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Abstract

A review is made on some recent studies which support the point of view that the rel-
ativistic �eld theory quantized on the light-front (LF), as proposed by Dirac, seems to
be more transparent compared to the conventional equal-time quantized one. Some ideas
following from these studies may be of some relevance in the context of the quantization
of gravitation theory.

It is argued on general grounds that the LF quantization is equally appropriate as the
conventional equal-time one and that the two should lead, assuming the microcausality
principle, to the same physical content. This is shown to be true by considering several
model �eld theories. The description on the LF of the spontaneous symmetry break-
ing (SSB), (tree level) Higgs mechanism, of the condensate or �-vacua in the Schwinger
model (SM), of the absence of such vacua in the Chiral SM (CSM), and of the BRS-BFT
quantization of the front form CSM are among the topics discussed.

The LF phase space is strongly constrained and is di�erent from the one in the conven-
tional theory. The removal of the constraints by following the Dirac procedure results in
a substantially reduced number of independent operators. The discussion of the physical
Hilbert space and the vacuum becomes more tractable.

Some comments on the irrelevance, in the quantized �eld theory, of the fact that the
hyperplanes x� = 0 constitute characteristic surfaces of the hyperbolic partial di�erential
equation are also made. The LF theory quantized on, say, the x+ = const: hyperplanes
seems to contain in it the information on the equal-x� commutators as well.

A theoretical rea�rmation of the universally accepted notion that the experimental
data is to be confronted with the predictions of a classical theory model only after it has
been upgraded through its quantization seems to emerge. The LF quantization promises
to be a powerful tool, complementary to the functional integral method, for handling the
nonperturbative calculations.
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1- Introduction

Dirac [1], in his paper, in 1949, discussed the uni�cation, in a relativistic theory,
of the principles of the quantization and the special relativity theory. The Light-Front
(LF) quantization which studies the relativistic quantum dynamics of physical system
on the hyperplanes : x0 + x3 � p

2x+ = const:, called the front form theory, was also
proposed there. The instant form or the conventional equal-time theory on the contrary
uses the x0 = const: hyperplanes. The LF coordinates x� : (x+; x�; x?), where x� =
(x0�x3)=p2 = x� and x? = (x1; x2), are convenient to use in the front form theory.
They are not related by a Lorentz transformation to the coordinates (x0 � t; x1; x2; x3)
usually employed in the instant form theory and as such the descriptions of the same
physical content of a dynamical theory on the LF may come out to be di�erent from that
given in the conventional treatment. The LF quantized �eld theory may hence be of some
relevance in the understanding of the uni�cation of the principles of the quantization with
that of the general covariance1.

We will make the convention to regard2 x+ � � as the LF-time coordinate while
x� � x as the longitudinal spatial coordinate. The temporal evolution in x0 or x+ of the
system is generated by Hamiltonians which are di�erent in the two forms of the theory.
The LF components, with � = +;�; 1; 2, of any tensor are de�ned likewise.

Consider [2] the invariant distance between two spacetime points : (x � y)2 = (x0 �
y0)2�(~x�~y)2 = 2(x+�y+)(x��y�)�(x?�y?)2. On an equal x0 = y0 = const: hyperplane
the points have spacelike separation except for if they are coincident when it becomes
lightlike one. On the LF with x+ = y+ = const: the distance becomes independent of
(x� � y�) and the seperation is again spacelike; it becomes lightlike one when x? = y?

but with the di�erence that now the points need not necessarily be coincident along the
longitudinal direction. The LF �eld theory hence need not necessarily be local in x�, even
if the corresponding instant form theory is formulated as a local one. For example, the
commutator [A(x+; x�; x?); B(0; 0; 0?)]x+=0 of two scalar observables would vanish on the
grounds of microcausality principle if x? 6= 0 when x2jx+=0 is spacelike. Its value would
hence be proportional to �2(x?) and a �nite number of its derivatives, implying locality
only in x? but not necessarily so in x�. Similar arguments in the instant form theory
lead to the locality in all the three spatial coordinates. In view of the microcausality both
of the commutators [A(x); B(0)]x+=0 and [A(x); B(0)]x0=0 are nonvanishing only on the
light-cone.

We remark that in the LF quantization we time order with respect to � rather
than t. The microcausality principle, however, ensures that the retarded commutators
[A(x); B(0)]�(x0) and [A(x); B(0)]�(x+), which appear [3] in the S-matrix elements of rel-
ativistic �eld theory, do not lead to disagreements in the two formulations. In the regions
x0 > 0; x+ < 0 and x0 < 0; x+ > 0, where the commutators seem di�erent the x2 is
spacelike and both of them vanish. Hence, admitting the microcausality principle to hold,
the LF hyperplane seems equally appropriate as the conventional one of the instant form

1We recall the Kruskal-Szekers coordinates which threw a new light on the problem of the Schwarzshild

singularity.
2The coordinates x+ and x� appear in a symmetric fashion and we note that

�
x+; 1

i
@�

�
=

�
x�; 1
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@+

�
=

i where @� = @� = (@0 � @3)=
p
2 etc..
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theory for the canonical quantization.
The structure of the LF phase space, however, is di�erent from that of the one in the

conventional theory. Consequently, we may require on the LF a di�erent description of
to the same physical content as found in the conventional treatment. For example, the
SSB needs a di�erent description [2] or mechanism on the LF when compared with the
conventional one. The broken continuous symmetry is now inferred from the study of the
residual unbroken symmetry of the LF Hamiltonian operator while the symmetry of the
LF vacuum remains intact. The expression which counts the number of Goldstone bosons
present in the theory, a physical content, comes out to be the same as that found in the
equal-time quantized theory. A new proof of the Coleman's theorem [4] on the absence of
the Goldstone bosons in two dimensional theory also emerges [2] easily on the LF. The LF
vacuum is generally found to be simpler [5, 6] and in many cases the interacting theory
vacuum is seen to coincide3.

An important advantge pointed out by Dirac of front form theory is that here seven out
of the ten Poincar�e generators are kinematical, e.g., they leave the plane x+ = 0 invariant
[1]. They are P+; P 1; P 2; M12 = �J3; M+� = M03 = �K3; M

1+ = (K1 + J2)=
p
2

and M+2 = (K2 � J1)=
p
2. In the conventional theory only six such ones, viz., ~P and

M ij = �M ij , leave the hyperplane x0 = 0 invariant. In fact, in the standard notation
Ki = �M0i; Ji = �(1=2)�ijkMkl; i; j; k = 1; 2; 3 and the generator K3 is dynamical one
in the instant form theory. It is in contrast kinematical in the front form theory where
it generates the scale transformations of the LF components of x�, P � and M�� , with
�; � = +;�; 1; 2. It is also worth remarking that the + component of the Pauli-Lubanski
pseudo-vector W � is special in that it contains only the LF kinematical generators. This
suggests us to de�ne the LF Spin operator by J3 = �W+=P+. The other two components

of ~J are shown to be Ja = �(J3P
a +W a)=

p
P �P�; a = 1; 2, which, however, do carry 4

in them also the LF dynamical generators P�;M1�;M2�.
Another distinguishing feature of the front form theory is that it gives rise generally

to a (strongly) constrained dynamical system [7] which leads to an appreciable reduction
in the number of independent operators on the phase space. The vacuum structure,
for example, then becomes more tractable and the computation of physical quantities
simpler. This is veri�ed in the recent study of the LF quantized SM [8] and the Chiral
SM (CSM) discussed below where we are led directly to the physical Hilbert space, once

3In fact, in many cases the interacting theory vacuum may coincide with the perturbation the-
ory one. This results from the fact that momentum four-vector is now given by (k�; k+; k?) where
k� = (k0�k3)=p2. Here k� is the LF energy while k? and k+ indicate the transverse and the longitu-
dinal components of the momentum respectively. For a free massive particle on the mass shell we have

2k�k+ = (k?
2
+ m2) > 0 so that k� are both positive de�nite when k0 > 0. The conservation of the

total longitudinal momentum does not permit the excitation of massive quanta by the LF vacuum. We
require k+ ! 0 for each particle (and antiparticle) entering the ground state, which has vanishing total
momentum. Such con�gurations constitute a point with zero measure in the LF phase space and may
[5] not be of relevance in many cases. However, it should be noted that when dealing with the momen-
tum space integrals, say, the loop integrals, a signi�cant contribution may arise precisely from such a
corresponding con�guration in the integrand; the reason being that we have to deal with the products of
several distributions. On the other hand, (k1; k2; k3) may take positive or negative values and we may
construct in the conventional theory eigenstates of zero momentum with an arbitrary number of particles

(and antiparticles) which may mix with the vacuum state, with no particles, to form the ground state.

