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ABSTRACT

On the Lie groups S*xR and H'xR a two-parameter family of left-
invariant metrics gz, and right-invariant metrics I9r is introduced.
The resulting space-times admit a five-parameter group of motions; in

the family with topology H?xR the case occurs in which 9y, = 9 . and
’ F

this particular space-time admits.a seven-parameter group of motions,
with the 3-dimensional section H® maximally symmetric., Global causali
ty problems are easily characterized and it is shown how they can be
avoided by the introduction of a line of singularities (strings) in
the space~times. A coordinate system is defined where the left-inva-
riant metrics gL‘and right-invariant metrics 9p differ by a coord;na-
te inversion - eguivalently 9y, and Igr correspond to rotating universes
with opposite matter vorticity- ard it is discussed how weak inﬁerac—
tion processes could allow distinguishing the universes physically
{this is the subject of a cqmpanion paper, where we introduce neutri
nos as test particles in these univerées). Coordinate transformations
are also presented where both hetrics 9 and gg can be recast in the

form of a G8del-type metric.

Key-words: Antipodal universes; Left and right-invariant space-times;

Rotating universes; Causality and strings.
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1. INTRODUCTION

In the geometrical study of cosmological models some vower:.
ful methods were developed and extensively used, to construct invariant
Lorentzian metrics over space~time manifolds - which  are Lie
groups EPSJ. As well known -the acticn of the Lie group on if-
self can be divided into two independent subgrcups, namely the
left (L) and right (R) action of the group on itself [ 1,6,7].
In this context two sets of‘invariant Lorentzian metrics can be
introduced, denoted L-invériant and R-invariant geometries in
which , the bilinear metric form is constructed - with vector
fields/forms which are invériant under the 1left, and right
action of the Lie group,respectively [6]. Our purpose in the
present paper is two-fold. First we examine global properties
of a two~parameter family of solutions of Einstein equations
which are L- and R-invariant Lorentzian metrics over the Lie
groups S°®xR and H’xR. The metrics are constructed according to
the above prescription, aftgr preoperly deforming the éssoci&ted
Lie algebra of the L- and R-invariant l-forms and vector fields
of the group manifolds {the defofmation depending on two para-
meters). These l-forms and fields are obtained by standard. pro
cedufes using the algebra of quaternions to characterize the
semi-simple Lie grqﬁpé s3 and H3 [6,8]. By coordinate transfor
mafions the resulting metrics can assume - the form of a
G8del-type gecometry which has been examined in the literature
mainly from the point of view of local properties (see Ref.[ 9]
for a review; see also [_10,11]). The methods used here also

clarify from the global point of view some of the results of
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the existing 1literature. Second we examine the geometrical and
physical relation between the L~invariant and R-invariant geome-
tries. We exhibit a system of coordinates in which the L-and R-

invariant_vector fields forms and the bilinear metric forms are
related by an improper transformation of coordinates. A possible
phyéiéa& distinction between L- and R-invariant universes is dis
- cussed. This in fact is the subject of the next following paper
where we introduce neutrinos as test partiéles in these universes.
- We organize the paper as follows. In Section II. we - charac-
terize gloi;élly the space~time manifolds S3xR and H3xR, and .introduce on
these manifoldsthe two parameter family'of invariant geometries.
This construction gives ué directly the isometries.of the spéce-
times as shown in ‘Section III. Also we discuss the causality pro
blems from a global aspect and some possible modificatiomsin the
topology to circumvent these pathologies.In Section IV cylindri-
-cal coordinate transformations are exhibited which recast " the
metrics in the form of a G8del-type geometry. Possible . sources

of curvature for the space-times are also ‘digcussed.

2. THE SPACE-TIME MANIFOLDS S3xR and H3xR, AND THE CONSTRUCTION

OF INVARIANT GEOMETRIES

'The methods used in this Section are adapted from Oszvath
and Schitking [ 1] and are presented here concisely. Calculations
are not given in detail, but they can be checked without  dif-~
ficulty.

