p̂ = �{�h we �nd that

lim�h!0

�
e�{S=�h[p̂; q̂]e{S=�h

	
=lim�h!0

�
e�{S=�h(�{�h)e{S=�h

	
yields pq = qp.

Equation (43) is exactly the well-known Hamilton-Jacobi partial di�erential equation

of classical mechanics. Therefore, the classical limit of the Schr�odinger equation (40) is

the Hamilton-Jacobi equation (43). An important point to be emphasized is that the

limit �h! 0 about (42) only exists if the following asymptotic conditions are obeyed:

lim
�h!0

 0�h �  00�h 6= 0 (44)

lim
�h!0

�h 0�h � 0 (45)
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lim
�h!0

�h
@ 0�h
@x

� 0; (x = q; t) (46)

lim
�h!0

�h2
@2 0�h
@q2

� 0: (47)

In summary, if a given physical system is described by the Schr�odinger equation, only for

those solutions  0�h obeying the above asymptotic relations as �h! 0, it can be classically

described by the Hamilton-Jacobi equation. For instance, let us consider  �h = e{A=�h

as a solution of Eq.(40). Expanding the function A(q; t) in powers of �h={ [27]: A =

S0+(�h={)S1+(�h={)2S2+ :::, it follows that  0�h = e�{�=�he{[S0+(�h={)S1+(�h={)2S2+:::]=�h. Using the

validity conditions of the WKB method [27] in order to neglect terms of order �h3 and so

on, we obtain the asymptotics

lim
�h!0

 0�h �  00�h = eS1e�hS2={;

where we have used the fact that � and S0 obey the same equation of motion, hence

� � S0 = S. It is worth noticing that for the superposition of WKB functions  �h =

e{A=�h + e{B=�h, with B = S0 � (�h={)S1 � (�h={)2S2 � :::, our conditions (44-47) are also

satis�ed. This means that the validity conditions of the WKB approximation are not

necessary to obtain the classical limit of the Schr�odinger equation.

Based on above procedure we propose the following general classical limiting method

of quantum-mechanical equations of motion:

DEFINITION. Let a quantum-mechanical di�erential equation be given by

D�h	�h = 0: (48)

By performing the transformation

	0

�h = e���=�h	�h; (49)

� being a free parameter, Eq.(48) becomes

D0

�h	
0

�h = 0; (50)
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with D0

�h = e���=�hD�he
��=�h. By taking the classical limit �h ! 0 in Eq.(50), we arrive

at the classical evolution equation for the function � (independent of �h): D� = 0, since

asymptotic conditions are imposed on the behaviour of the functions 	0

�h; �h	
0

�h, etc., and

their derivatives. These asymptotics are valid in the semiclassical domain of quantum

mechanics.

In order to apply our above de�nition, let us evaluate the classical limit of the time

evolution equation for the Wigner function W (p; q; t)(
�h
@

@t
+ �h

p

m

@

@q
� �h

1X
k=0

(�)k(�h=2)2k

(2k + 1)!

@2k+1V

@q2k+1

@2k+1

@p2k+1

)
W = 0; (51)

obtained from the von Neumann equation for the density matrix �(q + �h�=2; q �

�h�=2) =  �(q + �h�=2) (q � �h�=2) and making use of the Wigner transform W (p; q; t) =

(1=2�)
R +1

�1
�(q+�h�=2; q� �h�=2)e{p�d� [28]. In the literature [29] one still believes that it

is enough making �h! 0 directly about Eq.(51) (divided by �h) to obtain immediately the

classical Liouville equation. This procedure is not generally correct, simply because W is

just a quantal object and does not possess a limit when �h! 0 [30]. Furthermore, to make

the Wigner function W propagate classically does not mean to obtain the classical limit

of Eq.(51). However, it is straightforward to show that by means of the transformation

(49) for 	�h �W , and assuming the parameter � in�nitesimal, i.e., �2 � 0, we obtain the

classical Liouville equation for the probability distribution � � F (p; q; t) � 0:

@F

@t
= �

p

m

@F

@q
+
@V

@q

@F

@p
; (52)

since there exist the following asymptotics

lim
�h!0

W 0 �W 00 6= 0 (53)

lim
�h!0

�hnW 0 � 0; (n = 2; 4; 6; :::;1) (54)

lim
�h!0

�h
@W 0

@x
� 0; (x = q; t) (55)

lim
�h!0

�hj
@nW 0

@pn
� 0; (j; n = 1; 2; 3; :::;1): (56)
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In expression (56) n � j for j even and n = j for j odd.