4See refs. [2] and [5].
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the constraints are taken into account by following the Dirac procedure [7].
We recall that the LF �eld theory was rediscovered in 1966 by Weinberg [9] in his

Feynman rules adapted for in�nite momentum frame. It was demonstrated [10] latter
that these rules, in fact, correspond to the front form quantized theory. It was also
employed successfully in the nonabelian bosonization of the �eld theory of N free Majorana
fermions, where the corresponding LF current algebra was compared [11] with the one in
the bosonized theory described by the WZNW action at the critical point. The interest
in LF quantization has been revived [5, 6] also due to the di�culties encountered in the
computation, in the conventional framework, of the nonperturbative e�ects in the context
of QCD and the problem of the relativistic bound states of light fermions [6, 5] in the
presence of the complicated vacuum. Studies show that the application of Light-front
Tamm-Danco� method may be feasible here. The technique of the regularization on the
lattice has been quite successful for some problems but it cannot handle, for example,
the light ( chiral) fermions and has not been able yet to demonstrate, for example, the
con�nenment of quarks. The problem of reconciling the standard constituent quark model
and the QCD to describe the hadrons is also not satisfactorily resolved. In the former we
employ few valence quarks while in the latter the QCD vacuum state itself contains, in the
conventional theory, an in�nite sea of constituent quarks and gluons ( partons) with the
density of low momentum constituents getting very large in view of the infrared slavery.
The front form dynamics may serve as a complementary tool to study such probelms since
we have a simple vacuum here while the complexity of the problem is now transferred to
the LF Hamiltonian. In the case of the scalar �eld theory, for example, the corresponding
LF Hamiltonian is, in fact, found [2] to be nonlocal due to the appearence of constraint
equations on the LF phase space.

We discuss here only some of the interesting conclusions reached from the detailed
study of some model relativistic theories on the LF and where the standard Dirac pro-
cedure for constrained dynamical systems is followed in order to build the self-consistent
Hamiltonian formulation. Among some of the results obtained we �nd that

� The LF hyperplane is equally appropriate as the conventional equal-time one for the
�eld theory quantization.

� The hyperplanes x� = 0 de�ne the characteristic surfaces of a hyperbolic partial
di�erential equation. From the mathematical theory of classical partial di�erential
equations [12] it is known that the Cauchy initial value problem would require us
to specify the data on both the hyperplanes. >From our studies we conclude that it
is su�cient in the front form theory to choose, as proposed by Dirac [1], one of the
two LF hyperplanes for canonically quantizing the theory.

- In the quantized theory the equal-� commutators of the �eld operators, at a �xed
initial LF-time, form now a part of the initial data instead and we deal with operator
di�erential equations.

- The studies show that the information on the commutators on the other charac-
teristic hyperplane are already contained [8] in the quantized theory and need not
thus be speci�ed separately.

� The inherent symmetry with regard to equal-x� commtators along with the reduced
number of independent �eld operators which survive after the constraints are taken
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care of seem to be responsible for the very transparent discussion on the LF.

� The physical content following from the front form theory is the same, even though
arrived at through di�erent description on the LF, when compared with the one in
the instant form case.

� In the conventional treatment we sometimes are required to introduce external con-
straints in the theory based on physical considerations, say, when describing the
spontaneous symmetry breaking. Many of the analogous constraints may be shown
to be already icorporated in the quantized theory considered on the LF.

� A theoretical demonstration of the well accepted notion that a classical model �eld
theory must be upgraded �rst through its quantization before we confront it with
the experimental data, seems to emerge.

� The recently proposed BRS-BFT [13] quantization procedure is extended straight-
forwardly on the LF as well as is illustrated below in the context of CSM (Appendix
D).

� Topological considerations often employed in the context of the functional integral
techniques, where the Euclidean theory action is ususally employed, also seem to
have their counterpart, though now interpreted di�erently. This is suggested, for
example, from the studies of the LF quantized SM and CSM.

For illustration purposes we discuss in the following Sections the description on the
LF of the spontaneous symmetry breaking (SSB) and of the structure of the vacuum state
in the CSM while some other topics related to the front form theory are collected in the
Appendices.

2- Spontaneous Symmetry Breaking Mechanism on the LF

On the canonical quantization of the instant form scalar �eld Lagrangian theory we
obtain as well known the Hamiltonian and the commutation relations among the �eld
operators. The description of, say, the tree level SSB emerges when we require also (e.g.,
introduce external constraints ), based on physical considerations, that the �classical � !
corresponds to the minimum of the Hamiltonian functional. The front form of the same
theory describes [2] a constrained dynamical system and the canonical Hamiltonian frame-
work, which may be quantized by the correspondence principle, is shown to contain in
it a new ingredient in the form of the constraint equations, in addition to the Hamilto-
nian and commmutators among the �eld operators. The constraint equations may also
be derived from the Lagrange equations of motion 5. The new ingredient permits us to

5That the constraint equations can be derived simply by integrating the Lagrange equations of motion
over the longitudinal spatial coordinate x� was noted also in: P.P. Srivastava, On spontaneous symmetry

breaking mechanism on the light-front quantized �eld theory, Ohio-State preprint 91-0481, Slac database
PPF-9148 (see also 92-0012, PPF-9202), November '91; available as scanned copies. In fact, Dirac in
his paper does consider some examples where the constraints on the form of the potential are required
if we would like to unify in the dynamical theory the principles of the quantization and the relativistic
invariance. It is interesting to note that soon after in 1950-52 he formulated also the systematic method

(Dirac procedure) for constructing Hamiltonian formulation for a constrained dynamical system.
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describe [2] SSB on the LF without requiring us to deal with the di�cult task of intro-
ducing constraints on the LF based on physical considerations. Some of them may be
shown to be already incorporated [2] in the formulation itself due to the requirement of
the selfconsistency [7].

The existence of the continuum limit of the Discretized Light Cone Quantized (DLCQ)
[14] theory, the nonlocal nature of the LF Hamiltonian, and the description of the SSB
on the LF were clari�ed [2, 15] only recently.

Consider �rst the two dimensional case of single real scalar theory with the Lagrangian
L = [ _��0�V (�)]. Here � � x+ = (x0+ x1)=

p
2, x � x� = (x0�x1)=p2, @�� = _�; @x� =

�0, and d2x = d�dx. It is the simplest example of a constrained �eld theory. The eq. of
motion, _�0 = (�1=2)�V (�)=��, shows that � = const: is a possible solution. We propose
to make the following separation6 �(�; x) = !(� )+'(�; x) where the !(� ) is the dynamical
variable representing the bosonic condensate and '(�; x) describes (quantum) uctuations
above it. We set

R
dx�'(�; x) = 0 so that the uctuation �eld carries no zero momentum

mode in it. Subsequently, we apply the standard Dirac procedure in order to construct a
selfconsistent Hamiltonian formulation which may be quantized canonically.

We are led [2] to

['(x; � ); '(y; � )] = � i
4
�(x� y); (1)

[!(� ); '(x; � )] = 0; (2)

and

H lf � P� =

Z
dx
h
!(�!2 �m2)'+

1

2
(3�!2 �m2)'2 + �!'3 +

�

4
'4
i
; (3)

along with the (second class) constraint equation

limR!1
1

R

Z R=2

�R=2
dxV 0(�) � !(�!2 �m2) + limR!1

1

R

Z R=2

�R=2
dx
h
(3�!2 �m2)'+ �(3!'2 + '3)

i
= 0 (4)

where we have assumed V (�) = (�=4)(�2 �m2=�)2, � � 0, m 6= 0.
Eliminating ! would lead to a nonlinear and nonlocal Hamiltonian in the front form

theory even when the scalar theory is written above a local one in the conventional instant
form formulation.

At the tree or classical level ' are bounded ordinary functions in x� and only the �rst
term survives in the constraint equation leading to V 0(!) = 0, which is the same as found
in the conventional theory. There it is essentially added to the theory, on the physical
considerations which require the energy functional to attain is minimum (extremam)
value. The stability property, say, of a particular constant solution may be inferred as

6It was �rst proposed in the ref. cited in the previous footnote; in 3 + 1 dimensions the separation
is: �(�; x�; x?) = !(�; x?) + '(�; x�; x?). See papers contribuited to XXVI Intl. Conference on High

energy Physics, Dallas, Texas, August '92, AIP Conf. Proc., 272 (1993) 2125, Ed. J.R. Sanford.
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usual from the classical partial di�erential equation of motion. For example, ! = 0 is
shown to be an unstable solution for the potential V considered above while the other
two solutions with ! 6= 0 give rise to the stable phases7.

The construction of the Hamiltonian formulation using the Dirac method [7] is a
straightforward exercise. We may use [2] the continuum formulation directly or proceed
from the DLCQ [14], and take its in�nitie volume limit [15] to obtain the same results. The
canonical quantization is performed via the correspondence which relates the �nal Dirac
brackets with the commutators (or anticommutators). We note that the Dirac procedure
when applied to the scalar theory written in the continuum shows that the variable ! is
a c-number or a background �eld; in the theory described in �nite volume, however, its
commutator with ' is nonvanishing [2] and as such it is a q-number operator. We stress
that in our discussion the condensate variable is introduced as a dynamical variable and
we let the Dirac procedure decide if it comes out as a c- or q-number. In the SM it comes
out to be an operator rather than a background �eld.

In the quantized theory the constraint equation above shows that the value of ! would
be altered from its tree level value due to the quantum corrections arising from the other
terms. It is, in fact, straightforward to renormalize the theory, say, up to one-loop order
by employing the Dyson-Wick expansion. We do not need to solve the constraint �rst
which would give rise to a very complicated LF Hamiltonian. It is more convenient to
derive [2] the renormalized constraint eqn. which together with the expression of mass
renormalization condition give us two eqns. which may be used to study [2] the phase
transition as conjectured by Simon and Gri�ths [16].