Let E, be the four dimensional Euclidean space with Cartesian
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coordinates a = (a,a!,a?,a3). We define the surface M as the

set of points of E, which satisfy

4

@2)? + (al)? - (ca2)? - (ea®)? =1, (2.1)
‘where ¢ =i,1 whetherM is §3 or H3, respectively. For every a =

(a%,al,a?,ad), b = (b%,b?,b2,b3) € M .we define the multiplica-
tion law [[12]

ab = (a®%0% - alb! + ()}2a2b? + (c)2adb3,
a%!l + alb? = (e)2a2b3+ (e)2adb?,
a%?2 + a?p? + adpl - alp3,
a%3 + adpl + alb? - a?pl) . (2.2)
Under (2.2) M becomes a group, gcting on itself by left mul-

tiplication; namely, for a given ve M, a left motion of M into

itself is expressed as

a' =va (2.3)

and we have a' éM for all a € M. M is simply transitive since
for each a.#Q there exists only one left motion v from a to a
given a' e M.

M acting on itself by left multiplication (2.3) is a Lie

group with the three independent left-invariant vector fields
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[13] on M

(-ak,a%,a’%,-a2) -

Sy T
elyy = (le)2a(e)2a’,alal) o (2.4)
e‘é3) = ((e)2a®, ~(e)2a2,-al,al).

They are obtained by an .arbitrary left motion a of the . three

independent unit vectors (0,1,0,0), (0,0,1,0); (D,.0,0,l) which

define the infinitesimal tangent space of Miat.the identity (1,0,0,0\.
We have the analogous picture for right motions of ‘the

Lie group M into itself, namely

av, (2-5)

(cf. eq.. (2.3}) with the corresponding independent right - iin-

variant vector fields on M,

dlél)’ = (-al,a%,-a’,,a?) ,
d‘zz_) = ((e)2a%,-(ec)? ad,a?,~-al) , 1 (2.86)
at = ((e)2a?, (e)2a2,al,a’) .

We obviously have [[14]

By dd =0+ L3 =1,2,3. (2.7)
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We introduce on M the coordinate system {(x,n,z) by the trans

formations

al = cosh(%%)cosx ’

al = cosb(£§)sinx ' (2.8)
a2 = X sinh(EE)cosn ,

€ 2
ad = 1 sinh (£5)sinn .

£ 2

For ¢ =1 we obtain a chart on $3, the coordinates being .Euler
angles with range 0 <Xen < 27, 0 <x/2 <@, For ¢ =1 a chart is

defined on H? with 0 <x,n < 27, -« <r <=. The invariant fields

' T a_. = qw)_3_
(2.4) and (2.6) expressed as E; = e|;, ;;H and D, di aah

have the form

B 7 3% -3

E, = 2cos(x-n)3% +'35§%§%§§?l[;sin(§§ 3% + coshzig% —%], (2.9)

E, = -2si,n(x-ma—i + 2;‘:;’1?1%5;';’ Esinhzc%)-ﬁ% + cosh? (%)'5%] .
and

D, = == 4 2,
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3
2cos(x +n)ar

. 9
2sin(y +f1)ar

+-chin(X+n)

sinher

2ecos {x+n)

sinher

[i.hz(

|r;1 h2 (55
L

coordinate system defined by (2.8).

5— + cosh? (—- —
X

)—— + cosh2(

)
an

(2.10)

They satisfy the al-

- 285, [E, ,E] = 2B/ [E, , E,]

=-20,, (D, , D]

(2.11)

Taking on the l-dimensional manifold R the coordinate z(-® <2 <)

with vector fiel@ 3/3z, the Lie group M xR can be characterized

by the invariant vector fields {EI,EZ,E3,O/32}

3/3z}, which satisfy the algebra (2.11) and

[E,;.3/32] =

[p;,3/02] =

1,2,3

DZ'DS'

(2.12)

and which constitute bases for the vector fields on M xR.