Once applied our classical limiting process to conservative equations of motion, we

want now to apply it to the dissipative equations (28), (33) and (39). To evaluate the

classical limit of Eq.(28) we use the quantum Wigner function W (q; p; t), so that

@W

@t
+
p

m

@W

@q
�

�
�p+

@V

@q

�
@W

@p
+GW = �W; (57)

with

GW = �
2

{3!

�
��h

2{

�3
@3V

@q3
@3W

@p3
�

2

{5!

�
��h

2{

�5
@5V

@q5
@5W

@p5
� ::: : (58)

We perform the transformation

W 0 = e���=�hW ; (�2 � 0); (59)

we take �h! 0 and get Eq.(25) for � � F , since

lim
�h!0

W 0 �W 00 6= 0 (60)

lim
�h!0

�hW 0

�
� �W 0 (61)

lim
�h!0

�hnW 0 � 0; (n = 2; 4; 6; :::;1) (62)

lim
�h!0

�h
@W 0

@x
� 0; (x = q; t) (63)

lim
�h!0

�hj
@nW 0

@pn
� 0; (j; n = 1; 2; 3; :::;1); n � j(par); n = j(��mpar): (64)

In quantum phase space Eq.(33) has the form

@W

@t
+
p

m

@W

@q
+

�
�p(1� q2)�

@V

@q

�
@W

@p
+GW = ��(1� q2)W: (65)

Using (49) in the form (59) we obtain in the classical limit the generalized Liouville

equation (31) with the same asymptotic conditions (60-64).
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Now expressing the quantum Du�ng system (39) in phase space as

@W

@t
+
p

m

@W

@q
�

�
�p+ �q3

@V

@q

�
@W

@p
+GW = �W; (66)

it follows easily that the classical limit of this equation, once performed the transformation

(59), is Eq.(37).

Here we restrict ourselves only to investigate the logical consistence of the dynamic

quantization process as applied to a linearly damped particle and the van der Pol and

the Du�ng systems. The main result is that a description of nonconservative systems

in terms of wave function is secondary and, in general, impossible. Such systems can be

quantally described through the von Neumann function or equivalently by the Wigner

function in the quantum phase space. A study of the solutions of these quantized systems

will appear in a future paper.

IV. FINAL REMARKS

In this paper was presented a mathematical and objective criterion to classify a de-

terministic dynamical system as conservative or nonconservative. In particular we saw

that the Hamiltonian formalism is not unique concerning the nonconservative Newtonian

systems. This implies that the (canonical) quantization of these systems is totally am-

biguous. In order to overcome this di�cult, recently [18-21] it has been proposed and

investigated a quantization process starting from the equations of motion within a prob-

abilistic framework. Using such dynamic quantization we were able to quantize a particle

with linear friction and the van der Pol and the Du�ng systems. The logical consistence

of these nonconservative equations of motion was veri�ed through the de�nition of a novel

classical limiting process �h! 0 about the quantum dynamics.

One can argue [31] that a correct quantization of nonconservative systems should take

into account explicitly the physics of the heat bath in order that the usual quantization

methods, based on Lagrangians or Hamiltonians, can be employied. However, we have

shown in Ref.[20] that the explicit treatment of the thermal reservoir is not necessary

to quantize a particle realizing a Brownian-type motion. The important is the stochastic
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dynamical system or the correspondent Fokker-Planck equation, and not the Hamiltonian

model.

In conclusion, the dynamic quantization reveals that nonconservative

systems are not described in terms of wave function. In the case of conservative

systems the important result also is valid [21]: The wave function  is derived from the

density matrix or von Neumann function �. The mathematical object fundamental, to

quantum mechanics, is the von Neumann function, and not the function  .
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