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Abstract

We study Levi-Civita metric for values of its � parameter in the range 0 �

� < 1. We show that the value � = 1=2 makes the axial and angular coordinates

switch meaning. We present its geodesics and a physical source satisfying the energy

conditions for all the range of �. This source allows us to obtain an energy per unit

length which agrees with the behaviour of the geodesics and the fact that the solution

has no event horizon.



{ 1 { CBPF-NF-003/01

1 Introduction

The cylindrically symmetric static vacuum solution of Einstein's �eld equations was ob-

tained by Levi-Civita (LC) [1] in 1919. Ever since much was written by researchers trying

to grasp its physical and geometrical interpretations. But this endeavour proved to be

di�cult and uncertain. Only in 1958 Marder [2] established that the solution contains

two arbitrary independent parameters usually called � and a. Understanding the ori-

gin, geometry and physics that lies behind these two parameters is the big challenge to

understand the solution.

For small values of �, as noticed by LC himself, the corresponding Newtonian �eld

is the external gravitational �eld produced by an in�nitely long homogeneous line mass,

with � representing the mass per unit length.

In this approximation the parameter a is also associated to the constant arbitrary

potential that exists in the Newtonian solution. In 1979 Bonnor [3] pointed out that a is

also dressed with a relevant global topological meaning, and cannot be removed by scale

transformations.

There is a series of obstacles and apparently contradictory properties of � to allow

possible interpretations (see a discussion in [4]). In this article we present some results

concerning � that suggest certain interpretations but, we are aware, collide with other

results. In section 2 we study the nature of the coordinates LC solution related to the

range of di�erent values of � between 0 and 1. Circular geodesics are studied in this

same range for � in section 3. A cylindrical shell source of anisotropic uid is matched to

LC solution with 0 � � <1 satisfying the energy conditions in section 4. The de�nition

of energy per unit length is studied in section 5 for the shell source and compared to the

properties of the geodesics studied in section 3. We end the article with a short conclusion.

2 The Levi-Civita metric

The general static cylindrically symmetric vacuum spacetime satisfying Einstein's �eld

equations is given by Levi-Civita (LC) metric [1], which we write in the form

ds2 = %4�dt2 � %4�(2��1)
�
d%2 +

1

a2m
dm2

�
� 1

a2n
%2(1�2�)dn2; (1)

where �1 < t <1 is the time and 0 � % <1 the radial coordinates, and �, am and
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an are constants. This spacetime clearly has the Killing vectors ��(t) = ��t , �
�
(m) = ��m and

��(n) = ��n.

The nature of the coordinates m and n, so far unspeci�ed, depends upon the be-

haviour of the metric coe�cients. Either am or an can be transformed away by a scale

transformation depending upon the behaviour of the coordinates m and n, thus leaving

the metric with only two independent parameters.

In order to �nd that behaviour in a comprehensive way, we �rst transform the radius

% into a proper radius r by de�ning

%2�(2��1)d% = dr; (2)

so obtaining

% = R1=�; R = �r; � = 4�2 � 2� + 1; (3)

the metric (1) then becomes

ds2 = f(r)dt2 � dr2 � h(r)dm2 � l(r)dn2; (4)

with

f(r) = R4�=�; h(r) =
1

a2m
R4�(2��1)=�; l(r) =

1

a2n
R2(1�2�)=�: (5)

When � = 0 we have � = 1 and considering am = an = 1, then (4) becomes

ds2 = dt2 � dr2 � dm2 � r2dn2; (6)

corresponding to a at four-geometry; by inspection we interprete m as an axial z

coordinate, and n as an azimuthal � coordinate, and write

ds2 = dt2 � dr2 � dz2 � r2d�2: (7)

It is customary to assume that � ranges from 0 to 2�, and topologically identify these

two extremes; in so doing, the picture of a cartesian two-dimensional plane naturally

follows, in surfaces where t and z are constants. Equivalently, one may assume that �

ranges from �1 to1, together with the topological identi�cation of every � with �+2�.