In view of the LF commutator above the scalar �eld has the LF momentum space

expansion : '(x; � ) = (1=
p
2�)

R
dk �(k) [a(k; � ) e�ikx+ay(k; � )eikx]=(

p
2k), were a(k; � )

and ay(k; � ) satisfy the canonical equal-� commutation relations, [a(k; � ); a(k0; � )y] =
�(k � k0) etc.. The vacuum state is de�ned by a(k; � )jvaci = 0 , k > 0 and the tree
level description of the SSB is given as follows. The values of ! = hj�jivac obtained
from V 0(!) = 0 characterize the di�erent vacua in the theory. Distinct Fock spaces
corresponding to di�erent values of ! are built as usual by applying the creation operators
on the corresponding vacuum state. The ! = 0 corresponds to a symmetric phase since
the Hamiltonian operator is then symmetric under '! �'. For ! 6= 0 this symmetry is
violated and the system is in a broken or asymmetric phase.

The extension to 3+1 dimensions and to the global continuous symmetry is straightforward8.
Consider real scalar �elds �a(a = 1; 2; ::N) which form an isovector of global internal sym-
metry group O(N). We now write9 �a(x; x?; � ) = !a + 'a(x; x?; � ) and the Lagrangian
density is L = [ _'a'0a � (1=2)(@i'a)(@i'a) � V (�)], where i = 1; 2 indicate the transverse
space directions. The Taylor series expansion of the constraint equations �a = 0 gives a set
of coupled equations RV 0a(!)+ V 00ab(!)

R
dx'b+ V 000abc(!)

R
dx'b'c=2+::: = 0. Its discussion

at the tree level leads to the conventional theory results. The LF symmetry generators are

found to be G�(� ) = �i R d2x?dx'0c(t�)cd'd =
R
d2k? dk �(k) ac(k; k?)y(t�)cdad(k; k?)

7A similar analysis of the corresponding partial di�erential equations in the conventional treatmnet

can also be made; the Fourier transform theory is convenient to use.

8See Nuovo Cimento A107 (1994) 549 and ref. [2].
9In general �a(x�; x?; � ) = !a(x?; � ) + 'a(x�; x?; � ) and the x? dependent tree level con�gurations

(e.g. kinks etc.) are determined from
�
V 0
a(!) � @?:@?!a

�
= 0.
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where �; � = 1; 2; ::; N(N � 1)=2 , are the group indices, t� are hermitian and antisym-

metric generators of O(N), and ac(k; k?)y (ac(k; k?)) is creation ( destruction) operator
contained in the momentum space expansion of 'c. These are to be contrasted with
the generators in the equal-time theory, Q�(x0) =

R
d3xJ0 = �i R d3x(@0'a)(t�)ab'b �

i(t�!)a
R
d3x(d'a=dx0). All the symmetry generators thus annihilate the LF vacuum and

the SSB is now seen in the broken symmetry of the quantized theory Hamiltonian. The
criteria for the counting of the number of Goldstone bosons on the LF is found to be the
same as in the conventional theory. In contrast, the �rst term on the right hand side of
Q�(x0) does annihilate the conventional theory vacuum but the second term gives now
non-vanishing contributions for some of the (broken) generators. The symmetry of the
conventional theory vacuum is thereby broken while the quantum Hamiltonian remains
invariant. The physical content of SSB in the instant form and the front form, however,
is the same though achieved by di�erent descriptions. Alternative proof on the LF, in
two dimensions, can be given of the Coleman's theorem related to the absence of Gold-
stone bosons; we are unable [2] to implement the second class constraints over the phase
space. We remark that the simplicity of the LF vacuum is in a sense compensated by the
involved nonlocal Hamiltonian. The latter, however, may be treatable using advance com-
putational techniques. Also in connection with renormalization it may not be necessary10

�rst to solve all the constraint equations.
To summarize, the simple procedure of separating �rst the condensate variable !

in the scalar �eld before applying the Dirac procedure is found to be successful also in
describing [2] the phase transition in two dimensional scalar theory, the SSB of continuous
symmetry, a new proof of the Coleman's theorem and the tree level Higgs mechanism.
It is again found successful in showing [8] the emergence on the LF of the �-vacua along
with their continuum normalization in the bosonized SM while explaining at the same
time their absence in the CSM. The condensate variable, we remind, is introduced as a
dynamical variable and we let the Dirac procedure decide if it comes out to be a c-number
(background �eld) or a q-number operator in the quantized �eld theory. It is shown [2]
to be c-number in the scalar theory studied in the continuum while it is an operator in
the SM whose eigenvalues characterize the �-vacua. In the next Sec. we discuss in some
detail the vacuum structure in the CSM which illustrates the remarkable transparency
attained in the discussion on the LF.

It is worth remarking that the LF formulation is inherently symmetrical with respect to
x+ and x� and it is a matter of convention that we take the plus component as the LF time

while the other as a spatial coordinate. The theory quantized at x+ = const: hyperplanes
seems already to incorporate in it the information on the equal-x� commutation relations.
We need to quantize the theory, as suggested by Dirac, only on one of the LF hyperplanes.
Consider, for example, the free scalar theory for which

'(x+; x�) =
1p
2�

Z 1

k+>0

dk+p
2k+

h
a(k+)e�i(k

+x�+k�x+) + ay(k+)ei(k+x�+k�x+)
i

with
h
a(k+); a(l+)y

i
= �(k+ � l+) etc. and 2k+k� = m2. We �nd easily

10See Nuovo Cimento A108( 1995) 35.
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�
'(x+; x�); '(y+; x�)

�
=

1

2�

Z 1

k+>0

dk+

2k+

h
eik

�(y+�x+) � e�ik
�(y+�x+)

i
:

We may change the integration variable to k� by making use of k�dk+ + k+dk� = 0
and employ the integral representation �(x) = (i=�)P R1�1(d�=�) e(�i�x) to arrive at the

equal-x� commutator

�
'(x+; x�); '(y+; x�)

�
= � i

4
�(x+ � y+)

The above �eld expansion on the LF, in contrast to the equal-time case, does not involve
the mass parameter m and the same result follows in the massless case also if we assume
that k+ = l+ implies k� = l�. De�ning the right and the left movers by '(0; x�) �
'R(x�), and '(x+; 0) � 'L(x+) we obtain

�
'R(x�); 'R(y�)

�
= (�i=4)�(x� � y�) while�

'L(x+); 'L(y+)
�
= (�i=4)�(x+ � y+). The symmetry under discussion is responsible for

an appreciable simpli�cation found in the recent study of the gauge theory SM and the
CSM on the LF discussed in the next Sec..

3- Bosonized CSM on the LF. Absence of �-vacua [19]

The Lagrangian density of the chiral QED2 or CSM model is

L = �1

4
F ��F�� + � R i

�@� R + � L 
�(i@� + 2e

p
�A�) L; (5)

where11.  =  R +  L is a two-component spinor �eld and A� is the abelian gauge �eld,
5 L = � L, and 5 R =  R. The classical Lagrangian is invariant under the local U(1)
gauge transformations A� ! A�+ @��=(2

p
�e),  ! [PR+ ei�PL] and under the global

U(1)5 chiral transformations  ! exp(i5�) .
The model under study can be solved completely using the technique of bosonization.

The latter consists in the replacement of a known system of fermions with a theory
of bosons which has a completely equivalent physical content, including, for example,
identical spectra, the same current commutation relations and the energy-momentum
tensor when expressed in terms of the currents. The bosonized version is convenient to
study the vacuum structure and it was shown [17] to be given by

S =

Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

�
(6)

Here the explicit mass term for the gauge �eld parametrized by the constant parameter a
represents a regularization ambiguity and the breakdown of U(1) gauge symmetry. The
action may be derived by the functional integral method or by the canonical quantization.

We make the separation: �(�; x�) = !(� ) + '(�; x�) and follow it through the ap-
plication of the Dirac method as done with the SSB above. On the other hand in the
bosonized SM on the LF we recall [8] that !(� ) turned out to be q-number operator
and its eigenvalues were shown [8] to characterize the condensate or �-vacua [18], which

11Here 0 = �1, 1 = i�2, 5 = ��3, x� : (x+ � �; x� � x) with
p
2x� =

p
2x� = (x0�x1),

A� = A� = (A0 �A1)=
p
2,  L;R = PL;R  , PL = (1 � 5)=2, PR = (1 + 5)=2, � =  y0.
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were shown also to emerge naturally with a continuum normalization in contrast to what
found in the conventional equal-time treatment. We remind [8] also that the chiral trans-
formation is de�ned by: ! ! ! + const:; ' ! ', and A� ! A�. This ensures that
the boundary conditions on the ' are kept unaltered under such transformations and our
mathematical framework may be considered well posed, before we proceed to build the
canonical Hamiltonian framework.

Written explicitly the action takes the following form on the LF

S =

Z
d2x

�
_''0 +

1

2
( _A� �A0+)

2 + ae2[A+ +
2

ae
( _! + _')]A�

�
(7)

where an overdot (a prime) indicates the partial derivative with respect to � ( x). In order
to suppress the �nite volume e�ects we work in the continuum formulation and require,
based on physical considerations, that the �elds satisfy the boundary conditions needed
for the existence of their Fourier transforms in the spatial variable x�.

