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abstract

In this comment we bring attention to the fact that when we apply the ontological
interpretation of quantum mechanics, we must be sure to use it in the coordinate represen-
tation. This is particularly important when canonical tranformations that mix momenta
and coordinates are present. This implies that some of the results obtained by A. B laut
and J. Kowalski-Glikman are incorrect.
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1 Introduction

In a recent paper, A. B laut and J. Kowalski-Glikman [1] tried to interpret a classe of
quantum cosmological models in terms of Bohm's causal interpretation of quantum me-
chanics [2]. Following a formalism developed by Ashtekar et al. [3], they applied a
canonical quantization procedure to a restricted class of spacetimes, whose Hamiltonian
constraint has been put in a simple form after a non-trivial canonical transformation.
Then, with the standard decomposition of the wavefunction in polar form, they obtained
from the Wheeler-DeWitt equation a modi�ed Hamilton-Jacobi equation with an extra
quantum potential term. From the solutions of this equation, they computed Bohmian
trajectories, and obtained possible scenarios for the universe modeled by the given wave-
function. In this comment, we will show that the interpretation presented in reference [1]
is not adequate because when using Bohm's interpretation we have to make sure that the
wavefunction we use is in the coordinate representation.

2 The Classical Model

The minisuperspace examples A. B laut and J. Kowalski-Glikman [1] used were classes
of diagonal, spatially homogeneous cosmological models which admit intrinsic, multiply
transitive symmetry groups (DIMT models). The spatially homogeneous diagonal 4-
metric can be expressed in the form

ds2 = �N2(t) dt2 +
3X
i=1

exp(2�i)(!i)2 (1)

where N(t) is the lapse function, and !i is a basis of spatial 1-forms which are left invariant
by the action of the isometry group.

Since in their paper, A. B laut and J. Kowalski-Glikman analyzed the case of a plane
wave in a Bianchi type IX spacetime, we will focus our attention on this case. Imposing
the Taub gauge Nt = 12 exp(3�0), we can express the scalar Hamiltonian constraint for
the Bianchi IX model as

H = H0 + H+; (2)

where

H0 = �1

2
�p20 � 24 exp(2

p
3 ��0); (3)

H+ =
1

2
�p2+ + 6 exp(�4

p
3��+): (4)

In the above expressions we have�
�1; �2; �3

�
=
p

3
�

��0 + ��+; ��0 + ��+;���+
�
: (5)

The separable form of the scalar constraint presented above makes it possible to per-
form a canonical transformation that simplify its form. It is given by

~pA =
q

�p2A + a exp(2b��A); (6)
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and
~� =

1

b

�
log

�
��p+

q
p2 + a exp(2b��)

�
� log

�p
a exp(b��)

��
: (7)

where a and b can be read from equtions (3) and (4). With the transformations (6) and
(7), the Hamiltonian constraint (2) for the Bianchi IX model acquires the simple form

H = �1

2

�
~p20 � ~p2+

�
= 0: (8)

3 Bohm's Trajectories

Let us start with the equation

Ĥ ( ��A) =
�
1

2
2+ V( ��A)

�
 ( ��A) = 0 (9)

where 2 � �AB@=@ ��A@=@ ��B with �AB = diag(1;�1) and

V( ��A) = �24 exp(2
p

3��0) + 6 exp(�4
p

3 ��+): (10)

Equation (9) is the the Wheeler-de Witt equation of the Bianchi IX model coming from
the Hamiltonian constraint (2). We will use the standard polar decomposition for the
wavefunction

 = R( ��A) exp(
i

�h
S( ��A)): (11)

Substitution of  in the form (11) into (9) results in

�1

2
�AB

@S

@ ��A
@S

@ ��B
+ V � �h2

2

1

R
2R = 0;

which can be seen as a Hamilton-Jacobi like equation plus a quantum potential term.
Adopting the Bohm's interpretation, one can postulate the momenta as

�pA =
@S

@ ��A
= �AB

d��B

dt
; (12)

where the parameter t; the time, was introduced. The trajectories followed by the system
are solutions of the equation (12), and are di�erent from the classical ones due to the
quantum potential.