"Next

fields

as

e =

R

o |+

w

- we deform the algebra (2.11) by

™ |-

EU" X

it

NI”

2z

rescaling the <vector

(2.13)
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where a,B8 are constant parameters, From (2.7) and (2.12) we have
Cx, vyg] = °o , AB=01,23. (2.14)

The deformation bf the algebra defined in (2.13) corresponds geo
metfiéalli to a deformatiocn of_thé 3-sphere (e=i) or the 3-hyper
boldid {e¢ =1) into an ellipsoidal or a deformed hyperboloidal surface
immersed in E,. Since the deformation does not alter the topology
of the groups we still refer to them as s3xR and H3¥xR.

We now define invariant Lorentzian metrics on MxR. We make
a particular choice, by prescribing the follqwing scalar product

rules for the invariant vector fields X, and Yy

A
gy (X, 0Xp) = nyp 0 Gy, s¥p) = nyg (2.15)

where Nap = diag(+1,-1,-1,-1). We shall refer to g, and gy as
left- and right-invariant metrics, respectively. From (2.9),
(2.10) and {2.13), equations (2.15) can be equivalently expres-

sed as

- 2
gle) = A(r)dx? +B(r)dn? + 5 e(a? ~E)sinh?(er)axdn +
) €

(2.16)
- '-B-;- dr2 - d22 r.

where

2 32
Alr) = %T sinh?2r{coth2&L . _E= , ,

(2.17)
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“8.-
2 . 2
B(r) = &~ sinh2er(th2&f - B2,
. 3 2 c2q2

and e=3) for gy, OF 9. respectively. It is to be'noted that the
left- and right-invariant metrics expressed in the coordinate
system introduqed in (2.8),differ by the sign of the cross term
dxdn only; in other words, they afe connected by a coordinate
'inversion X +=x or n » =-n, We have denoted these space-times
antipodal. In the realm of pure gravitational interaction the
geometries are indistinguishable if the covariance group of the
theory inciudes improper transformations. The possibility of
the physical distinction between the two universes is discussed
in a companion paper where the nature of these transformations

is analysed when we include neutrincs as test particles. We show
also that improper transformations are no longer symmetries of
the system universe-plus-neutrinos of a given helicity. An in-
tuitive argumenf can be given in this direction. To the passive

transformation n » - n there corresponds the ac'tivc transformation
gle) »g(-e),; or equivalently, the change of "the sign of the vorti-
city associated to the velocity field of the matter content of
the universe (cf. Appendix). On the other hand neutrinos cén be
used as an absolute standard for the sign of'the rotation of
the universe because, as prescribed by wsak interactions processes,
a massless neutrino is an absolute left-handed screw. Therefore
the active transformation g(e} »g(-e) or, equivalently, the change
of the sign of the universe rotation,is no longer asymmetry of
the system universe-plus-neutrino because - to preserve the sym-
metry - left-handed neutrinos should then be. transformed into

right-handed neutrinos, which is a forbidden configuration.
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3. ISOMETRIES AND CAUSALITY IN SECTIONS

From (2.14) and (2.15) it follows

£gL=0 £g=0

r
Ya X, R

A=0,1,2,3 (3.1)

-

This means that by construction,the left (right) '_invariant geo
metry g, (gR) has the four right (left)-invariant vector fields
.{yA}({xA}) as Killing vectors. A direct inspection of the \geo-
metries (2.16) shows that 3/an is an additional independent Kil

1ing vector. Summing up, we have- in general

(a) Five Independent Killing vectors associated to g

{y,,3/3n)} G
(B) Five Independent Killing vectors associated to Ir

{x,,3/3n} . (3.3)

In another terminology the space~times with metrics (2.16)
are endowed with a Gy group of i;ometries acting transitively
EIS:[ on the space~time manilfolds. These space-times are said to be
homog eineous in the sense that G5 ‘con'tains a subgroup of '130-;
metric transformations which acts simply transitively on MxR,
by construction. It is however important to remark that the
space~times are not spatiafly homogencous since there is no

subgroup G3 of G .whose orbit is a 3-dimensicnal space-like surface.

