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Abstract

The Lie-Trotter formula eÂ+B̂ = limN!1

�
eÂ=NeB̂=N

�N
is of great utility in a variety

of quantum problems ranging from the theory of path integrals and Monte Carlo methods
in theoretical chemistry, to many-body and thermostatistical calculations. We generalize it
for the q-exponential function eq(x) = [1 + (1 � q)x](1=(1�q)) (with e1(x) = ex), and prove

eq(Â+ B̂+(1� q)[ÂB̂+ B̂Â]=2) = limN!1

nh
e1�(1�q)N

�
Â=N

�i h
e1�(1�q)N

�
B̂=N

�ioN
. This

extended formula is expected to be similarly useful in the nonextensive situations.
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The Lie-Trotter product formula states that if Â and B̂ are not necessarily commuting �nite
square matrices or bounded operators with respect to some convenient norm, then

eÂ+B̂ = lim
N!1

�
eÂ=NeB̂=N

�N
: (1)

This formula has been central in the development of path integral approaches to quantum theory,
stochastic theory, and in quantum statistical mechanics [1, 2]. In particular, Suzuki has employed
this to develop quantum statistical Monte Carlo methods [3, 4], general theory of path integrals
with application to many-body theories and statistical physics [5], and more recently to mathe-
matical physics [6]. In the past decade, the use of monomial form of the exponential function [7]
de�ned by (hereafter called q-exponential)

eq(x) = [1 + (1 � q)x]1=(1�q) (q 2 R) (2)
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with a cut-o�, for q < 1, when [1 + (1 � q)x] < 0 (analogously, for q > 1, eq(x) diverges at
x = 1=(q � 1)), has played an important role in the development of nonextensive statistical
physics [8]. Here we consider the corresponding q-exponential operator de�ned similarly by

eq(Â) = [1 + (1 � q)Â]1=(1�q) (q 2 R) : (3)

Here, Â can be a c-number, a square matrix, or an operator. For q going to 1, this goes to the usual
exponential form de�ned in Eq. (1). There is a large class of problems (Levy-like[9] and correlated-
like[10] anomalous di�usion, turbulence[11] in nonneutral plasma, nonlinear dynamics[12], solar
neutrino problem[13], cosmology[14], electron-positron collisions[15], reassociation of heme-ligands
in folded proteins[16], among many others) with a (multi)fractal structure in the relevant space-
time in which this and related functional forms emerge naturally. Many of these have received
until now only a classical approach; however, their quantum counterparts could be analyzed as
well, and then the operator form we are addressing would be the natural one to employ. In this
paper, we wish to present the generalization of the formula in Eq. (1) for these monomial functions
in the form:

eq(Â+ B̂ + (1� q)fÂ; B̂g=2) = lim
N!1

nh
e1�(1�q)N

�
Â=N

�i h
e1�(1�q)N

�
B̂=N

�ioN
(4)

where fÂ; B̂g � (ÂB̂+B̂Â). Note that e1�(1�q)N(Â=N) = [1+(1�q)Â](1=(1�q)N), has the properties

that it goes to e(Â=N) both when q = 1 for �nite N and for q 6= 1, but N !1, so that we recover
Eq. (1) appropriately. To establish Eq. (4), we �rst consider the following pair of operators:

Ĉ =

"
e~q

 
Â+ B̂ + (1� ~q)fÂ; B̂g=2N

N

!#
;

D̂ = e~q(Â=N)e~q(B̂=N) : (5)

Then, following similar steps as in the case of the exponential operators in [1], the norms of
these operators are found to be bounded by the following inequalities:

kĈk �
�
e~q

� Â+B̂+(1�~q)fÂ;B̂g=2NN


��
�
�
e~q

�
kÂk+kB̂k+ (1�~q)

N
kÂkkB̂k

N

��
(6)

and

kD̂k � ke~q(Â=N)kke~q(B̂=N)k

� e~q(kÂk=N)e~q(kB̂k=N)

= e~q

  
kÂk+ kB̂k+

(1� ~q)

N
kÂkkB̂k

!
=N

!