We note now that A+ appears in the action as an auxiliary �eld, without a kinetic term.
It is clear that the condensate variable may thus be subtracted out from the theory using
the frequently adopted procedure of �eld rede�nition [20] on it: A+ ! A+ � 2 _!=(ae),
obtaining thereby

LCSM = _''0 +
1

2
( _A� �A0+)

2 + 2e _'A� + ae2A+A�; (8)

which signals the emergence of a di�erent structure of the Hilbert space compared to that
of the SM where we had instead [8]

L =

Z
dx�

h
_''0 +

1

2
( _A� �A0+)

2 � (
ep
�
)(A+'

0 �A� _')
i
+ (

ep
�
) _!h(� ) (9)

with h(� ) =
R
dx�A�(�; x�), the zero mode associated with the gauge �eld A�. We recall

that the condensate or �-vacua in SM emerged due to the presence in the theory of three
linearly independent operators: the condensate !, its canonically conjugate h(� ) and '
with the vanishing commutator with the other two while the H lf contained in it only
the �eld '. The Hilbert space could be described in two fashions. Selecting ' abd h as
forming the complete set of operators led to the chiral vacua while ' together with ! led
to the description in terms of the condensate or �-vacua.

The Lagrange equations in the CSM follow to be

@+@�' = �e@+A�;
@+@+A� � @+@�A+ = ae2A+ + 2e@+';

@�@�A+ � @+@�A� = ae2A�: (10)

and for a 6= 1 they lead to:

2G(�; x) = 0�
2 +

e2a2

(a� 1)

�
E(�; x) = 0; (11)
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where E = (@+A� � @�A+) and G = (E � ae'). Both the massive and massless scalar
excitations are present in the theory and the tachyons would be absent in the specrtum if
a > 1; the case considered in this paper. We will con�rm in the Hamiltonian framework
below that the E and G represent, in fact, the two independent �eld operators on the LF
phase space.

The Dirac procedure [7] as applied to the very simple action of the CSM is straight-
forward. The canonical momenta are �+ � 0; �� � E = _A� � A0+; �' = '0 + 2eA�
which result in two primary weak constraints �+ � 0 and 
1 � (�' � '0 � 2eA�) � 0. A
secondary constraint 
2 � @�E + ae2A� � 0 is shown to emerge when we require the �
independence (persistency) of �+ � 0 employing the preliminary Hamiltonian

H 0 = Hc
lf +

Z
dx u+�

+ +

Z
dx u1
1; (12)

where u+ and u1 are the Lagrange multiplier �elds and Hc
lf is the canonical Hamiltonian

Hc
lf =

Z
dx

�
1

2
E2 + EA0+ � ae2A+A�

�
: (13)

and we assume initially the standard equal-� Poisson brackets : fE�(�; x�); A�(�; y�)g =
���� �(x� � y�), f�'(�; x�); '(�; y�)g = ��(x� � y�) etc.. The persistency requirement
for 
1 results in an equation for determining u1. The procedure is repeated with the
following extended Hamiltonian which includes in it also the secondary constraint

He
lf = Hc

lf +

Z
dx u+�

+ +

Z
dx u1
1 +

Z
dx u2
2: (14)

No more secondary constraints are seen to arise; we are left with the persistency conditions
which determine the multiplier �elds u1 and u2 while u+ remains undetermined. We also
�nd12 (C)ij = f
i;
jg = Dij (�2@x�(x � y)) where i; j = 1; 2 and D11 = 1; D22 =
ae2; D12 = D21 = �e and that �+ has vanishing brackets with 
1;2. The �

+ � 0 is �rst
class weak constraint while 
1 and 
2, which does not depend on A+ or �+, are second
class ones.

We go over from the Poisson bracket to the Dirac bracket f; gD constructed in relation
to the pair, 
1 � 0 and 
2 � 0

ff(x); g(y)gD = ff(x); g(y)g �
Z Z

dudv ff(x);
i(u)g(C�1(u; v))ijf
j(v); g(y)g: (15)

Here C�1 is the inverse of C and we �nd (C�1(x; y))ij = Bij K(x; y) with B11 = a=(a�
1), B22 = 1=[(a � 1)e2], B12 = B21= 1=[(a � 1)e]; and K(x; y) = ��(x � y)=4. Some
of the Dirac brackets are f';'gD = B11 K(x; y); f';EgD = eB11 K(x; y); fE;EgD =
ae2B11 K(x; y); f';A�gD = �B12 �(x�y)=2; fA�; EgD = B11 �(x�y)=2; fA�; A�gD =
B12@x �(x � y)=2 and the only nonvanishing one involving A+ or �+ is fA+; �

+gD =
�(x� y).

12We make the convention that the �rst variable in an equal- � bracket refers to the longitudinal

coordinate x� � x while the second one to y� � y while � is suppressed.
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The eqns. of motion employ now the Dirac brackets and inside them, in view of
their very construction [7], we may set 
1 = 0 and 
2 = 0 as strong relations. The
Hamiltonian is therefore e�ectively given by He with the terms involving the multipliers
u1 and u2 dropped. The multiplier u+ is not determined since the constraint �+ � 0
continues to be �rst class even when the above Dirac bracket is employed. The variables
�' and A� are then removed from the theory leaving behind ', E, A+, and �+ as the
remaining independent variables. The canonical Hamiltonian density reduces to Hlf

c =
E2=2 + @�(A+E) while _A+ = fA+;H

lf
e gD = u+. The surface term in the canonical LF

Hamiltonian may be ignored if, say, E(= F+�) vanishes at in�nity. The variables �+ and
A+ are then seen to describe a decoupled (from ' and E) free theory and we may hence
drop these variables as well. The e�ective LF Hamiltonian thus takes the simple form

H lf
CSM =

1

2

Z
dx E2; (16)

which is to be contrasted with the one found in the conventional treatment [21, 22]. E and
G (or E and ') are now the independent variables on the phase space and the Lagrange
equations are veri�ed to be recovered for them, which assures us of the selfconsistency
[7]. We stress that in our discussion we do not employ any gauge-�xing. The same
result for the Hamiltonian could be alternatively obtained13, however, if we did introduce
the gauge-�xing constraint A+ � 0 and made further modi�cation on f; gD in order to
implementA+ � 0; �+ � 0 as well. That it is accessible on the phase space to take care of
the remaining �rst class constraint, but not in the bosonized Lagrangian, follows from the
Hamiltons eqns. of motion. We recall [8] that in the SM ', !, and �! = (e=

p
�)
R
dxA�

were shown to be the independent operators and that the matter �eld ' appeared instead
in the LF Hamiltonian.

The canonical quantization is peformed via the correspondence iff; ggD ! [f; g] and
we �nd the following equal-� commutators

[E(x); E(y)] = iK(x; y)a2e2=(a� 1);

[G(x); E(y)] = 0;

[G(x); G(y)] = ia2e2K(x; y): (17)

For a > 1, when the tachyons are absent as seen from (6), these commutators are also
physical and the independent �eld operators E and G generate the Hilbert space with a
tensor product structure of the Fock spaces FE and FG of these �elds with the positive
de�nite metric.

We can make, in view of (12), the following LF momentum space expansions

E(x; � ) =
aep

(a� 1)
p
2�

Z 1

�1
dk

�(k)p
2k

h
d(k; � )e�ikx + dy(k; � )eikx

i
;

G(x; � ) =
aep
2�

Z 1

�1
dk

�(k)p
2k

h
g(k; � )e�ikx + gy(k; � )eikx

i
; (18)

where the operators (d; g; dy; gy) satisfy the canonical commutation relations of two inde-
pendent harmonic oscillators; the well known set of Schwinger's bosonic oscillators, often

13A similar discussion is encountered also in the LF quantized Chern-Simons-Higgs system [23].
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employed in the angular momentum theory. The expression for the Hamiltonian becomes

H lf
CSM = �(0)

a2e2

2(a� 1)

Z 1

k>0

dk

2k
Nd(k; � ) (19)

where we have dropped the in�nite zero-point energy term and note that [3]h
dy(k; � ); d(l; � )

i
= ��(k � l), dy(k; � )d(k; � ) = �(0)Nd(k; � ) etc. with similar ex-

pressions for the independent g-oscillators. We verify that [Nd(k; � ); Nd(l; � )] = 0,

[Nd(k; � ); Ng(l; � )] = 0,
h
Nd(k; � ); d

y(k; � )
i
= dy(k; � ) etc..

The Fock space can hence be built on a basis of eigenstates of the hermitian number
operators Nd and Ng. The ground state of CSM is degenerate and described by j0 >=
jE = 0) 
 jGg and it carries vanishing LF energy in agreement with the conventional

theory discusion [21, 22]. For a �xed k these states, jE = 0) 
 (gy(k; � )n=pn!)j0g, are
labelled by the integers n = 0; 1; 2; � � �. The �-vacua are absent in the CSM. However, we
recall [8] that in the SM the degenerate chiral vacua are also labelled by such integers. We
remark also that on the LF we work in the Minkowski space and that in our discussion
we do not make use of the Euclidean space theory action, where the (classical) vacuum
con�gurations of the Euclidean theory gauge �eld, belonging to the distinct topological
sectors, are useful, for example, in the functional integral quantization of the gauge theory.