5
For the hyperbqlié. family (e =1) an exceptional case occurs
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when a? = g2 - inspection of formulae (2.15] and (2.17) yields
- immediately 9, = gg- It then follows from‘a'trivial ‘counting
in (3.2)-(3.3) that this particular geometry has seven indepen
dent Killing vectors, for instance (X orX1eXge¥ 4¥1s¥,e¥,) . In
other words the geometry hasaseven-parameter group of motions,
and the sections 2 = const. are maximally symmetric ‘with a G6
group of motions generated by (xo,xl,xz,yo,yl,yz). |"10].

The class of left- and right-invariant geometries (2.16)for
the hyperbolic case has the structure of the reflection group
of hyperbolae through their asymptotes I_16]. In fact the cons
tant function (cf, (2.16)) y = e(a? -82),defined in the plane
of metric parameters (u,B),descrlbes a congruence of hyperbolae
which are reflected through the asymptotes Yy =0, when we change
the sign o§ e, namely,when - we go from g, to 9 and vice versa.
The asymptotes y = 0 cosreSpond to the exceptional geometry dis

cussed above with a G7 isometry group.

Causality and Topological Defects in Sections

The space-times introduced here - the invariant geometries
(2.16).over the Lie groups S3xR and H3xR - present some patho
.1ogica1 properties like the existence of time-like or null-like
closed curves. As we shall see this is connected to the fact
that the sections z = const. have,by construction, the struc
ture of 8% or B®, and the restriction of the invariant geo-
metry (2.16) to S3 or H3 has signature (+--). In some cases,
by a legitimate alteration of the topology, we can avoid these a-

causal curves, but they are in general inevitably present.
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We eﬁamine separately the two cases
(1) H3xR.

The sections z = const. with the topology of ﬁ3 are des-—
cribed, in terms Cartesian coordinates of the embedding Euglidean
space Ea,by (2.1) with ¢ =1, Let us consider the 2-dimensio-
nal sectiqns of H3, which we shall.describq in the  coordinate
system_(r,x,n) defined in (2.8), with ~= <r <w,’0 YT <27,
T&king firstly the sections n = const. we choose for convenien

ce n=0 and obtain from (2.8}

a% = cosh(g)cosx .

al = cosh(%)sinx , (3.4)
a? =,sinh(§) '

al =0,

which represent the points of the one-leaf hyperboloid o‘f Fig. 1.

1

. Fig. 1 -~ One-leaf hyperpoloid embedded in E, corresponding to

the section n,z = const. of the maniﬁoid- H3xR,
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For the sections y = const, choosing for simplicdity y = 0

we have r.
al = cosh(z) »
al,=0:
{(3.5)
al = sinh(%)cosn '
3 . r‘
a’ = sinh(i)sinn .

Equations (3.5) describes in E, the points of the two-leaf hy
perboloid of Fig. 2.

a3

Fig. 2 - Two-leaf hyperboloid corresponding tb the sections
X,2 = const. of the manifold H3xR.

We are now ready to examine how the topology of the sec-
tions is related to the causality problem in these space-times.
To this end let us consider the invariant Lorentzian ‘geometry

{2.16) with- £= 1 defined on H3xR. We distinguish
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{a) Case a? >82: in the sections n,z = const. we have A(r) > 0 for
all r. Therefore the integral curves of the vector field  3/3x
are time-like'closed curves {¢f. (2.16)) on the hyperboloid of
Fig. 1. This violation of causality can however be circumvented
- in fact the hyperboloid of Fig. 1 is homeomorphic to the cy-
linder and can be continuously developed onto the plane. The
curves defined by 3/3x can thus be open into infinite 1lines and
the éausality problem avoided. This procedure corresponds ac-
tually to modifying the connectivity-in-the-large proPertiesﬁj,
18] of the manifold - the connectivity in the large is changed
by identification of certain point sets, namely the manifold HS3
differs from the:present one by identification of the points
(x + 2nn,n,r,z}, n = intégér [19]