However, sometimes a two-dimensional at conical structure with t and z constants

appears more suitable to represent the physical situation, and some modi�cation of the

previous assumptions is demanded.
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One could simply maintain (7) as the line element, with the fact that � now ranges

from 0 to 2� sin�, where � is the half-angle of the cone, together with the topological

identi�cation of 0 and 2� sin�.

However, the most common strategy in these cases is to set g�� = �r2 sin2�d�2, while
maintaining � going from 0 to 2� with the topological identi�cation of 0 and 2� as before.

In this paper we often deal with two-dimensional surfaces t and z constants, endowed

with rotational symmetry ��(�), but with radially varying gaussian curvature.

In all circumstances we shall follow the convention that �1 < � < 1 with the

equivalence � � �+ 2�. Concerning the variable z in (7), the most common assumption

is that it goes from �1 to 1 and that points with di�erent z are always di�erent;

however, this last statement is an unnecessary topological limitation, since the topological

identi�cation of any z with z+ � is admissible without destroying the atness of the four-

space.

Assuming z � z + � promotes compacti�cation of the space in the z direction (for �

�nite and nonzero), an occasionally desirable operation.

Before proceeding, a few words seemworthwhile concerning the cylindrical coordinates

(r; z; �) in a curved three-space with cylindrical symmetry.

We consider the line element

dl2 = dr2 + h(r)dm2 + l(r)dn2; (8)

which clearly has the commuting vector �elds ��(m) and ��(n); certainly r is the radial

coordinate, but which of the coordinates m and n is the angular � and which is the axial

z? By analogy with the at case (where g�� = r2 and gzz = 1), it seems appropriate to

call angular that coordinate whose metric coe�cient vanishes at r = 0, and call axial the

other coordinate when the corresponding metric coe�cient does not vanish at r = 0.

We now return to the line element given by (4) and (5), and consider 0 < � < 1=2.

For this range of � we always have h(r) diverging when r ! 0, and always l(0) = 0; we

then visualize m as the axial coordinate z, and n as the angular coordinate �:

ds2 = R4�=�dt2 � dr2 �R�4�(1�2�)=�dz2 � 1

a2
R2(1�2�)=�d�2; (9)

with possible topological identi�cations in z and �. When � = 1=2 the two metric

coe�cients h and l in (5) are constant, unitary. Then neither m nor n is entitled to be an
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angular coordinate, and the three coordinates (r;m; n) are better visualized as cartesian

coordinates (x; y; z). We have, e.g., the Rindler at spacetime [5], whose t=const sections

have planar symmetry:

ds2 = z2dt2 � dx2 � dy2 � dz2; (10)

with possible topological identi�cations in the coordinates x and y. We next consider

1=2 < � <1; in this range of � we always have h(0) = 0 and l(r) diverging when r ! 0;

so we now interprete m as an angular coordinate �, and n as an axial coordinate z:

ds2 = R4�=�dt2 � dr2 �R�2(2��1)=�dz2 � 1

a2
R4�(2��1)=�d�2; (11)

with possible topological identi�cations in z and �, and where we replaced am for a.

The Kretschmann scalar R = R���R
��� for the metric (4) is [6]

R =
64�2(2� � 1)2

�3r4
; (12)

from (12) we see that the spacetime (4) is locally at only for � = 0; 1=2 and 1. In

section 3 we match (9) and (11) to a cylindrical anisotropic shell of matter.

The interior of the shell cylinder is assumed to be Minkowski spacetime, hence there

the coordinates have a well de�ned meaning. The matching condition, of the continuity

of the metrics, relates the respective metric coe�cients for each coordinate, in particular

gzz and g��, thus giving a further support to the coordinates chosen in (9) and (11).

3 Circular geodesics

For the circular geodesics [7] we have _r = _z = 0 and g��;r _�2 + gtt;r _t2 = 0 where the dot

stands for di�erentiation with respect to s. The angular velocity ! of a particle moving

along a geodesics is ! = _�= _t and its tangential velocity W � is given by W � = !=
p
gtt

which is the only non null component.