{ 13 { CBPF-NF-003/99

Conclusions

The LF hyperplane is seen to be equally appropriate as the conventional one for quan-
tizing �eld theory. The front form formulation is found to be quite transparent and
the physical contents following from the quantized theory agree with those known in the
conventional instant form treatment. Evidently, they should not depend on whether we
employ the conventional or the LF coordinates to span the Minkowski space and study
the temporal evolution of the quantum dynamical system in t or � respectively.

We note that in our context the (LF) hyperplanes x� = 0 de�ne the characteristic
surfaces of hyperbolic partial di�erential equation. It is known from their mathematical
theory [12] that a solution exists if we specify the initial data on both of the hyperplanes.
From the present discussion and the earlier works [2, 8] we conclude that it is su�cient in
the front form treatment to choose one of the hyperplanes, as proposed by Dirac [1], for
canonically quantizing the theory. The equal-� commutators of the �eld operators, at a
�xed initial LF-time, form now a part of the initial data instead and we deal with operator
di�erential equations. The information on the commutators on the other characteristic
hyperplane seems to be already contained [8] in the quantized theory and need not be
speci�ed separately. As a side comment, the well accepted notion that a classical model
�eld theory must be upgraded �rst through quantization, before we confront it with the
experimental data, �nds here a theoretical re-a�rmation.

The physical Hilbert space is obtained in a direct fashion in the LF quantized CSM
and SM gauge theories, once the constraints are eliminated and the appreciably reduced
set of independent operators on the LF phase space identi�ed. CSM has in it both the
massive and the massless scalar excitations while only the massive one appears in the
SM. There are no condensate or �-vacua in CSM but they both have degenerate vacuum
structure. In the conventional treatment [18] an extended phase space is employed and
suitable constraints are required to be imposed in order to de�ne the physical Hilbert space
which would then lead to the description of the physical vacuum state. The functional
integral method together with the LF quantization may be an e�cient tool for handling
the nonperturbative calculations.

A discussion parallel to the one given here can also be made in the front form theory
of the gauge invariant formulation [22] of the CSM. In an earlier work [24], where the
BRST-BFV functional integral quantization was employed, it was demonstrated that this
formulation and the gauge noninvariant one in fact lead to the same e�ective action. Also
the BRS-BFT quantization method proposed [13] recently can be extended to the front
form theory as illustrated in the Appendix D for the CSM on the LF and where di�erent
equivalent actions are obtained following the method.

Appendix A: Poincar�e Generators on the LF

The Poincar�e generators in coordinate system (x0; x1; x2; x3), satisfy [M��; P�] =
�i(P�g�� � P�g��) and [M��;M��] = i(M��g�� +M��g�� �M��g�� �M��g��) where the
metric is g�� = diag (1;�1;�1;�1), � = (0; 1; 2; 3) and we take �0123 = ��+12 = 1. If we
de�ne Ji = �(1=2)�iklMkl and Ki =M0i, where i; j; k; l = 1; 2; 3, we �nd [Ji; Fj] = i�ijkFk
for Fl = Jl; Pl or Kl while [Ki;Kj ] = �i�ijkJk; [Ki; Pl] = �iP0gil; [Ki; P0] = iPi; and
[Ji; P0] = 0.

The LF generators are P+, P�, P1, P2, M12 = �J3, M+� = �K3, M1� = �(K1 +
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J2)=
p
2 � �B1, M2� = �(K2 � J1)=

p
2 � �B2, M1+ = �(K1 � J2)=

p
2 � �S1 and

M2+ = �(K2 + J1)=
p
2 � �S2. We �nd [B1; B2] = 0, [Ba; J3] = �i�abBb, [Ba;K3] = iBa,

[J3;K3] = 0, [S1; S2] = 0, [Sa; J3] = �i�abSb, [Sa;K3] = �iSa where a; b = 1; 2 and
�12 = ��21 = 1. Also [B1; P1] = [B2; P2] = iP+, [B1; P2] = [B2; P1] = 0, [Ba; P

�] =
iPa, [Ba; P

+] = 0, [S1; P1] = [S2; P2] = iP�, [S1; P2] = [S2; P1] = 0, [Sa; P+] = iPa,
[Sa; P�] = 0, [B1; S2] = �[B2; S2] = �iJ3, [B1; S1] = [B2; S2] = �iK3. For P� = i@�, and
M�� ! L�� = i(x�@� � x�@�) we �nd Ba = (x+P a � xaP+), Sa = (x�P a � xaP�), K3 =
(x�P+ � x+P�) and J3 = (x1P 2 � x2P 1). Under the conventional parity operation P:
( x� $ x�; x1;2 ! �x1;2) and (p� $ p�; p1;2 ! �p1;2); we �nd ~J ! ~J; ~K ! � ~K, Ba !
�Sa etc.. The six generators Pl; Mkl leave x0 = 0 hyperplane invariant and are called
kinematical while the remaining P0; M0k the dynamical ones. On the LF there are seven
kinematical generators : P+; P 1; P 2; B1; B2; J3 and K3 which leave the LF hyperplane,
x0 + x3 = 0, invariant and the three dynamical ones S1; S2 and P� form a mutually
commuting set. The K3 which was dynamical becomes now a kinematical; it generates
scale transformations of the LF components of x�, P � andM�� . We note that each of the
set fB1; B2; J3g and fS1; S2; J3g generates an E2 ' SO(2)
T2 algebra; this will be shown
below to be relevant for de�ning the spin for massless particle. IncludingK3 in each set we
�nd two subalgebras each with four elements. Some useful identities are ei!K3 P� e�i!K3 =
e�! P�; ei!K3 P? e�i!K3 = P?; ei�v: �B P� e�i�v: �B = P� + �v: �P + 1

2�v
2P+; ei�v:

�B P+ e�i�v: �B =

P+; ei�v:
�B P? e�i�v: �B = P? + v?P+; ei�u:

�S P+ e�i�u: �S = P+ + �u: �P + 1
2 �u

2P�; ei�u: �S P� e�i�u: �S =

P�; ei�u: �S P? e�i�u: �S = P? + u?P� where P? � �P = (P 1; P 2); v? � �v = (v1; v2) and
(v?:P?) � (�v: �P ) = v1P

1 + v2P
2 etc. Analogous expressions with P � replaced by X� can

be obtained if we use [P �;X� ] � [i@�; x�] = i��� .

Appendix B: LF Spin Operator. Hadrons in LF Fock Basis

The Casimir generators of the Poincar�e group are : P 2 � P �P� and W 2, where W� =
(�1=2)�����M��P � de�nes the Pauli-Lubanski pseudovector. It follows from [W�;W�] =
i�����W

�P �; [W�; P�] = 0 and W:P = 0 that in a representation charactarized by
particular eigenvalues of the two Casimir operators we may simultaneously diagonalize
P � along with just one component ofW �. We haveW+ = �[J3P++B1P

2�B2P
1];W� =

J3P
�+S1P 2�S2P 1;W 1 = K3P

2+B2P
��S2P+; andW 2 = �[K3P

1+B1P
��S1P+] and

it shows that W+ has a special place since it contains only the kinematical generators [8].
On the LF we de�ne J3 = �W+=P+ as the spin operator. It may be shown to commute
with P�; B1; B2; J3; and K3. For m 6= 0 we may use the parametrizations p� : (p� = (m2+

p?
2
)=(2p+); p+ = (m=

p
2)e!; p1 = �v1p+; p2 = �v2p+) and ~p� : (1; 1; 0; 0)(m=

p
2) in the

rest frame. We have P 2(p) = m2I and W (p)2 = W (~p)2 = �m2[J2
1 +J

2
2 +J

2
3 ] = �m2s(s+

1)I where s assumes half-integer values. Starting from the rest state j~p;m; s; �; ::i with
J3 j~p;m; s; �; ::i = � j~p;m; s; �; ::i we may build an arbitrary eigenstate of P+; P?;J3 (and
P� ) on the LF by

jp+; p?;m; s; �; ::i = ei(�v:
�B)e�i!K3j~p;m; s; �; ::i

If we make use of the following identity [2]

J3(p) = J3 + v1B2 � v2B1 = ei(�v:
�B) J3 e

�i(�v: �B)
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we �nd J3 jp+; p?;m; s; �; ::i = � jp+; p?;m; s; �; ::i. Introducing also the operators Ja =
�(J3P

a +W a)=
p
P �P�, a = 1; 2, which do, however, contain dynamical generators, we

verify that [Ji;Jj] = i�ijkJk.
For m = 0 case when p+ 6= 0 a convenient parametrization is p� : (p� =

p+v?
2
=2; p+; p1 = �v1p+; p2 = �v2p+) and ~p : (0; p+; 0?). We have W 2(~p) = �(S2

1 +

S2
2)p

+2 and [W1;W2](~p) = 0; [W+;W1](~p) = �ip+W2(~p); [W+;W2](~p) = ip+W1(~p) show-
ing that W1;W2 and W+ generate the algebra SO(2) 
 T2. The eigenvalues of W 2 are
hence not quantized and they vary continuously. This is contrary to the experience so
we impose that the physical states satisfy in addition W1;2j ~p; m = 0; ::i = 0. Hence
W� = ��P� and the invariant parameter � is taken to de�ne as the spin of the massless
particle. >From �W+(~p)=~p+ = J3 we conclude that � assumes half-integer values as well.
We note that W �W� = �2P �P� = 0 and that on the LF the de�nition of the spin operator
appears uni�ed for massless and massive particles. A parallel discussion based on p� 6= 0
may also be given.