=

"
1 +

(1� ~q)

N

 
kÂk+ kB̂k+

(1� ~q)

N
kÂkkB̂k

!#(1=(1�~q))

=

2
4e~q

0
@kÂk+ kB̂k+ (1�~q)

N
kÂkkB̂k

N

1
A
3
5 (7)

where we have used that (i) the norm of an increasing function of an operator cannot exceed the
function of the norm of that operator, (ii) the norm of a sum of two operators cannot exceed the
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sum of the norms of those operators, and (iii) the norm of the product of two operators cannot
exceed the product of the norms of those operators. These expressions are valid for bounded
operators as long as the restrictions mentioned after Eq. (2) are obeyed. In the last line in Eq.
(7), we used the identity which follows from Eq. (2) for c-numbers, that

e~q(x)e~q(y) = e~q(x+ y + (1� ~q)xy) (8)

in which we set x = kÂk=N , and y = kB̂k=N . Thus the norms of the two operators are found to
be bounded by the same quantity. We now calculate the norm kĈN� D̂Nk. We therefore consider
the operator identity given in [1, 2],

ĈN � D̂N =
NX
k=1

Ĉk�1(Ĉ � D̂)D̂N�k ; (9)

and �nd a bound on the left side of this equation by the norm on the right hand side, using Eqs.
(6) and (7):

kĈN � D̂Nk �
NX
k=1

kĈkk�1k(Ĉ � D̂)kkD̂kN�k

� Nk(Ĉ � D̂)k

"
1 +

(1� ~q)

N

 
kÂk+ kB̂k+

(1� ~q)

N
kÂkkB̂k

!#((N�1)=(1�~q))
(10)

Expanding Ĉ and D̂ in a power series in (1=N), we now estimate the norm of their di�erence for
large N

k (Ĉ � D̂) k �

������������

������������

0
BB@

1 +
�
Â+B̂+(1�~q)fÂ;B̂g=2N

N

�

+ �q
2

�
Â+B̂+(1�~q)fÂ;B̂g=2N

N

�2
+ :::

1
CCA

�
�
1 +

h
Â
N

i
+ �q

2

h
Â
N

i2
+ :::

��
1 +

h
B̂
N

i
+ �q

2

h
B̂
N

i2
+ :::

�

������������

������������
�

1

2N2
k
h
Â; B̂

i
+ o(

1 � ~q

N3
) k; (11)

where [Â; B̂] � ÂB̂ � B̂Â. It is worth noticing that there is no 1=N term.
By using inequality (11) into (10) we have thus obtained the following inequality for any ~q and
large N :

kĈN � D̂Nk �
1

2N
k[Â; B̂]k

"
1 +

(1� ~q)

N

 
kÂk+ kB̂k+

(1 � ~q)

N
kÂkkB̂k

!#((N�1)=(1�~q))
: (12)

We now let ~q = 1 � (1 � q)N , which implies o(1�~q
N3 ) = o(1=N2), and take the limit N !1, thus

showing that the right side of Eq. (12) tends to zero, which implies the required generalization of
the Lie-Trotter formula, Eq. (4), i.e.,

f1 + (1� q)[Â+ B̂ + (1 � q)fÂ; B̂g=2]g
1

1�q = limN!1f[1 + (1� q)Â]
1

(1�q)N [1 + (1� q)B̂]
1

(1�q)N gN

(13)
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In conclusion, we have generalized here (Eq. (4) or, equivalently, Eq. (13)) the Lie-Trotter
formula, for q-exponential operators which occur in the development of nonextensive statistical
physics[8]. It is expected that this formula will be useful in quantum versions of generalized
simulated annealing[17] and in accelerating the rate of convergence of algorithms used in quantum
chemistry[4], as well as for performing calculations of quantum nonextensive systems.

We are grateful to A.R. Plastino and S. Abe for useful remarks, and to J.E. Straub for com-
municating to us reference [4] prior to its publication. AKR acknowledges the U.S. O�ce of Naval
Research for partial support of his work, and CT acknowledges partial support by CNPq and
PRONEX/FINEP (Brazilian agencies).
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