In the case 0 � � < 1=2, from (9) we obtain

!2 =
2�

1� 2�
a2R2(4��1)=�; (13)

W 2 =
2�

1� 2�
; (14)
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and, in the case 1=2 < � <1, from (11) we have

!2 =
1

2� � 1
a2R8�(1��)=�; (15)

W 2 =
1

2� � 1
: (16)

It is worthwhile noting that for a given system (i.e. a �xed �) the squared velocity

W 2 is the same for all circular geodesics, in agreement with the corresponding Newtonian

gravitation. We see from (14) that W monotonically increases with �, that is from � = 0

producing W = 0, to � = 1=4 attaining W = 1 (the speed of light), and �nally � = 1=2

producing geodesics with W =1. With � increasing beyond 1/2, we note from (16) that

W diminishes, attaining W = 1 for � = 1 and W = 0 for � =1.

In other words, the circular geodesics are timelike when either 0 < � < 1=4 or � > 1,

are lightlike when � = 1=4 or � = 1, and are spacelike when 1=4 < � < 1.

These facts suggest that, while � increases from zero to 1=2, the e�ective energy

density per unit length, �, of the line source that produces the spacetime (9) increases

too. So that for a test particle to remain in a circular motion its velocity has to increase

in order to make a balance between the attracting gravitational force, that increases with

�, and the centrifugal force, that increases with W .

On the other hand, when � further increases from 1/2 to 1 in the spacetime (11), it

appears that the e�ective energy per unit length monotonically decreases to zero value.

4 Matching LC spacetime to a cylindrical shell source

Here we follow the same procedure as in [6]. We consider an in�nitely thin cylindrical

shell of anisotropic uid matter with a �nite radius and we match it to the exterior LC

spacetime given by either (9) or (11). For simplicity we shall assume that the source is

static.

For the interior of the shell cylinder we assume Minkowski spacetime, since it is the

only static spacetime deprived of energy density [8].

In order to do the matching we require the continuity of the metric coe�cients across

the shell [9], allowing us to obtain the most general anisotropic shell uid source.
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Using the same coordinate system as in (9) or (11), we have for the interior 0 � r < r0

of the shell cylinder with radius r = r0 the Minkowski spacetime,

ds2� = dt2 � dr2 � dz2 � r2d�2: (17)

Indices � and + refer to interior and exterior spacetimes, respectively. In order to

have the general matching at r = r0 satis�ed for the exterior LC metric, we make a

reparametrization of t and z like

t! t

A
; z ! z

B
; (18)

where A and B are constants. Then (9) with (18) becomes, for 0 � � � 1=2,

ds2+ =
1

A2
R4�=�dt2 � dr2 � 1

B2
R4�(2��1)=�dz2 � 1

a2
R2(1�2�)=�d�2; (19)

and (11) with (18), for 1=2 � � <1,

ds2+ =
1

A2
R4�=�dt2 � dr2 � 1

B2
R2(1�2�)=�dz2 � 1

a2
R4�(2��1)=�d�2: (20)

Then, considering the junction condition [9]

g+�� jr0= g��� jr0 ; (21)

we obtain from (17) and (19), for 0 � � � 1=2,

A = R
2�=�
0 ; B = R

2�(2��1)=�
0 ; ar0 = R

(1�2�)=�
0 ; (22)

where R0 = �r0; and from (17) and (20), for 1=2 � � <1,

A = R
2�=�
0 ; B = R

(1�2�)=�
0 ; ar0 = R

2�(2��1)=�
0 : (23)

Taub has shown [9] that if (21) is satis�ed then the �rst derivatives of the metric are in

general discontinuous across r = r0, giving rise to a shell of matter. Following him,

g+��;� jr0 �g���;� jr0= n�b�� ; (24)

where n� is the normal to the hypersurface r = r0, directed outwards, giving n� = �r�.