As an illustration consider the three particle state on the LF with the total eigen-
values p+, � and p?. In the standard frame with p? = 0 it may be written
as (jx1p+; k?1 ;�1ijx2p+; k?2 ;�2ijx3p+; k?3 ;�3i ) with

P3
i=1 xi = 1,

P3
i=1 k

?
i = 0, and

� =
P3

i=1 �i. Aplying e�i(�p: �B)=p
+

on it we obtain (jx1p+; k?1 + x1p
?;�1ijx2p+; k?2 +

x2p
?;�2ijx3p+; k?3 + x3p

?;�3i ) now with p? 6= 0. The xi and k?i indicate relative (in-
variant) parameters and do not depend upon the reference frame. The xi is the fraction
of the total longitudinal momentum carried by the ith particle while k?i its transverse
momentum. The state of a pion with momentum (p+; p?), for example, may be expressed
as an expansion over the LF Fock states constituted by the di�erent number of partons
[5]

j� : p+; p?i =
X
n;�

Z
��i
dxid

2k?ip
xi 16�3

jn : xip
+; xip

? + k?i; �ii  n=�(x1; k?1; �1;x2; :::)

where the summation is over all the Fock states n and spin projections �i, with ��idxi =
�idxi �(

P
xi � 1); and ��id

2k?i = �idk
?
i �2(

P
k?i ). The wave function of the parton

 n=�(x; k
?) indicates the probability amplitude for �nding inside the pion the partons in

the Fock state n carrying the 3-momenta (xip
+; xip

?+ k?i ). The Fock state of the pion is
also o� the energy shell :

P
k�i > p�.

The discrete symmetry transformations may also be de�ned on the LF Fock states [5, 8]
For example, under the conventional parity P the spin operator J3 is not left invariant.
We may rectify this by de�ning LF Parity operation by P lf = e�i�J1P. We �nd then B1 !
�B1; B2 ! B2; P

� ! P�; P 1 ! �P 1; P 2 ! P 2 etc. such that P lf jp+; p?;m; s; �; ::i '
jp+;�p1; p2;m; s; ��; ::i. Similar considerations apply for charge conjugation and time
inversion. For example, it is straightforward to construct the free LF Dirac spinor �(p) =

[
p
2p+�++(m� apa) ��] ~�=

pp
2p+m which is also an eigenstate of J3 with eigenvalues

�1=2. Here �� = 0�=
p
2 = ��=2 = (��)y, (��)2 = ��, and �(~p) � ~� with

0 ~� = ~�. The conventional (equal-time) spinor can also be constructed by the procedure
analogous to that followed for the LF spinor and it has the well known form �con(p) =

(m+ :p)~�=
p
2m(p0 +m). Under the conventional parity operation P : �0(p0) = c0�(p)

(since we must require � = L�� S(L)�S�1(L), etc.). We �nd �0(p) = c[
p
2p��� +
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(m � apa) �+] ~�=
pp

2p�m. For p 6= ~p it is not proportional to �(p) in contrast to the
result in the case of the usual spinor where 0�con(p0;�~p) = �con(p) for E > 0 (and
0�con(p0;�~p) = ��con(p) for E < 0). However, applying parity operator twice we do
show �00(p) = c2�(p) hence leading to the usual result c2 = �1. The LF parity operator
over spin 1=2 Dirac spinor is P lf = c (2J1) 0 and the corresponding transform of � is
shown to be an eigenstate of J3.

Appendix C: SSB Mechanism. Continuum Limit of Discretized LF Quan-
tized Theory. Nonlocality of LF Hamiltonian.

In order to keep the discussion14 simple we would assume ! to be a consant background
�eld. so that L = _''0 � V (�). Dirac procedure is applied now to construct Hamiltonian
�eld theory which may be quantized. We may avoid using distribuitions if we restrict x
to a �nite interval from �R=2 to R=2 . The limit to the continuum (R!1 ), however,
must [25] be taken later to remove the spurious �nite volume e�ects. Expanding ' by
Fourier series we obtain �(�; x) � ! + '(�; x) = ! + 1p

R
q0(� ) +

1p
R

P0
n6=0 qn(� ) e�iknx

where kn = n(2�=R), n = 0;�1;�2; ::: and the discretized theory Lagrangian becomes
i
P

n kn q�n _qn�
R
dx V (�). The momenta conjugate to qn are pn = iknq�n and the canon-

ical LF Hamiltonian is found to be
R
dxV (!+'(�; x)). The primary constraints are thus

p0 � 0 and �n � pn � iknq�n � 0 for n 6= 0 . We follow the standard Dirac procedure
[5] and �nd three weak constraints p0 � 0, � � R

dxV 0(�) � 0, and �n � 0 for n 6= 0
on the phase space and they are shown to be second class. We �nd for n 6= 0 and m 6= 0:
f�n; p0g = 0, f�n;�mg = �2ikn�m+n;0, f�n; �g = fpn; �g = �(1=pR) R dx [V 00(�) �
V 00([! + q0]=

p
R) ] e�iknx � ��n=

p
R, fp0; p0g = f�; � g = 0, fp0; �g = �(1=pR)R

dx V 00(�) � ��=pR. Implement �rst the pair of constraints p0 � 0, � � 0 by
modifying the Poisson brackets to the star bracket fg� de�ned by ff; gg� = ff; gg �
[ff; p0g f�; gg � (p0 $ �)](�=

p
R)�1. We may then set p0 = 0 and � = 0 as strong

equalities. We �nd by inspection that the brackets fg� of the remaining variables coin-
cide with the standard Poisson brackets except for the ones involving q0 and pn (n 6= 0):

fq0; png� = fq0;�ng� = �(��1�n) . For example, if V (�) = (�=4) (�2 �m2=�)
2
,

� � 0;m 6= 0 we �nd fq0; png� [f 3� (! + q0=
p
R)2 �m2 gR + 6�(! + q0=

p
R)
R
dx' +

3�
R
dx'2 ] = � 3� [ 2(! + q0=

p
R)
p
Rq�n +

R
dx'2 e�iknx ].

Implement next the constraints �n � 0 with n 6= 0. We have Cnm = f�n;�mg�
= �2ikn�n+m;0 and its inverse is given by C�1nm = (1=2ikn)�n+m;0. The Dirac bracket
which takes care of all the constraints is then given by

ff; ggD = ff; gg� �
X0

n

1

2ikn
ff; �ng� f��n; gg�

where we may now in addition write pn = iknq�n . It is easily shown that fq0; q0gD =
0; fq0; pngD = fq0; iknq�ngD = 1

2
fq0; png�; fqn; pmgD = 1

2
�nm.

The limit to the continuum, R ! 1 is taken as usual: � = 2(�=R) ! dk,

kn = n� ! k,
p
Rq�n ! limR!1

R R=2
�R=2 dx'(x) e

iknx � R1
�1 dx'(x) eikx =

p
2� ~'(k)

for all n,
p
2�'(x) =

R1
�1 dk ~'(k)e�ikx, and (q0=

p
R)! 0. >From fpR qm;

p
R q�ngD =

R �nm=(2ikn) following from fqn; pmgD for n;m 6= 0 we derive, on using R�nm !
14see [15] and Nuovo Cimento A108 (1995) 35.
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R1
�1 dxe

i(k�k0)x = 2��(k � k0), that f ~'(k); ~'(�k0)gD = �(k � k0)=(2ik) where k; k0 6= 0.
If we use the integral representation of the sgn function the well known LF Dirac bracket
f'(x; � ); '(y; � )gD = �1

4
�(x� y) is obtained. The expressions of fq0; pngD (or fq0; '0gD)

show that the DLCQ is harder to work with here15. The continuum limit of the constraint
eq. � = 0 is

!(�!2 �m2) + limR!1
1

R

Z R=2

�R=2
dx
h
(3�!2 �m2)'+ �(3!'2 + '3)

i
= 0

while that for the LF Hamiltonian

P� =

Z
dx
h
!(�!2 �m2)'+

1

2
(3�!2 �m2)'2 + �!'3 +

�

4
'4
i

These results follow immediately if we worked directly in the continuum formulation; we
do have to handle generalized functions now. In the LF Hamiltonian theory we have an
additional new ingredient in the form of the constraint equation. Elimination of ! using it
would lead to a nonlocal LF Hamiltonian corresponding to the local one in the equal-time
formulation. At the tree or classical level the integrals appearing in in the constraint
eq. are convergent and when R ! 1 it leads to V 0(!) = 0. In equal-time theory this
is essentially added to it as an external constraint based on physical considerations. In
the renormalized theory [15] the constraint equation describes the high order quantum
corrections to the tree level value of the condensate.