In the sectimns x,z = const. the space-like, time-like or
mll-like charaéter of the vector field 3/an depends on the
sign of the function B(r) (cf. (2.17) for e =1). The dloaed cuﬁ
ves defined by -the field 3/3n on the two-leaf  hyperboloid of
Fig. 2 are time-~like or mull-like for values of r such that
th? % > E;, respectively. Contrary to the case of the sectdéns

cgnst; however, the presence of closed time-like lines

]

n,z
cannot be circumvented by mgdifyinq-the topology withﬁut intro
ducing singularities in the space—tiﬁe manifold. This is “the
case since a brancg of the two-leaf hymerixloid of Fig. 2 is homeomorphic -
to the cylinder only if one point of the hyperboloid is extrac-
ted. In other words,to gliminate the causality problem in these
sections - by developing the closed coordinate lines n into
open infinite lines - we must introduce topological defects (a

line of - singularities} in the space-time manifold. A pos-
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sible way to implement the extraction of pointé of the space-time
is the introduction of a string in the sense of Refs.'[20,21,22]:

with the geometry (2.16) expanded about the point r =0, for instance,

the point r =0 is transformed in a ' conical singularity, The
neighborhood about r =0 of the hyperboloid of Fig. 2 is approximated
by a flat {:onical'.space, and the conical singularit‘y at r =0 con
tfibui:es to the curvature tensor of the space-time with a term
proportional to a §-type function thch vanishes outside the sin
gular line defined by r =0 [ 20,23,24].
{b) Case azn<82 : in the sections n,z = const. the integral
curves of 3/3x)} on the hyperboloid of Fig. 1 are time-like or
mll like whether th? 3'2'- > 9—2—, respectively. As in case (a) here
the curves defined by 3/3x can he open into infinite lines by
an appropriate modification of the topology, and the causality
problem avoided, without. introducing singularii:ie_s in the space-
time. In the sections x,z = const. we have B{r)< 0 for all r SO
that no acausal curves occur in these sections.

In this sense the space-times of Case (b): a2 <82, are said
to belcausal. |
(c} Case a? = B2: this can be considered a limiting case of (b),
~ and we have here 2(r)> 0 and B(r) < 0 for all r. The only time-like
| closed curves present are defined by the vector field 3/3x on
the one-leaf hyperboloid of Fig. 1, and can be eliminated as in
(b).
(ii) s3 xR

The geometry here is given by (2.6), for ¢ =1. On the  sec-
tions 2z = const, .with the topology of S? we introduce the co-

ordinate system (x,x,n) defined through the Cartesian coordinates
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of the embedding Euclidean space by formulae (2.8) for e =i, where
0<r/2<w, 0 < n,x < 2r, The two-dimensional sections of §3 cor
responding to y = const. c;r x = const. are spheroidél surfaées.

In the sections n = const [ x = const] of S3 the character of
the vector field a/3x[_ 3/3n] depends on the sign of the function

1 +cos E. -cosr:l is greater

A(r}]:B(r):[a. For values of r suqh that T +cost

: l -cosr
than, smaller than on equal to g2/a2, the coordinate lines defined

by 3/3 x-[: a/an] are closed curves of time-like, space-time or nuli-
like character respectively. The causality problem in these sec-
fions cannot be circumvented unfe¢ss we extract two points from
each two~dimensional spheroidal surface z,n =const.[2,x =const.] to produce
a topologica-ll' cylinder. This can be done by a procedure analogous
to the one discussed in case' (i.a), and,in this sense, the space --
times discussed here with topology S3xR. can be made free from the
presence of thé above mentioned closed time-like curves only by the

introduction of at least two strings in the manifold.

4. THE CYLINDRICAL COORDINATE SYSTEM AND SOURCES OF CURVATURE

The class of invariant geometries (2.16)~{2.17) 1introduced on
S3xR and H3xR can be cast in a simpler for_n‘l'by the use of cy- |
lindrical coordinates defined below. Let us consider the right in
variant geometries g, and a new coordinate system (t,¢,r,z) given.

