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Abstract

Within the framework of the recently introduced nonextensive Statistical Me-
chanics, we generalize the Planck law for the black-body radiation. Quantitative
criteria are established that could provide astrophysical observational evidence for
a discontinuous (or continuous but not di�erentiable) nature for space-time.
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The deep nature of space-time no doubt is one of the most challenging questions
in contemporary Physics. The possibility for space-time not having the 4-dimensional
continuous and di�erentiable structure we are accustomed to (in Classical and Quan-
tum Mechanics, Maxwell equations, Special and General Relativity) has been tackled
in many occasions. For example, the possible physical interpretation of Planck's length

(LP �
q
�hG=c3 ' 1:6�10�33cm) and time (TP � LP=c ' 5:4�10�44s) has been lengthily

discussed ([1] and references therein). At extremely high energies (those corresponding
to just after a Bing-Bang-like explosion or, equivalently, those at which all elementary
forces, including the gravitational one, would be uni�ed), relevant phenomena would pre-
sumably occur at a scale comparable to LP and TP . At this extremely microscopic level
(or, perhaps, even before), the usual di�erential-equation Physics would become unsat-
isfactory approximations and should have to be replaced by �nite-di�erence equations
(see, for instance, [2, 3] and references therein). Consistently, the possibility of non-
conventional (discontinuous, or continuous but not di�erentiable) space-time is considered
in [4] (fractal-like) and also in [5] (lattice-like). The latter is discussed in the framework
of Quantum Groups ([6{8] and references therein), where it becomes explicitly related
to nonextensive (or nonadditive) Mechanics, the conventional (continuous and di�eren-
tiable) space-time being recovered in the extensive particular case. Moroever, the need for
nonextensive thermodynamics is well known in Cosmology, Gravitation and Astrophysics
(e.g., black holes, superstrings, 3-dimensional gravitational N-body problem; see [9{11]
and references therein); it might even be a common feature whenever the (linear) size of
the system is smaller than or comparable to the range of the relevant interactions between
the elements of the system [12]. Very recently, formal nonextensive Thermodynamics and
Statistical Mechanics have become available ([13, 14]; see also [15{19]). It is within this
(generalized) framework that we intend to discuss the black-body radiation.

The formalism starts by postulating [13] a generalized form for the entropy, namely

Sq � k
1 �

P
s p

q
s

q � 1
(q 2 <) (1)

where fpsg are the probabilities of the microscopic states and k is a conventional positive
constant. In the q ! 1 limit, Sq recovers the well known Shannon form �kB

P
s ps ln ps,

from which standard Statistical Mechanics and Thermodynamics follow. Sq satis�es a
variety of (generalized) basic properties such as positivity, concavity, H-theorem [15],
Ehrenfest theorem [17], von Neumann equation [18], Shannon theorem [14], 
uctuation-
dissipation theorem, Langevin and Fokker-Planck equations, Bogolyubov inequality (see
[12] for a review), among many others. Also, it has been shown [16] that it overcomes, for
q 6= 1, the quite known Boltzmann-Gibbs inability to provide �nite mass for astrophysical
systems within the polytropic model (as studied by Chandrasekhar and others).

Let us now reproduce here a property (pseudo-additivity), which is relevant in the
present context. If � and �0 are two independent systems (in the sense that p�U�

0

s;s0 = p�s p
�0

s0 )
then

S�U�0

q

k
=

S�
q

k
+
S�0

q

k
+ (1� q)

S�
q

k

S�0

q

k
(2)

In other words, (1� q) is a measure of the lack of extensivity of the system (and is herein
thought as being related to the lack of continuity, or of di�erentiability, of space time).
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Eq. (1) yields for the canonical ensemble, the following equilibrium density operator
[13, 14],

�̂ = [1̂� (1 � q)�Ĥ]
1

1�q =Zq (3)

where � � 1=kT is the Lagrange parameter associated with the thermostat, Ĥ is the
Hamiltonian, and the generalized partition function is given by

Zq � Tr[1̂� (1� q)�Ĥ]
1

1�q (4)