The quantization is performed via the correspondence iff; ggD ! [f; g]. Hence

'(x; � ) = (1=
p
2�)

R
dk �(k) [a(k; � ) e�ikx+ay(k; � )eikx]=(

p
2k), were a(k; � ) and ay(k; � )

satisfy the canonical equal-� commutation relations, [a(k; � ); a(k0; � )y] = �(k � k0) etc..
The vacuum state is de�ned by a(k; � )jvaci = 0 , k > 0 and the tree level description of
the SSB is given as follows. The values of ! = hj�jivac obtained from V 0(!) = 0 the
di�erent vacua in the theory. Distinct Fock spaces corresponding to di�erent values of !
are built as usual by applying the creation operators on the corresponding vacuum state.
The ! = 0 corresponds to a symmetric phase since the Hamiltonian is then symmetric
under ' ! �'. For ! 6= 0 this symmetry is violated and the system is in a broken or
asymmetric phase.

The extension to 3 + 1 dimensions and to global continuous symmetry is straight-
forward16. Consider real scalar �elds �a(a = 1; 2; ::N) which form an isovector of
global internal symmetry group O(N). We now write �a(x; x?; � ) = !a + 'a(x; x?; � )
and the Lagrangian density is L = [ _'a'0a � (1=2)(@i'a)(@i'a) � V (�)], where i = 1; 2
indicate the transverse space directions. The Taylor series expansion of the con-
straint equations �a = 0 gives a set of coupled equations RV 0a(!) + V 00ab(!)

R
dx'b +

V 000
abc(!)

R
dx'b'c=2+ ::: = 0. Its discussion at the tree level leads to the conventional the-

ory results. The LF symmetry generators are found to be G�(� ) = �i R d2x?dx'0c(t�)cd'd
=

R
d2k? dk �(k) ac(k; k?)y(t�)cdad(k; k?) where �; � = 1; 2; ::; N(N � 1)=2 , are the

group indices, t� are hermitian and antisymmetric generators of O(N), and ac(k; k
?)y

15However, we do require it if we use numerical computations on the computer.

16Nuovo Cimento A107 (1994) 549 and ref. [2, 15]
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(ac(k; k?)) is creation ( destruction) operator contained in the momentum space expan-
sion of 'c. These are to be contrasted with the generators in the equal-time theory,
Q�(x0) =

R
d3xJ0 = �i R d3x(@0'a)(t�)ab'b � i(t�!)a

R
d3x(d'a=dx0). All the symmetry

generators thus annihilate the LF vacuum and the SSB is now seen in the broken sym-
metry of the quantized theory Hamiltonian. The criteria for the counting of the number
of Goldstone bosons on the LF is found to be the same as in the conventional theory. In
contrast, the �rst term on the right hand side of Q�(x0) does annihilate the conventional
theory vacuum but the second term gives now non-vanishing contributions for some of
the (broken) generators. The symmetry of the conventional theory vacuum is thereby
broken while the quantum Hamiltonian remains invariant. The physical content of SSB
in the instant form and the front form, however, is the same though achieved by di�erent
descriptions. Alternative proofs on the LF, in two dimensions, can be given of the Cole-
man's theorem related to the absence of Goldstone bosons; we are unable to implement
the second class constraints over the phase space.

Appendix D: BRS-BFT Quantization on the LF of the CSM17

Recently, it was shown [8] that the well known condensate or �-vacua in the SM
could be obtained by a straightforward quantization of the theory on the light-front (LF).
The procedure adopted was the one proposed earlier in connection with the front form
description of the SSB as described earlier in these lectures. The scalar �eld of the
equivalent bosonized SM is separated, based on physical considerations, into the dynamical
bosonic condensate and the quantum uctuation �elds. The Dirac procedure is then
followed in order to construct the Hamiltonian formulation and the quantized theory. The
�-vacua were shown [8] to come out naturally along with their continuum normalization.
It is then rather important to understand as to how and why the vacuum structure in
the LF quantized CSM should come out to be quite di�erent; as is known from the
rather elaborate studies on CSM in the conventional framework. We could work with the
standard Dirac method but the recently proposed BFT procedure which is elegant and
avoids the computation of Dirac brackets. It would thus get tested on the LF as well and
it also allows for constructing (new) e�ective Lagrangian theories.

We convert the two second class constraints of the bosonized CSM with a > 1 into
�rst class constraints according to the BFT formalism. We obtain then the �rst class
Hamiltonian from the canonical Hamiltonian and recover the DB using Poisson brackets
in the extended phase space. The corresponding �rst class Lagrangian is then found by
performing the momentum integrations in the generating functional.

(a) Conversion to First Class Constrained Dynamical System

The bosonized CSM model (for a > 1) is described by the action

SCSM =

Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

�
; (20)

17Contribuited paper LP-002, Session P 17, International Symposium on Lepton-Photon Interactions-

LP'97, Desy, Hamburg, July 1997 (available as .ps �le on the Desy database). Presented in a talk given
at the 8th Workshop on Light-Cone QCD and Nonperturbative Hadronic Physics, Lutsen, Minnesota,

August 1997.
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where a is a regularization ambiguity which enters when we calculate the fermionic de-
terminant in the fermionic CSM. The action in the LF coordinates takes the form

SCSM =

Z
d2x�

�
1

2
(@+A� � @�A+)

2 + @��@+�+ 2eA�@+�+ ae2A+A�

�
; (21)

We now make the separation, in the scalar �eld (a generalized function) : �(�; x�) =
!(� ) + '(�; x�). The Lagrangian density then becomes

L =
1

2
(@+A� � @�A+)

2 + @�'@+'+ ae2[A+ +
2

ae
(@+'+ @+!)]A�; (22)

We note that the dynamical �elds are A� and ' while A+ has no kinetic term. On making
a rede�nition of the (auxiliary) �eld A+ we can recast the action on the LF in the following
form

SCSM =

Z
dx�

�
_''0 +

1

2
( _A� �A+

0)2 � 2e _A�'+ ae2A+A�

�
; (23)

The canonical momenta are given by

�+ = 0;

�� = _A� � A0+ � 2e';

�' = '0: (24)

We follow now the Dirac's standard procedure in order to build an Hamiltonian framework
on the LF. The de�nition of the canonical momenta leads to two primary constraints

�+ � 0; (25)


1 � (�' � '0) � 0 (26)

and we derive one secondary constraint


2 � @��
� ++2e'0 + ae2A� � 0: (27)

This one follows when we require the � independence (e.g., the persistency) of the primary
constraint �+ with respect to the preliminary Hamiltonian

H 0 = Hc
l:f: +

Z
dx u+�

+ +

Z
dx u1
1; (28)

where Hc is the canonical Hamiltonian

Hc
l:f: =

Z
dx

�
1

2
(�� + 2e')2 + (�� + 2e')A0+ � ae2A+A�

�
; (29)

and we employ the standard equal-� Poisson brackets. The u+ and u1 denote the Lagrange
multiplier �elds. The persistency requirement for 
1 give conditions to determine u1. The
Hamiltonian is next extended to include also the secondary constraint

He
l:f: = Hc

l:f: +

Z
dx u+�

+ +

Z
dx u1
1 +

Z
dx u2
2 (30)
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and the procedure is now repeated with respect to the extended Hamiltonian. For the
case a > 1, no more secondary constraints are seen to arise and we are left only with
the persistency conditions which determine the multipliers u1 and u2 while u+ is left
undetermined. We also �nd18 f
i;
jg = Dij (�2@x�(x � y)) where i; j = 1; 2 and
D11 = 1; D22 = ae2; D12 = D21 = �e and �+ is shown to have vanishing brackets
with 
1;2. The �+ � 0 constitutes a �rst class constraint on the phase space; it generates
local transformations of A+ which leave the He invariant, f�+;Heg = 
2 � 0. The

1;
2 constitute a set of second class constraints and do not involve A+ or �+. It is
very convenient, though not necessary, to add to the set of constraints on the phase space
the (accessible) gauge �xing constraint A+ � 0. It is evident from that such a gauge
freedom is not available at the Lagrangian level. We will also implement (e.g., turn into
strong equalities) the (trivial) pair of weak constraints A+ � 0; �+ � 0 by de�ning
the Dirac brackets with respect to them. It is easy to see that for the other remaining
dynamical variables the corresponding Dirac brackets coincide with the standard Poisson
brackets. The variables A+; �

+ are thus removed from the discussion, leaving behind
a constrained dynamical system with the two second class constraints 
1; 
2 and the
light-front Hamiltonian

H l:f: =
1

2

Z
dx (�� + 2e')2 +

Z
dx u1
1 +

Z
dx u2
2 (31)

which will be now handled by the BFT procedure.
We introduce the following linear combinations >i, i = 1; 2, of the above constraints

>1 = c1(
1 +
1

M

2)

>2 = c2(
1 � 1

M

2) (32)

where c1 = 1=
p
2(1 � e=M), c2 = 1=

p
2(1 + e=M), M2 = ae2, and a > 1. They satisfy

f>i;>jg = �ij(�2@x�(x� y)) (33)

and thus diagonalize the constraint algebra.
We now introduce new auxiliary �elds �i in order to convert the second class constraint

>i into �rst class ones in the extended phase space. Following BFT [13] we require these
�elds to satisfy

fA�(or ��);�
ig = 0; f'(or �');�ig = 0; (34)

f�i(x);�j(y)g = !ij(x; y) = �!ji(y; x);
where !ij is a constant and antisymmetric matrix. The strongly involutive modi�ed

constraints e>i satisfying the abelian algebra

fe>i; e>jg = 0 (35)