by the transformation equations

- 2
r=1-§_r , N -, (4.1)
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where
f = e2a/8? ' m= 2¢/8 . {4.2)
In this coordinate system = is written

gp = (dt +H(T)d¢)2 - D?(r)d¢? - ar? - dEz_*.. (4.3)

where

o |

H(E) = 5% sinh2(&))  , D) =

sinhmy . (4.4)
m _

In terms of the new parameters (ﬁ,n) the family of geometries
g, over SIXR or H3xR are obtained by taking m2 <0 or m2 » 0

respectively. Although-the geometry 9 does not assume a simple
form in the coordinate system defined by (4.1), an analogous
cylindfical coordinate system can be introducgd whefe 9, takes
the form (4.3)-(4.4). The transformation equations are obtained

from {4.1) by the substitution n » -n or x » -y, for instance

2
=z = M_ L.
{4.5)
2
= - B = 7
x=-ggt ' z =2 ,

where @ and m are defined through (4.2). The difference here
lies in that (4.5) is a-discontinuous transformation: involwving

an inversion operation,
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The space-times characterized by a line.element of the form
(4.3) without specification of the functions H(r) and D(r) are
denoted 1in the literature as Gddel-type space-times. When H(r)
and D(r) are given by (4.4} the space-times are denoted deel-
type homogeneous. We have obtained the functions (4.4) by oons:;
truction, starting from the giobal Lie group structure of the
space-times plus the choice (2.1%9). The functions could be. e-
quivalently derived if space-time homogeneity is assumed, that
is, if the geometry (4.3) is restricted to admit a simply tran-
sitive isometry group. This was the point of view taken in Ref.
Co]. The Gddel solution [[8] can be recognized in the cylindrical
coordinate  gystem to correspond to the particular case
m? = 292.

We must finally comment on the possible physical sources of -
curvature compatible with geometries (2 16} via the field - e~
quations. We start with the model proposed by G8del in 1949,1
the geometry of which is obtained taking a2 = 282 , ¢ =1 in
(2.16) and (2.17) (or m? = 202, as mentioned above). The metric
is a solution of Einstein field equations with the - cosmdlogicel
constant term, and incoherent matter. In this respect Oszvath
E25] proved a theorem stated without ~ proof by G8del [s],
saying that the metric of the Einstein static universe and the
G8del metric are the only space-~time homogcmems solutions of '
Einstein equations with incoherent matter and rigid rotation.
Later Bampi and Zordan |_26] showed that - for GBdel-type me-
“trics (4.3), without spec.if'ication of the functions H(Tr) and
D(r}), and for the energy-momentum tensor:-of a perfect fluid - atf

resulting solutions of Einstein equations are isometric to the
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G8del solution.

Let us consider again the homogeneous space-time characterized
by the metric (2.16) (or(4.3)). For a? 2282, e =1 (or 0 <m?2 <202 in
¢ylindrical coordinates), and for ¢ =i and arbitrary a,8lor —=m2<0),
the corresponding classes of metrics are solutions of Einstein and
Einstein-Maxwell equations with charged dust [27,3], or neutral
dust plus a free electromagnetic field EgB,B:[. The admissible range
of parémeters can be extended by adding to the energy-momentum
tensor of dust and frée electromagnetic fields, the ehergy mo-
mentum tenéor of a free scalar field [9]. For a2 =82 (or m2 =4p?2)
only a pure massless scalar field is allowable. The spectrum of G&del
type homogeneous solutions was further extended [:11] to 8%>u0,e=1
{or m? >492), in the context of Einstein-Cartan theory [[28]. These
models have as source a perfect fluid with spin in rigid rotation,
the spin distribution being uniform and parallel to the rotation
axis. | |

In the ahowe examples where_a perfect fluid distribution is
present, the kinematical parameters [:5,30] characterizing the
models can be unambiguously defined [[31], associated to the

four-velocity field of the fluid. The velocity field of the fluid

has zero acceleration, expansion and shear, but has a = non-null
vorticity
= 2 @y’ 3
W {e ¢ 82)'32 ' (4.6)

‘relative to the local compass of inertia (cf. Appendix) .
The infinitesimal elements of the perfect fluid in these models

are therefore in geodesic motion with constant figid rotation.
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5. FINAL CONCLUSIONS