From (24) we calculate b�� and obtain the energy momentum tensor T�� of the shell,

which is given by

T�� = ����(r � r0); (25)
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where

��� =
1

16�
[b(ng�� � n�n�) + n�(n�b

�
� + n�b

�
�)� nb�� � n�n�b

��g�� ]; (26)

and where �(r� r0) denotes the Dirac delta function, n = n�n
�, and b = b��. Considering

(17) and (19) we obtain from (24) the nonvanishing components of b�� for 0 � � � 1=2,

b�� =
4�

R0
diag(1; 0; 1 � 2�; 2�r20); (27)

where the order of the coordinates is (t; r; z; �); and from (17), (20), and (24) we �nd for

1=2 � � <1
b�� =

2

R0
diag(2�; 0; 2� � 1; r20): (28)

With (27) and (28) substituting into (26) we can write the shell energy momentum

ancillary tensor as

��� = diag(�; 0; pz; r
2
0p�); (29)

where � is the energy density and pz and p� are the pressures in the z and � directions

respectively.

For 0 � � � 1=2 these quantities measure

� =
�

4�R0
; pz =

�(1� 2�)

4�R0
; p� =

�2

2�R0
; (30)

while for 1=2 � � <1 they are

� =
�

4�R0
; pz =

2� � 1

8�R0
; p� =

1

8�R0
: (31)

It can easily be shown that the anisotropic uids described by (30) and (31) satisfy

the weak, strong and dominant energy conditions [10].

5 The energy per unit length of the shell

In the Newtonian limit of the LC spacetime � can be interpreted as the energy per unit

length of the source. Considering Israel's de�nition of energy density per unit length [11]

we obtain, for both (30) and (31),

� =

Z 1

0

Z 2�

0

(� + pz + p�)�(r� r0)
p�gdrd� =

�

�
; (32)

where g is the determinant of the metric. From (32) we see that for small � we have

� � �, which is consistent with the Newtonian limit.
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As � increases � increases too, reaching a maximum at �max = � = 1=2; then � starts

diminishing with further increase of �, becoming � = 0 for � !1.

These results are consistent with (14) and (16), showing that the tangential speed

steadily increases with � and � up to a maximumW !1 at � = �max = 1=2, and then

decreases with increasing � and decreasing � up to W = 0, when also � = 0.

Furthermore, when W = 1 the circular geodesics are null. From (14) and (16) we can

see that this corresponds to � = 1=4 and � = 1, for which we have �(1=4) = �(1) = 1=3.

These properties between � and W can be seen too from the expression of � in terms of

W which is, for � < 1=2, from (14), as well as for � > 1=2, from (16),

� =
W 2(1 +W 2)

2(1 +W 2 +W 4)
: (33)

It is worth noticing that the relations above between !, � and � are consistent with

the behaviour of a gyrosocope moving along a circular path (not necessarily a geodesic)

with angular velocity !.

Indeed, using the Rindler-Perlick method [12], it is not di�cult to �nd the rate of

precession 
 of such gyroscope for the line element (4),


 =
!(l0f � lf 0)

2
p
fl(f � !2l)

; (34)

where l = g�� and ! is any angular velocity of the gyroscope around the line source.

For 0 � � � 1=2 we have from (9),


 =
a!(1� 4�)R�2�(1+2�)=�

a2 � !2R2(1�4�)=�
; (35)

whereas for 1=2 � � <1 we have from (11),


 =
4a!�(� � 1)R�(1+2�)=�

a2 � !2R8�(��1)=�
: (36)

Thus we see that the gyroscope is locked at the lattice, 
 = 0, for � = 1=4 and

1 respectively, as expected for null paths [12], and both values of � produce from (32)

�(1=4) = �(1) = 1=3.

Also, for � = 0 we obtain the Thomas precession (modi�ed by the e�ect of a)


 =
a!

a2 � !2r2
; (37)

and similarly for � � 1,


 � a~!

a2 � ~!2r2
; (38)
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where ~! = 4!�2.

