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Abstract

By the use of the methods proposed in a recent article we were able to shed some light
on the experimentally obtained ux-density relation in tra�c ow. We suggest an order
parameter showing the existence of two regimes in freeway tra�c. We also introduce the
case of tra�c at signal condition, analysing the e�ects of convenient tra�c parameters on
the ux-density diagram.
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1 Introduction

From the very beginning, the treatment of the problem of tra�c ow has been based on
the analysis of experimental data, �rstly obtained on the 50's. The try at explaining the
behaviour of relations among tra�c parameters, as density and ux, has led, even recently,
to various interpretations induced by the poverty of data in critical regions . These include
proposals so di�erent as the \reverse lambda", discontinuous, and continuous forms for
ow-occupancy relationships ([1] and Ref. therein). In part this is caused by the absence
of criteria in the experimental methods used, showing the lack of a correct theoretical
approach to the problem to guide this research. Besides, some old analyses seem not to
have taken precisely into consideration these same methods, as it has already been argued
[1].

The �rst theoretical models were based on uid and nonlinear equations [2]-[6]. They
were well suited to treat tra�c at very high or low car densities, but could not be trivially
extended to the whole interval of observable densities. So they could not be of much help
in clearing up the precise ow-occupancy relationship.

For this reason, and for the fact that we intend to examine the particular problem
of signalized ways, we base our work in the recently introduced cellular automata tra�c
models [7].

In the next section we give a review of this model. In section 3 we de�ne the convenient
parameters and show the diagrams for freeway transit. Nextly we introduce the case of
tra�c under signal constraints. In the conclusion we hope to give a possible explanation
to the experimental problem about the critical region of the ux-density diagram.

2 The Model

The use of a cellular automatum approach to model tra�c owing along a line was
made by K. Nagel and M. Schreckenberg[7], and the obtention of a nice agreement with
experimental data signed the correctness of the proposal.

The cellular automatumwas constituted of an array of L sites, each site being occupied
by one car (with integer velocity v) or being empty. The parallel update rules were the
following:

1. vj ! vj + 1 if the distance of the jth car to the next car is greater than vj + 1, and
taking vj = vmax as a limit.

2. vj ! d� 1 if the distance to the next car is d � vj.

3. vj ! vj � 1 with a random probability p.

4. The jth car is advanced vj sites.

Other works then followed using this technique[8]-[9]. In this paper, we will join some
new rules to the basic automatum presented above, in order to have a wider comprehension
of the cases we want to study. They will be introduced sequentially along the text.
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3 Free Tra�c

Here we consider a line with periodic boudary condition (closed circuit) and with
a random initial distribution of car positions. We want to study the properties of the
fundamental (ux � density) diagram. So, we de�ne the parameters

��i =
1
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t0+TX

t=t0+1

ni(t) ; (1)

and

�qi =
1

T
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t=t0+1
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The �rst expression represents the density of cars on the site i (Si) over a time period
T ; t0 is the relaxation time, usually taken as t0 = 10 � L, following the prescription of
[7]; ni(t) is zero if Si is empty and one if it is occupied at time t. The second expression
represents the ux of cars on Si; mi(t) is one if at time t� 1 there was a car behind or at
Si and at t it is found after Si (i.e., a car is detected passing by Si) and zero otherwise.

To look for a possible transition between a free and a jammed phase, we also de�ne a
parameter

�Mi = 1� 1

2T ��i

t0+TX

t=t0+1

li(t) ; (3)

where li(t) is one if at time t-1 Si is occupied (empty) and at time t it is empty (occupied);
li(t) is zero if at both times Si is occupied or empty. This choice of parameter is made on
the consideration that a jammed regime means that all cars are grouped in long clusters.

Obviously, for free tra�c, as this system is a homogeneous one due to the considered
boundary conditions, none of these parameters will be position dependent. So, along this
section the subindex i will be omitted.

Our change here in relation to the basic automatum of last section is that we do not
take a �xed value of vmax for all cars, but rather a vmax distribution between a low, vL,
and a high, vH, velocity.