In this paper we: have constructed space-times with the topo-
logy. of the Lie groups S3xR and H3xR, and studied their global
properties. Left-invariant metrics 9. and right-invariant metrics
gR'depending on_two parameters are introduced on the group mani-
folﬂsof the space-times. This glbbal construction allows us to
cmxﬁndecﬁxectly that the space-times admit a GS group of motions.
In the family of .space—times with structure H3xR there occurs a

particular case when 9, = 9 which admits a G, group of motions,

7
with the 3-dimensional sections corresponding to H® maximally syg'
metric. |

Also the knowledge of the topology 6f the space-times allows us
to identify immediately the nature of the coordinates used, and
global causality problems, - associated to the existence of closed
time-like lines of coordinates - are easily characterized. The
basic result is that in the family with topology H?xR some of
the acausal curves can be avoided simply by'the ‘operation of de-
veloping one-leaf hyperboloids_oﬁto the plane while other acausal
curves can'only be avoided by extracting ﬁointsof the space-time.
The -latter procedure corresponds to introduciné a topological de
fect or a stfing (a line of delta-type singularities in the cur-
véture) in the space-times. In the family with the topology S3xR.
the modification of the topolbgy involves the introduction of at
least two strings flines of singularities) to avoid the acausal
curves.

A coordinatg syste? is introduced where the left-+invariant

metrics g, and right-invariant metrics I defined on the group
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manifolds differ by a coordinate inversion onlf, and we discuss
how weak interaction processes could allow. ciistinguishing these
universes physically. This is the subject of the following paper
where the symmetries of the system un{iverse plus neutrinos (neu
trinos con51dered here as test particles) are exmmmed there it
is shown that the physical transformations on the system universe
plus heutrinos, corresponding to the passive operation of co-
ordinate inversion,are not a symmetry of the system if neutrinos

have one type of helicity only.
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APPENDIX

We assume now that the metrics 9L and gy are assocliated to

distinct space~times, both defined on the same manifold.
shall prove in this Appendix that the material content

the cases it can be present as source of curvature) of

We
(for

these

space-times have opnosite rotation, relative to the compass of

inertia [ 1,32 ]. In-the coordinate system defined by {2.8),

let us consider for our calculations the vector field

(cf. (2.13) and (2.15))

=1 . 2 4 2¢esin(x-en)/ . ., Er _3
X B.LZeos(x enlsr + “Cinher ( sinh?® = i

+ e:cosh?

2¢ecos (x-en)
sinhex

-8inh? Eg-s%-+ecosh2

o M ogin eem =
X, = ) 2gin(yx en)ar +

" basis

er 3
2 an |
(A.1)

q
er 3
YY)

which define 1local Lorentz frames in the space-times (2.16).

The four-velocity field of matter |:33j relative to

basis is given by

this

(A.2)

We can then describe the motion of the matter with respect to

the frame {Xi} by means of the equation
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éﬁ&f =0

(A.3)
3 a :
where n=) n X,is a vector orthogonal to X (cf. (2.15) and con
a=]1

necting twe neighboring fluid particles, one of them located
at the origin of the Lorentz frame détermined'by (A.l). De-

notating #? = x-bﬁ“ we obtain from (A.3), (2.11) and (2.13)

1 2e

l"'l=‘—a'ﬂ2 ? F]:-_rl :ﬁ=0' (Ao4)

The motion of the frame (A.l) along a material world- line

determined by Xo can be calculated by

X. =9 X
AT 4 A
[»]
and we obtain

X = e(e? “-31x2 P X = - ele?2 2 - 2%, (a.5)
1 8 o B
X =0 = X
3 =0 o !

that is, the plane 1-2 of the frame {XA} rotates with respect

to the local compass of inertia with a circular frequency
820‘.
(=2

82 _
termined, for instance, by gyroscopes). Since the shear of ‘the matter

e - %)(the axes of the local compass of inertia being de-

velocity field (A.2) is zero, the rotation of matter relative

to the compass of inertia is " given by the angular velocity
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w® = (0,0,0,e e2-2) (A.6)
82 |
which changes sign as e » -e, that is, as we change 9., ‘into

9p and vice versa.
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