18We make the convention that the �rst variable in an equal- � bracket refers to the longitudinal

coordinate x� � x while the second one to y� � y
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as well as the boundary conditions, e>i j�i=0= >i are then postulated to take the form of
the following expansion

e>i(A
�; ��; '; �'; �

j) = >i +
1X
n=1

e>(n)
i ; >(n)

i � (�j)n: (36)

The �rst order correction terms in this in�nite series are written as

e>(1)
i (x) =

Z
dyXij(x; y)�

j(y): (37)

The �rst class constraint algebra of e>i then leads to the following condition:

f>i;>jg+ fe>(1)
i ; e>(1)

i g = 0 (38)

or

(�2@x�(x� y))�ij +

Z
dw dz Xik(x;w)!

kl(w; z)Xjl(y; z) = 0: (39)

There is clearly some arbritrariness in the appropriate choice of !ij and Xij which corre-
sponds to the canonical transformation in the extended phase space. We can take without
any loss of generality the simple solutions,

!ij(x; y) = ��ij�(x� y)

Xij(x; y) = �ij@x�(x� y); (40)

Their inverses are easily shown to be

!�1ij(x; y) = �1

2
�ij@x�(x� y)

(X�1)ij(x; y) =
1

2
�ij�(x� y); (41)

With the above choice, we �nd up to the �rst order

e>i = >i + e>(1)
i (42)

= >i + @�i;

and a strongly �rst class constraint algebra

f>i + e>(1)
i ;>j + e>(1)

j g = 0: (43)

The higher order correction terms (suppressing the integration operation )

e>(n+1)
i = � 1

n+ 2
�l!�1lk(X

�1)kjB(n)
ji (n � 1) (44)

with

B
(n)
ji �

nX
m=0

fe>(n�m)
j ; e>(m)

i g(A;�;';�') +
n�2X
m=0

fe>(n�m)
j ; e>(m+2)

i g(�) (45)
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automatically vanish as a consequence of the proper choice of !ij made above. The
Poisson brackets are to be computed here using the standard canonical de�nition for A�

and ' as postulated above. We have now only the �rst class constraints in the extended

phase space and in view of the proper choice only e>(1)
i contributes in the in�nite series

above.

(b)- First Class Hamiltonian and Dirac Brackets

We next introduce modi�ed ("gauge invariant") dynamical variables eF �
( eA�; e��; e';e�') corresponding to F � (A�; �

�; '; �') over the phase space by requiring

the the following strong involution condition for eF with the �rst class constraints in our
extended phase space, viz,

fe>i; eFg = 0 (46)

with

eF (A�; �
�; '; �'; �

j) = F +
1X
n=1

eF (n); eF (n) � (�j)n (47)

and which satisfy the boundary conditions, eF j�i=0= F .
The �rst order correction terms are easily shown to be given by

eF (1)(x) = �
Z

du dv dz �j(u)!�1jk(u; v)X�1kl(v; z) f>l(z); F (x)g(A;�;';�'): (48)

We �nd

eA(1)
� =

1

2M
@(c1�

1 � c2�
2)

e��(1) =
M

2
(c1�

1 � c2�
2)

e'(1) = �1

2
(c1�

1 + c2�
2);

e�(1)' =
1

2
@

�
c1(1� 2e

M
)�1 + c2(1 +

2e

M
)�2

�
(49)

where only the combinations (c1�1 � c2�2) of the auxiliary �elds are seen to occur. Fur-

thermore, since the modi�ed variables eF = F + eF (1)+ :::, up to the �rst order corrections,
are found to be strongly involutive as a consequence of the proper choice made above, the
higher order correction terms

eF (n+1) = � 1

n+ 1
�j!jkX

klG
(n)
l ; (50)

with

G
(n)
l =

nX
m=0

f>(n�m)
i ; eF (m)g(A;�;�;��) +

n�2X
m=0

f>(n�m)
i ; eF (m+2)g(�) + f>(n+1)

i ; eF (1)g(�)

(51)
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again vanish. In principle we may follow similar procedure for any functional of the phase
space variables; it may get, however, involved.

We make a side remark on the Dirac formulation for dealing with the systems with
second class constraints by using the Dirac bracket (DB), rather than extending the phase

space. In fact, the Poisson brackets of the modi�ed (gauge invariant) variables eF in the
BFT formalism are related [13] to the DB, which implement the constraints >i � 0 in

the problem under discussion, by the relation ff; ggD = f ef;egg j�i=0. In view of only the
linear �rst order correction in CSM the computation of the right hand side is quite simple.
We list some of the Dirac brackets

f��; ��gD = ff��;f��gj�=0
= ff��(1);f��(1)g = a2e2

(a� 1)
(�1

4
�(x� y));

f';'gD = fe'; e'gj�=0
= fe'(1); e'(1)g = a

(a� 1)
(�1

4
�(x� y))

f'; ��gD = fe'(1);f��(1)g = ae

(a� 1)
(�1

4
�(x� y)): (52)

The other ones follow on using the now strong relations 
1 = 
2 = 0 with respect to f; gD
and from H l:f it follows that the LF Hamiltonian reduces e�ectively to

H l:f:
D =

1

2

Z
dx (�� + 2e')2: (53)

The �rst class LF Hamiltonian eH which satis�es the boundary condition eH j�i=0= H l:f:
D

and is in strong involution with the constraints e>i , e.g., fe>i; eHg = 0, may be constructed
following the BT procedure or simply guessed for the CSM. It is given by

eH =
1

2

Z
dx(e�� + 2ee')2 (54)

which is just the expression in of H l:f:
D with �eld variables F replaced by the eF variables,

which already commute with the constraints eTi. We do also check that f eH; eHg = 0 and

we may identify eH with the BRS Hamiltonian. This completes the operatorial conversion
of the original second class system with the Hamiltonian Hc and constraints 
i into the

�rst class one with the Hamiltonian eH and (abelian) constraints eTi.
(c)- First Class Lagrangian

We consider now the partition function of the model in order to construct the La-

grangian corresonding to eH in the canonical Hamiltonian formulation discussed above.
We start by representing each of the auxiliary �eld �i by a pair of �elds �i; �i; i = 1; 2

de�ned by

�i =
1

2
�i �

Z
du �(x� u) �i(u) (55)
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such that �i; �i satisfy
f�i; �jg = ��ij�(x� y) etc:; (56)

e.g., the (standard Heisenberg type) canonical Poisson brackets.
The phase space partition function is given By the Faddeev formulae

Z =

Z
DA�D��D'D�'D�1D�1D�2D�2

2Y
i;j=1

�(e>i)�(�j)det j fe>i;�jg j eiS; (57)

where

S =

Z
d2x

�
�� _A� + �' _'+ �1 _�1 + �2 _�2 � eH� � Z d2x L; (58)

with the Hamiltonian density eH corresponding to the Hamiltonian eH which is now ex-
pressed in terms of (�i; �i) rather than in terms of �i. The gauge-�xing conditions �i are
chosen such that the determinants occurring in the functional measure are nonvanishing.
Moreover, �i may be taken to be independent of the momenta so that they correspond to
the Faddeev-Popov type gauge conditions.

We will now verify in the unitary gauge, de�ned by the original second class constraints:
�i � 
i = 0, i=1,2 being employed in the partition function, do in fact lead to the original
Lagrangian. We check that the determinants in the functional measure are non-vanishing
and �eld independent while the product of delta functionals reduces to

�(�' � '0)�(��
0
+ 2e'0 +M2A�)�(�

10 � 4�1)�(�2
0 � 4�2) (59)

Since �' is absent from eH we can perform functional integration over it using the �rst
delta functional. The second delta functional is exponentiated as usual and we name
the integration variable as A+ for convenience. The functional integral over �1 and �2

are easily performed due to the presence of the delta functionals and it also reduces eH
to (�� + 2e')2=2. The functional integrations over the then decoupled variables �1 and
�2 give rise to constant factors which are absorbed in the normalization. The partition
function in the unitary gauge thus becomes

Z =

Z
DA�D��D'DA+e

iS; (60)

with

S =

Z
d2x

�
�� _A� + '0 _'+ (��

0
+ 2e'0 +M2A�)A+ � 1

2
(�� + 2e')2

�
; (61)

Performing the shift �� ! ��� 2e' and doing subsequently a Gaussian integral over ��

we obtain the original bosonized Lagrangian with ! eliminated by the �eld rede�nition
of A+. It is interesting to recall that while constructing the LF Hamiltonian framework
we eliminated the variable A+ making use of the gauge freedom on the LF phase space
and it gave rise to appreciable simpli�cation. However, on going over to the �rst class
Lagrangian formalism using the partition functional this variable reappears as it should,
since the initial bosonized action is not gauge invariant due to the presence of the mass
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term for the gauge �eld. Making other acceptable choices for gauge-functions we can arrive
at di�erent e�ective Lagrangians for the system under consideration. It is interesting to
recall that in the fermionic Lagrangian the right-handed component of the fermionic �eld
describes a free �eld and only the left-handed one is gauged. �eld while only the left
component is gauged. It is also clear from our discussion that eH proposed above is not
unique and we could modify it so that it still lead to the original Lagrangian in the
unitary gauge. The corresponding �rst class Lagrangian would produce still other gauge-
�xed e�ective Lagrangians. It will be interesting to study the models on the LF with more
avours and accompanying non-abelian gauge symmetry using the BFT-BFV formalism.
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