In Fig. 1 we show the cases with T = 100 and T = 10000 (L = 1000). The �rst
presents the natural dispersion of points that is expected for the low accuracy caused by
the small interval of time for the measurements. This kind of dispersion is exactly what
is seen in the experimental data (see for exemple the comparison of Fig. 4 and 5 of Ref.
[7]). It is not easy to establish any conclusion from such experimental diagrams, what
has led to the discussion of what would be the correct form of the ux-density relation[1].
With higher values of T , we see that we can improve this until the obtention of a well
de�ned curve. This is the most favourable point of this approach.

We have obtained the exact result for this cellular automatum when p = 0 but with
an arbitrary vmax = v, given by the implicit equation
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Some solutions for di�erent v are plotted in Fig. 2. The �rst point that we observe is
that, by the de�nitions we used for q and �, all the curves in the graphic of q against
�, independently of v and p , cannot transpose the line q = 1 � � and this condition is
ful�lled by the solution of Eq. (4), where the ux rises until it meets this line in the point

� = 1=(1 + v) ; q = v=(1 + v) (5)

and then falls along it. This agrees with the particular solution obtained in Ref. [8] in
the limit when we have vmax = 1.

Although our solution is restricted to the case p = 0, the independence of this no-
crossing statement on the values of p happens because a non-zero value of p just makes
the probability of occurence of higher velocities low, and so, for a given density, the value
of the ux has to be lower (or equal) than in the case of a null p. In the low density limit,
the exact solution for any vmax and p appears as

q = vmax(1 � p)� ; (6)

and we see that in this limit p just scales the maximum velocity to a lower value. At
high density, the asymptotic behaviour can be obtained by the reasoning that this system
presents a kind of \particle-hole" symmetry, with a hole appearing with a vmax = 1
independently of the vmax of the particle. So, in this limit,

q = (1� p)(1 � �) : (7)

In the numerical treatment, the change of a �xed vmax to a distribution of maximum
velocities showed that the shape of the curves remained unchanged, but now the vmax that
appears in the formulas above should be understood as the lowest value of the distribution
(vL). An interesting point is that the existence of a sole car with vL is su�cient to make
this change, no matter how high is vH.

The order parameter is shown in Fig. 3, where it is plotted against � for several values
of vmax (p = 0). There we see two distinct regions. The �rst, where the parameter is zero,
is associated with a free regime. The cars are able to develop their maximum velocity,
which means that there is no correlation between them. After a transition point the order
parameter is not zero anymore, representing the region associated with a jammed phase
[10]. The critical density �c is a function of the maximum velocity and for p = 0 it is
given by Eq. (5). We show this phase diagram in Fig. 4. As an observation, we comment
that the value of L=1000 is already su�cient to assure the thermodynamic limit, i.e.,
increasing this value does not change these results.

We would like to point out now the similarity between our results about the phase
description above and what was obtained by Nagatani [11]. This happens because our pa-
rameter M is directly related to the parameter which he called \mean velocity"
(< v >= 1�M when vmax = 1), since the ergodicity of the automatum admits identifying
spatial means of measurements done at a �xed time with temporal means of measure-
ments done at a �xed position. We observe that the characteristics of this transition are
already completely described just considering an one-lane tra�c model, and it seems that
the inclusion of an extra lane, introduced by Nagatani, does not bring any further insight
on them.



{ 4 { CBPF-NF-004/94

4 Tra�c Light

Our motivation for the analysis of tra�c under a stop-and-go condition lies in the
problem noticed by Lighthill and Whitham [2] of existence of a non-functional relation
between ux and density obtained from avaiable experimental data (see Fig. 19 of Ref.
[2]). This was against the theoretical results, and none satisfactory explanation was given
by them.

