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Abstract

We evaluate exactly the Feynman's propagator of a quantum mechanical two dimensional

particle in a time variable magnetic �eld.
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An important topic in the mathematical physics of Quantum mechanics is the study

of the direct solubility of the Schr�odinger equation in the presence of adequate potentials

([1]).

In this note we solve exactly the Green function for initial conditions of a two-

dimensional particle in the presence of a time-variable magnetic �eld (the Feynman

quantum mechanical propagator) by means of a suitable space time Ray-Reid coordi-

nate transformation as proposed in ref. [2].

Let us start our note by considering the Hamiltonian of our system
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where the generic time varying magnetic �eld B(t) is applied along the z-axis and the

vector potential ~A = (Ax(x; y; t); Aj(x; y; t)) is written in the suitable form
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The associated Schr�odinger equation reads
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with

 (x; y; t! 0+) = �(x� ~x0)�(y � y0) (4)

and wc(t) =
e

mc
B(t) is the cyclotron frequency.

In order to integrate exactly eq. (4) we make the following space-time, coordinate

change ([2])

x = s1(� )�x+ s2(� )�y

y = �s2(� )�x+ s1(� )�y

t =
Z �

0
��1(�)d�

 (x; y; t) = � (�x; �y; � ) (5)

with the correspondent inverse
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s1(� )

(s21 + s22)(� )
x�

s2(� )

(s21 + s22)(� )
y
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� = � (t) =
Z t

0
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Let us introduce the notation:

A =
1

(s21 + s22)(� )

a = s1(� )s
0

1(� ) + s2(� )s
0

2(� ) (7)

b = s01(� )s2(� )� s02(� )s1(� )

so that we have the following results:
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If we consider the general decomposition of the wave function in a \complex" polar

form ([1])

� (�x; �y; � ) = �(�x; �y; � ) e
i

�hF (�x;�y;�) (9)

we obtain the Schr�odinger equation in the new coordinate system eq. (6)
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At this point we determine the exact functional form of our space-time variable change

by imposing the vanishing of the �rst order derivative terms in eq. (10)

F =
m�a

2
(�x2 + �y2) + g(� ) (11.a)

�(� ) =
wc(t(� ))

2(bA)(� )
(11.b)

By imposing either the vanishing of the potential like term in our transferred Schr�odinger

equation we get the equation for function g(� ) in eq. (11.a)

dg

d�
= i�h(Aa)(� ) (12)

The situation now is the following:
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which is the free-particle equation with unitary mass if we choose the �(� ) function in

the form
A(� )

m(� )�(� )
= 1 (14)

with the solution

�(�x; �y; � ) =
Z
d�x0d�y0 K0(�x; �y; � j(�x

0; �y0; � 0))�(�x0; �y0; � 0) (15)

where the Free-particle Feynman propagator given by
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which due to our \complex" polar form eq. (5) leads to the complete coordinate trans-

formed propagator
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In order to write this Feynman propagator in the original variables (x; y; t) we consider

the polar form for the functions s1(� ) and s2(� ) as in refs. [2], [3]

s1(� ) = �(� )cos�(� )

s2(� ) = �(� )sen�(� ) (18)
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so that
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which by its turn leads to the following explicit results (see eq. (1) and eq. ((2)) and

g(� ) = i�h ln �(� ); (20)
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By writing eq. (20) in the original coordinate system we get the exact expression for

our complex phase of our propagator
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Let us note that
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with suitable Sturn-Liouville boundary conditions ([1]).

By grouping together the above results we obtain the exact expression for our Feynman

propagator (see eqs. (3)-(4))
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This is our main and new result of our note.

One very important result which can be obtained from eq. (26) is that one get by

considering the quantum mechanical probability density of our system ([4])

jK(x; y; t; �x; �y; t0)j2 =

 
�(t0)

�(t)

!2

�
1

2��h
R t
t0 �(�)d�

(27)

At this point we note that if B(t) is periodic with period T , one get on the basis of eq.

(23) and eq. (25) that the probability density eq. (27) will be periodic too by the same

period T ([4]).

Finally let us comment that extensive applications of the exact Feynman propagator

in random magnetic �elds B(t) ([5]) will be presented elsewhere.
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