In the q ! 1 limit we recover Boltzmann-Gibbs distribution �̂ / exp(��Ĥ). It can be

shown [14] that, 8q; 1=T = @Sq=@Uq; Uq � Tr�̂qĤ = � @
@�

Z1�q
q �1

1�q
and Fq � Uq � TSq =

��
Z1�q
q �1

1�q
. The relevant mean value associated with any observable Ô is given [14, 17, 18]

by
hÔiq � Tr�̂qÔ = h�̂q�1Ôi1 (5)

In the �(1 � q) ! 0 limit (which we focus from now on), Eq. (4) asymptotically
becomes

Zq = Tr exp

(
1

1 � q
ln [1̂� (1� q)�Ĥ]

)

� ZBG

�
1�

1

2
(1 � q)�2hĤ2iBG

�
(6)

where BG stands for Boltzmann-Gibbs and where we have retained only the (1 � q)-
correction to the leading term. Also, by using Eq. (3), we can consistently rewrite Eq.
(5) as follows

hÔiq = Z1�q
q

*
Ô

1̂� (1� q)�Ĥ

+
1

� Z1�q
q hÔiBG

(
1 + (1 � q)�

"
hÔĤiBG

hÔiBG
+
�

2

 
hĤ2iBG �

hÔĤ2iBG

hÔiBG

!#)

� Z1�q
BG hÔiBG

(
1 + (1 � q)�

"
hÔĤiBG

hÔiBG
+
�

2

 
hĤ2iBG �

hÔĤ2iBG

hÔiBG

!#)
(7)

where we used Eq. (6) in the last step.
Let us now consider the system Ĥ = h�n̂; � being the (photon) frequency, and n̂

being the bosonic particle-number operator. By choosing Ô � n̂, Eq. (7) becomes

hn̂iq � hn̂i
BG
Zq�1
BG

(
1 + (1� q)x

"
hn̂2iBG
hn̂iBG

+ x

 
hn̂2iBG �

hn̂3iBG
hn̂iBG

!#)
(8)

with x � �h� and

ZBG =
1X
n=0

e��x = (1 � e�x)�1 (9)

hn̂iBG =
e�x

1� e�x
=

1

ex � 1
(10)
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hn̂2iBG =
e�x + e�2x

(1 � e�x)2
(11)

hn̂3iBG =
e�x + 4e�2x + e�3x

(1 � e�x)3
(12)

Let us now calculate the q = 1 black-body radiation law assuming a d + 1 space-
time and (d� 1) transverse modes for the electromagnetic �eld (with spectrum given by

2�� = cj~kj, where ~k is the d-dimensional wave vector). By following along the standard
lines we obtain for the photon energy density per unit volume

D1(�) =
�d=2(d� 1)dh�d

�
�
d
2
+ 1

�
cd(eh�=kBT � 1)

(13)

For the 3 + 1 space-time this expression recovers Planck law

D1(�) =
8�h�3

c3(eh�=kBT � 1)
� DP lanck(�) (14)

Although everything that follows could be done for a d+1 space-time, we shall from now
on focus the standard d = 3 case. So, if we maintain the one-photon approach, Eq. (8)
implies, for q ' 1,

Dq(�) � DP lanck(�)(1 � e�x)q�1
(
1 + (1� q)x

"
1 + e�x

1� e�x
�
x

2

1 + 3e�x

(1� e�x)2

#)
(15)

hence

Dq(�)h2c3

8�(kBT )3
�

x3

ex � 1
(1 � e�x)q�1

(
1 + (1� q)x

"
1 + e�x

1� e�x
�
x

2

1 + 3e�x

(1 � e�x)2

#)
(16)

which generalizes Planck law and is illustrated in the �gure. In the h� << kBT region
we have

Dq(�) �
8�(kBT )3

h2c3

 
h�

kBT

!1+q
(17)

which generalizes Rayleigh-Jeans law. In the h� >> kBT , the (1� q)-correction diverges,
hence the present expansion is not valid; in other words, the high-frequency tail should be
calculated by its own. Nevertheless, the natural variable indeed is h�=kBT , consequently
the total emitted power per unit surface Pq /

R
1

0 d�Dq(�) is given by

Pq � �qT
4 (18)

Therefore, the Stefan-Boltzmann law remains the usual one, but with a q-dependent pref-
actor (�1 = �2k 4

B =60�h
3c2 ' 5:67�10�12watt=cm2K4 is Stefan constant; (d�q=dq)q=1 > 0).