Our changes in the basic automatum of section 2 begin by the inclusion of N tra�c
lights equally spaced along the array. We de�ne the time of duration of green, yellow
and red lights as Tg, Ty and Tr, respectively. The duration of the full cycle is Tc. During
Tg all cars move freely following the rules of the basic automatum. During Tr the signal
behaves as a car with zero velocity, stopping the cars behind it. Ty avoid the possibility
of having a car with velocity greater than the distance ds to the signal just at the moment
of change from green to red light. During Ty we consider the car immediately before the
signal (with velocity v and distance ds to the signal) which will obey the rules:

1. If v(Ty � 1) > ds then the car will follow the rules of the basic automatum.

2. If v(Ty � 1) � ds then the car will follow the rules for the red signal.

A typical ux-density graphic is shown in Fig. 5. It was obtained with several \radars"
(where the measurements are made) at di�erent positions in relation to each signal. This
has to be taken into consideration because the signals create an inhomogeneity in the
system. The existence of two well de�ned curves can be now easily explained. The one
at higher densities is related to measurements made at distances from the tra�c light
smaller than the mean size of the queue generated by the signal. The other is related to
measurements made at distances bigger than this mean size. So for a given number of
cars, there will be two classes of measurements giving two di�erent densities for the same
ux. We notice that both curves have the same maximum.

In Fig. 6 we show the curve obtained by only one radar at a distance dr from a signal.
We see that when the number of cars increases so that the mean queue size gets higher
than dr, the behaviour of the measured ux changes from the low to the high density
curve of Fig. 5.

A change on the number of signals does not modify any of the conclusions above.
In the same way, the important features of the fundamental diagram are not sensible to
the independent variation of Tg and Tc, but only to the variation of the relation Tg=Tc.
So this is the principal parameter on which the automatum will depend. To study this
dependence, we de�ne the variables qM , the maximum value of the ux; �M , which is the
mean between the values of � at the two points of maximum ux; and vM = qM=�M ,
which is the mean maximum velocity of the system. In Fig.7 we see the relation between
vM and Tg=Tc. It shows how the velocity of the cars is so strongly dependent on Tg=Tc,
falling rapidly from the maximum that occurs, obviously, when Tg=Tc = 1. For example,
at a typical value of Tg=Tc = 0:5, vM would be only approximately 36% of its maximum
for free tra�c.
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5 Conclusion

The question for the interpretation of the shape of the fundamental diagram can now be
answered in the following way: the \reverse �" and discontinuous forms are not plausible
in the case of freeway tra�c; the continuous and continuous di�erentiable form will occur
with a non-zero p, while the \inverse V" form will happen if p = 0. An interesting point
to be stressed is that in the analysis of experimental data the value of p can be discovered
if we restrict ourselves to the limits of high and low densities (using the expressions (6)
and (7), and admitting a calibration for the experimental diagrams such as that done
in Ref. [7]) and so avoiding the troublesome intermediary region where the spreading of
points does not allow a precise conclusion.

As p is associated to an aleatory braking that is not caused by the presence of a car
ahead, we can imagine that this factor would be related to the dirigibility conditions of
the roads. So, for good freeways, p would be null and we would have a more adequate
description for the ux-density relation by an \inverse V" form.

Also the question for the interpretation of the non-functional relation between ux and
density in the case of signalized tra�c would be answered by the existence of two distinct
curves for the same system. This seems not to have been obtained by any theoretical
model until now.

So, our results seem to be qualitatively in accordance with the known experimental
data, clarifying some intriguing points in tra�c research.
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Figure Captions

Figure 1 : Flux � density diagram for free tra�c with vmax = 5, p = 0:2 and L = 1000.
Small circles represent simulations for T = 100 and big circles represent simulations
for T = 10000.

Figure 2 : Flux � density diagram for free tra�c with p = 0. Lines are solutions of
Eq. (4), while points are taken from simulations (L = 1000, T = 1000) for some
di�erent vmax.

Figure 3 : Order parameter as a function of the density for di�erent vmax and p = 0.
The full lines are guides to the eye.

Figure 4 : Diagram of critical density (at the transition point) against maximumvelocity
showing a free (FP) and a jammed (JP) phase. The values for this curve were taken
from Eq. (5).

Figure 5 : Flux � density diagram for signalized tra�c with : vmax = 4, p = 0, L = 1000,
Tg=Tc = 24=40, N = 4. The simulation was made with several radars in di�erent
positions.
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Figure 6 : Same system of �gure 5 but using a simulation with only one radar.

Figure 7 : Mean maximum velocity as a function of Tg=Tc. The line is a quadratic �tting
for the data with a standard deviation of 4%.
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