However, for � = 1=2 the situation is not so clear (see [4] and the discussion below).

Also observe that � has only one maximum at � = 1=2 , and the maximum is �nite,

with the value = 1=2. Then, since in cylindrical sources no black holes are formed, one

might conclude that the minimum mass per unit length to form a black hole satis�es the

constraint � > 1=2.

Indeed, according to our present understanding of the black hole physics, there should

exist a lower mass limit to form them. For example, it is accepted that the mass of a

neutron star is between 1:2M� and 1:7M�, where M� denotes the solar mass [14].

When the mass of a star is M � 1:7M�, it might exist only in the state of a black

hole.

There are two other expressions for mass per unit length besides Israel's (32). One is

given by Marder [2], which is

�M =

Z 1

0

Z 2�

0

��(r � r0)
p
g(2)drd�; (39)

where g(2) is the determinant of the induced metric on the 2-surface de�ned by t =

z =const. The other de�nition is given by Vishveshwara and Winicour [13], based on the

Killing vectors of time translation ��(0) = ��t and rotation ��(3) = ���, which is

�VW = � 1

2�
(�33�00;� � �03�03;�); (40)

where

�00 = ��(0)��(0); �03 = ��(0)��(3); �33 = ��(3)��(3); (41)

� 2 = �2(�00�33 � �203): (42)

Using (19,30) or (20),31) we obtain

�M =
�

2�
; �VW = �; (43)

we see that �M does dot produce the Newtonian limit, and �VW does not explain the

circular geodesics behaviour. Hence we discard both de�nitions. (In [6] the expressions

(15) and (16) should be interchanged with their respective analises.)
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6 Conclusion

We have presented the cylindrically symmetric static vacuum solution of Einstein's �eld

equations, obtained by LC in its general form, by only specifying the time and radial

coordinates and not specifying the other two.

We showed that the nature of the two coordinates is closely linked with the range of

�.

There are two ranges, 0 � � < 1=2 and 1=2 < � < 1, where the coordinates, being

z and �, switch their nature [15]. We calculated the circular geodesics for these two

ranges and it appears, from their behaviour, that the energy per unit length increases by

increasing � up to 1=2 and then diminishes while � increases to 1.

We matched a shell source to LC solution satisfying the energy conditions for the whole

range of �. The energy per unit length � calculated from the de�nition given by Israel

reproduces the behaviour of the circular geodesics and, furthermore, while producing a

maximum for � suggests a possible explanation for the non existence of event horizons in

LC spacetime. Of course, we are aware that � is model dependent and cannot be given a

general meaning but none the less it satis�es part of the expected properties.

Some questions, however, remain unanswered, which leaves the puzzle incomplete.

Indeed, observe that for � = 1=2 the energy density � as well as p� and � are nonvan-

ishing, but the spacetime is at. Now, if the source would be a plane (as seems to be the

case in [16]) then one could invoke the equivalence principle to explain the vanishing of

the Riemann tensor.

However in our case the proper radius of the cylinder (unlike the case analyzed in [16])

remains constant and �nite for any value of �. So the question is: why do a cylinder with

positive energy density and pressure distribution produces vanishing curvature? This last

question, together with the fact that a gyroscope moving along the �-coordinate in the LC

spacetime with � = 1=2 behaves in an unexpected way (see [4]), brings out the di�culties

in interpreting the � = 1=2 case as due to a cylinder, in spite of the fact that the source

presented in section 4 is physically satisfactory.

The situation described above might have its origins in the following two facts:

1. The source is a shell and therefore the second fundamental form is discontinuous

across the boundary surface. It is unclear whether demanding both fundamental
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forms to be continuous is compatible with a reasonable cylindrical source or if,

instead, it leads always to the same results as in [16] when � = 1=2.

2. Axial and angular coordinates switch meaning at � = 1=2, so it is reasonable to ask

if for this value of �, r = r0 describes a cylinder.

At any rate it is clear that this point requires further discussion.
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