A similar type of behavior was obtained within the Quantum Groups formalism (qG-black-
body [20]), where we introduced qG to avoid confusion with q). A second immediate con-
sequence of h�=kBT being the natural variable for all values of q is that the Wien shift law
also preserves its form with a q-dependent prefactor. More precisely, a straightforward
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expansion of Dq(�) (Eq. (16)) in the neighborhood of �M (location of the maximum of
Dq(�)) yields

h�M=kBT � a1 + a2(q � 1) (19)

with a1 ' 2:821439 and a2 ' 5:171965. The comparison of this result with the cor-
responding one in Quantum Groups [20] shows an important di�erence: at �xed tem-
perature, �M (q > 1) > �M (q = 1) > �M(q < 1), whereas �M(qG) = �M(1=qG) and
�M (qG < 1) < �M(qG = 1).

We verify that, for � ' �M ,

Dq(�)

Dq(�M)
� 1�B

�
�

�M
� 1

�2
(20)

where
B � b1 � b2(q � 1) (21)

with b1 ' 1:232159 and b2 ' 2:690571, and

Dq(�M )
c3h2

8�(kBT )3
� d1 + d2(q � 1) (22)

with d1 ' 1:421435 and d2 ' 2:933276.
If we have (in arbitrary units) the experimental photon energy density Dexp(�) of a

black-body radiation, we can, in the neighborhood of its maximum, �t it with

Dexp(�) � Dexp
M

2
41�Bexp

 
�

�expM

� 1

!235 (23)

thus obtaining Dexp
M ; Bexp and �expM . From Eq. (21) we have

q � 1 '
b1 �Bexp

b2
(24)

If, within the experimental error, we can guarantee that this quantity is di�erent from
zero (i.e., if Bexp 6= 1:232159), we can say that the observation is consistent with a
non-conventional (discontinuous, or continuous but not di�erentiable) structure for the
space-time where the black-body is located! Its temperature can be obtained by replacing
Eq. (24) into Eq. (19), which yields

T '
h�expM b2

kB(b2a1 + a2b1 � a2Bexp)
(25)

Summarizing, we have extended to q ' 1, i.e., to slightly nonextensive thermodynam-
ics (and, consistently, to non-conventional space-time) Planck law (hence Rayleigh-Jeans,
Stefan-Boltzmann and Wien shift laws) for the radiation of a black-body. The main re-
sults are: (i) In the low frequency region (h� << kBT ), the photon energy density Dq is
proportional to �1+q, hence, the slope in a logDq vs: log � plot provides q; (ii) The location
(�M ) of the maximum of Dq(�) and the associated curvature provide (through Eqs. (24)
and (25)) q and T ; (iii) The behavior of Dq(�) for �xed h�=kBT is very di�erent from
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that obtained within Quantum Groups [20]: for increasing q; Dq monotonically increases
(except for h�=kBT below roughly unity, where it very slightly decreases) and crosses
Planck law for q = 1, whereas, for increasing qG; DqG becomes maximal (Planck law) at
qG = 1.

As candidates for the present test one naturally thinks of the Universe background
radiation, light coming from very dense massive stars (with a relatively well de�ned tem-
perature), black holes. A positive result for the present test would possibly guide our
understanding of the intimate structure of space-time. If so, remains great open the ques-
tion on why the black-body emits, for q > 1 and q < 1, respectively more and less light
than the Planck one, as if something was respectively enhancing and trapping the exit of
the photons.

We acknowledge computational assistance from L. da Silva, J.A. Redinz and A.M.C.
de Souza, as well as interesting remarks from A. Plastino, A.R. Plastino, L. Nottale,
M.R-Monteiro and I. Roditi.
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Caption for Figure

Black-body photon energy density per unit volume (Dq) within extensive (q = 1; Planck
law) and slightly nonextensive (q = 0:95 and q = 1:05) statistical mechanics. The
inset presents Dq(�)=Dq(�M ) vs: �=�M (the top, middle and bottom curves respec-
tively correspond to q = 1:05, q = 1 and q = 0:95) where the curvature e�ect is
exhibited.
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