In the tilde variables, the Wheeler-DeWitt equation becomes (see equation (8) )

1

2
2
0 = 0; (13)

where 1
22

0 � �AB@=@ ~�A@=~�B, which is evidently much more simple to solve then equation
(9).
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4 The Plane Wave Example

In this Section we will analyze the example given by B laut and Kowalski-Glikman. The
wavefunction they interpreted is given by

 ( ~�0; ~�+) = exp[i(k + l)U ] + exp[i(k � l)V ]; (14)

where U = ~�0 + ~�+, V = ~�0 � ~�+, and k and l are real constants. It is a solution of the
Wheeler-De Witt equation (13) in the tilde variables. They obtained Bohmian trajectories
by using equation (12) in the tilde variables

~pA =
@S

@ ~�A
= �AB

d~�B

dt
; (15)

where S is the phase of the wave function (14). Our main point is that the tilde vari-
ables were obtained from the barred variables by a non-trivial canonical transformation
which mix momenta with coordinates, and hence one cannot apply directly the Bohm
interpretation to these variables by using equation (15).

Quantum mechanically, to look for a canonical transformation means to look for a
unitary transformation that maps wavefunctions from the original set of variables to
the new one. In other words, we need to �nd the kernel h~�j��i, which was obtained in
reference [1]. However, the canonical transformation (6) and (7) to the tilde variables
mix coordinates with momenta. As is well known, Bohm's intepretation only makes sense
in coordinate representation [4, 5]. If we make a canonical tranformation that mixes
momenta and coordinates, we may end up having misleading results. The only safe way
to guarantee the correct interpretation of the solution (14) is to go back to the wave
function expressed in the original set of variables by using the kernel h~�j��i, and then
use equation (12) to obtain the quantum trajectories. The �nal result will in general be
di�erent from the one obtained directly from the wave function (14) by using equation
(15) in the tilde variables and then going back to the barred variables by using the inverse
of the tranformation (6) and (7), as is done in reference [1].

Let us illustrate this point with a simple example showing how the two procedures
can give di�erent Bohmian trajectories. Take the Hamiltonian for the free particle

H =
p2

2m
: (16)

and let us make a canonical transformation to a new set of variables given by

X =
a2

�h
p+ x; (17)

P = p: (18)

where a is some constant with dimension of length. Then, in the new set of variables we
have

H =
P 2

2m
:
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We want to �nd a kernel that transforms the wavefunction from the original set of variables
to the new one. This is accomplished by solving the following set of equations:

p̂ (x) =
Z
1

�1

dX hxjXiP̂  (X) (19)

x̂ (x) =
Z
1

�1

dX hxjXi(X̂ � P̂ ) (X): (20)

We can easily solve these equations and obtain that

hxjXi = e�
i

2a2
(x�X)2: (21)

Now we can look for a particular solution of the free particle Schroedinger equation. In
the X; P coordinates, one possible solution is the gaussian

 (X; t) = b(t) exp

"
�X2

 
a2 � ic(t)

a4 + c(t)2

!#
;

where b(t) = f2=[�a2(1 + ic(t)=a2)2]g1=4; and c(t) = 2�ht=m: If we set, to simplify the
computations, 2�h = m = a2 = 1; we obtain from

P = _X =
@S

@X

the result
X(t) = �(1 + t2)1=2;

where � is an integration constant. Using now equations (17) and (18) we obtain

x(t) = X(t) � 2P (t) =
�(t� 1)2

(t2 + 1)1=2
: (22)

On the other hand, if we make the transformation

 (x; t) = b(t)
Z

exp
�
� i

2a2
(x�X)2

�
exp

"
�X2

 
a2 � ic(t)

a4 + c(t)2

!#
dX

we get at once

 (x; t) = b0(t) exp

(
�x2

"
a2 � i(c2(t) � 2a2)

(c2(t) � 2a2)2 + a4

#)
; (23)

where b0(t) is a function of time which is not important for what follows. Setting again
2�h = m = a2 = 1, we get from the equation

p = _x =
@S

@x

the solution
x(t) = �0[(t� 2)2 + 1]1=2; (24)
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where �0 is a constant of integration, which is di�erent from the solution (22)1. Hence,
the two methods are inequivalent.

In conclusion, we must be very careful when we use the causal interpretation be-
cause the Bohmian trajectories are not invariant under general canonical transformations.
Knowing this fact, what we have to do in the Bianchi IX example is to map the wave func-
tion in the tilde variables into the correspondent solution in the barred variables, which
are the con�guration variables related to the physical metric, and only after use the causal
interpretation to �nd the Bohmian trajectories. Applying directly the causal interpreta-
tion to the wave function in the tilde variables yields wrong Bohmian trajectories in the
barred coordinates.
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